Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = flood protection system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4896 KiB  
Article
Calculation of Connectivity Between Surface and Underground Three-Dimensional Water Systems in the Luan River Basin
by Jingyao Wang, Zhixiong Tang, Belay Z. Abate, Zhuoxun Wu and Li He
Sustainability 2025, 17(15), 6913; https://doi.org/10.3390/su17156913 - 30 Jul 2025
Viewed by 165
Abstract
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for [...] Read more.
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for optimizing spatial water distribution, maintaining ecohydrological equilibrium, and enhancing flood–drought regulation efficacy is important. Focusing on the regulated reaches of the Panjiakou, Daheiting, and Taolinkou reservoirs in the Luan River Basin, this study established and integrated a three-dimensional assessment framework that synthesizes hydrological processes, hydraulic structural effects, and human activities as three fundamental drivers, and employed the Analytic Hierarchy Process (AHP) to develop a quantitative connectivity evaluation system. Results indicate that water conservancy projects significantly altered basin connectivity: surface water connectivity decreased by 0.40, while groundwater connectivity experienced a minor reduction (0.25) primarily through reservoir seepage. Consequently, the integrated surface–groundwater system declined by 0.39. Critically, project scale governs surface connectivity attenuation intensity, which substantially exceeds impacts on groundwater systems. The comprehensive assessment system developed in this study provides theoretical and methodological support for diagnosing river connectivity, formulating ecological restoration strategies, and protecting basin ecosystems. Full article
Show Figures

Figure 1

22 pages, 3267 KiB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 216
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

21 pages, 979 KiB  
Article
AI-Enhanced Coastal Flood Risk Assessment: A Real-Time Web Platform with Multi-Source Integration and Chesapeake Bay Case Study
by Paul Magoulick
Water 2025, 17(15), 2231; https://doi.org/10.3390/w17152231 - 26 Jul 2025
Viewed by 295
Abstract
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational [...] Read more.
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational web-based AI ensemble for coastal flood risk assessment integrating real-time multi-agency data, (2) an automated regional calibration system that corrects systematic model biases through machine learning, and (3) browser-accessible implementation of research-grade modeling previously requiring specialized computational resources. The system combines Bayesian neural networks with optional LSTM and attention-based models, implementing automatic regional calibration and multi-source elevation consensus through a modular Python architecture. Real-time API integration achieves >99% system uptime with sub-3-second response times via intelligent caching. Validation against Hurricane Isabel (2003) demonstrates correction from 197% overprediction (6.92 m predicted vs. 2.33 m observed) to accurate prediction through automated identification of a Chesapeake Bay-specific reduction factor of 0.337. Comprehensive validation against 15 major storms (1992–2024) shows substantial improvement over standard methods (RMSE = 0.436 m vs. 2.267 m; R2 = 0.934 vs. −0.786). Economic assessment using NACCS fragility curves demonstrates 12.7-year payback periods for flood protection investments. The open-source Streamlit implementation democratizes access to research-grade risk assessment, transforming months-long specialist analyses into immediate browser-based tools without compromising scientific rigor. Full article
(This article belongs to the Special Issue Coastal Flood Hazard Risk Assessment and Mitigation Strategies)
Show Figures

Figure 1

21 pages, 3532 KiB  
Review
Climate Hazards Management of Historic Urban Centers: The Case of Kaštela Bay in Croatia
by Jure Margeta
Climate 2025, 13(7), 153; https://doi.org/10.3390/cli13070153 - 19 Jul 2025
Viewed by 543
Abstract
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban [...] Read more.
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban landscape, culture, and economy. The aim of this study was to enhance the resilience and protection of cultural heritage and historic urban centers (HUCs) in the coastal area of Kaštela, Croatia, by providing recommendations and action guidelines in response to climate change impacts, including rising temperatures, sea levels, storms, droughts, and flooding. Preserving HUCs is essential to maintain their cultural values, original structures, and appearance. Many ancient coastal Roman HUCs lie partially or entirely below mean sea level, while low-lying medieval castles, urban areas, and modern developments are increasingly at risk. Based on vulnerability assessments, targeted mitigation and adaptation measures were proposed to address HUC vulnerability sources. The Historical Urban Landscape Approach tool was used to transition and manage HUCs, linking past, present, and future hazard contexts to enable rational, comprehensive, and sustainable solutions. The effective protection of HUCs requires a deeper understanding of the evolution of urban development, climate dynamics, and the natural environments, including both tangible and intangible urban heritage elements. The “hazard-specific” vulnerability assessment framework, which incorporates hazard-relevant indicators of sensitivity and adaptive capacity, was a practical tool for risk reduction. This method relies on analyzing the historical performance and physical characteristics of the system, without necessitating additional simulations of transformation processes. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 223
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

19 pages, 9752 KiB  
Article
Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
by Imon Abedin, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin and Hilloljyoti Singha
Earth 2025, 6(3), 78; https://doi.org/10.3390/earth6030078 - 12 Jul 2025
Viewed by 293
Abstract
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from [...] Read more.
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from its designation as a national park in 2000 through 2024. The satellite imagery was used to classify LULC types and track landscape changes over time. In 2000, grasslands were the dominant land cover (28.78%), followed by semi-evergreen forests (25.58%). By 2013, shrubland became the most prominent class (81.31 km2), and degraded forest expanded to 75.56 km2. During this period, substantial areas of grassland (29.94 km2), degraded forest (10.87 km2), semi-evergreen forest (12.33 km2), and bareland (10.50 km2) were converted to shrubland. In 2024, degraded forest further increased, covering 80.52 km2 (23.47%). This change resulted since numerous areas of shrubland (11.46 km2) and semi-evergreen forest (27.48 km2) were converted into degraded forest. Furthermore, significant shifts were observed in grassland, shrubland, and degraded forest, indicating a substantial and consistent decline in grassland. These changes are largely attributed to recurring Brahmaputra River floods and increasing anthropogenic pressures. This study recommends a targeted Grassland Recovery Project, control of invasive species, improved surveillance, increased staffing, and the relocation of forest villages to reduce human impact and support community-based conservation efforts. Hence, protecting the landscape through informed LULC-based management can help maintain critical habitat patches, mitigate anthropogenic degradation, and enhance the survival prospects of native floral and faunal assemblages in DSNP. Full article
Show Figures

Figure 1

29 pages, 672 KiB  
Article
Configuring Supply Chain Resilience Under Natural Disaster Risk
by Jiaqi Cheng and Peng Shan
Sustainability 2025, 17(14), 6346; https://doi.org/10.3390/su17146346 - 10 Jul 2025
Viewed by 351
Abstract
In recent years, the intensifying frequency of natural disasters such as floods and typhoons has brought severe disruptions to the global supply chain system, making supply chain resilience an important academic research and practical application topic. This study explores the influencing factors and [...] Read more.
In recent years, the intensifying frequency of natural disasters such as floods and typhoons has brought severe disruptions to the global supply chain system, making supply chain resilience an important academic research and practical application topic. This study explores the influencing factors and allocation effects of supply chain resilience under the risk of natural disasters, with a particular focus on its impact on sustainability. This paper conducts an empirical study on supply chain resilience in the context of natural disasters by using the Structural Equation Model (SEM) and Fuzzy Set Qualitative Comparative Analysis (fsQCA). Based on 407 valid questionnaires, the study found that supply chain flexibility, foresight, visibility, cooperation, and support significantly positively affected the enhancement of supply chain resilience. Furthermore, through the fsQCA method, this study identified a single configuration approach that leads to high supply chain resilience and clarified the complexity of resilience formation under different conditions. This research not only enriches the theoretical framework of supply chain resilience but also provides targeted strategies for enterprises and governments to enhance their resilience to natural disasters, thereby suggesting potential pathways to support economic stability, social well-being, and environmental protection, though further empirical validation is needed. Full article
Show Figures

Figure 1

17 pages, 921 KiB  
Article
Residents’ Perception of Flood Prediction Products: The Study of NASA’s Satellite Enhanced Snowmelt Flood Prediction
by Yue Ge, Sara Iman, Yago Martín, Siew Hoon Lim, Jennifer M. Jacobs and Xinhua Jia
Sustainability 2025, 17(14), 6328; https://doi.org/10.3390/su17146328 - 10 Jul 2025
Viewed by 309
Abstract
In the context of emergency management, individual or household decisions to engage in risk mitigation behaviors are widely recognized to be influenced by a benefit–cost perception (perceived applied value (PAV) vs. perceived economic value (PEV), respectively). To better understand how such decisions are [...] Read more.
In the context of emergency management, individual or household decisions to engage in risk mitigation behaviors are widely recognized to be influenced by a benefit–cost perception (perceived applied value (PAV) vs. perceived economic value (PEV), respectively). To better understand how such decisions are made, we conducted a mail survey (N = 211) of households living in the Red River of the North Basin, North Dakota, in 2018. The survey is aimed at understanding the overall experience of households with flooding and their behavior toward advanced protective strategies against future floods by analyzing household PEV—their willingness to pay for the National Aeronautics and Space Administration’s (NASA) Satellite Enhanced Snowmelt Flood Prediction system. This paper presents a mediation model in which various predictors (flood risk, experience, flood knowledge, flood risk perception, flood preparedness, flood mitigation, and flood insurance) are analyzed in relation to the PAV of the new Satellite Enhanced Snowmelt Flood Predictions in the Red River of the North Basin, which, in turn, may shape the PEV of this product. We discuss the potential implications for both the emergency management research community and professionals regarding the application of advanced risk mitigation technologies to help protect and sustain communities across the country from floods and other natural disasters. This paper provides a greater understanding of the economic and social aspects of sustainability in the context of emergency management and community development. Full article
Show Figures

Figure 1

36 pages, 5039 KiB  
Article
Flood Risk Forecasting: An Innovative Approach with Machine Learning and Markov Chains Using LIDAR Data
by Luigi Bibbò, Giuliana Bilotta, Giuseppe M. Meduri, Emanuela Genovese and Vincenzo Barrile
Appl. Sci. 2025, 15(13), 7563; https://doi.org/10.3390/app15137563 - 5 Jul 2025
Viewed by 473
Abstract
In recent years, the world has seen a significant increase in extreme weather events, such as floods, hurricanes, and storms, which have caused extensive damage to infrastructure and communities. These events result from natural phenomena and human-induced factors, including climate change and natural [...] Read more.
In recent years, the world has seen a significant increase in extreme weather events, such as floods, hurricanes, and storms, which have caused extensive damage to infrastructure and communities. These events result from natural phenomena and human-induced factors, including climate change and natural climate variations. For instance, the floods in Europe in 2024 and the hurricanes in the United States have highlighted the vulnerability of urban and rural areas. These extreme events are often unpredictable and pose considerable challenges for spatial planning and risk management. This study explores an innovative approach that employs machine learning and Markov chains to enhance spatial planning and predict flood risk areas. By utilizing data such as weather records, land use and land cover (LULC) information, topographic LIDAR data, and advanced predictive models, the study aims to identify the most vulnerable areas and provide recommendations for risk mitigation. The results indicate that integrating these technologies can improve forecasting accuracy, thereby supporting more informed decisions in land management. Given the effects of climate change and the increasing frequency of extreme events, adopting advanced forecasting and planning tools is crucial for protecting communities and reducing economic and social damage. This method was applied to the Calopinace area, also known as the Calopinace River or Fiumara della Cartiera, which crosses Reggio Calabria and is notorious for its historical floods. It can serve as part of an early warning system, enabling alerts to be issued throughout the monitored area. Furthermore, it can be integrated into existing emergency protocols, thereby enhancing the effectiveness of disaster response. Future research could investigate incorporating additional data and AI techniques to improve accuracy. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

23 pages, 1592 KiB  
Article
Training of Volunteer Fire Brigades in Civil Protection and Crisis Management: Assessments and Applicable Recommendations Based on the Cracow Poviat in Poland
by Radosław Harabin, Grzegorz Wilk-Jakubowski, Jacek Wilk-Jakubowski, Artur Kuchciński, Anna Szemraj and Wiktoria Świderska
Fire 2025, 8(7), 260; https://doi.org/10.3390/fire8070260 - 30 Jun 2025
Viewed by 465
Abstract
Applicable recommendations play a key role in improving training and procedures used in civil protection. Since 1 January 2025, the Law on Civil Protection and Civil Defense has been in force in Poland. It responds to the experience of current threats, including the [...] Read more.
Applicable recommendations play a key role in improving training and procedures used in civil protection. Since 1 January 2025, the Law on Civil Protection and Civil Defense has been in force in Poland. It responds to the experience of current threats, including the war in Ukraine, the 2024 floods in Western Poland, the COVID-19 pandemic, and other crises. The Act systemically regulates the problem of building social resilience, which must be developed and applied regarding today’s modern threats. The primary actor in civil protection is the fire brigade system, in which volunteer firefighters are recruited from local communities and act for their benefit. In this context, it is interesting to ask whether and what solutions should be applied in order to improve the effectiveness of the training and exercise system of volunteer fire brigades (TSOs) in the field of civil protection and crisis management. The aim of this investigation was to develop evaluations and applicable recommendations to improve the effectiveness of the training system for volunteer firefighters based on a survey of volunteer firefighters in the Cracow Poviat. Two survey diagnostic techniques were used: expert interviews and questionnaire research. The findings were compared with the results of an analysis of source documents obtained in TSO units. The expert interviews covered all chief fire officers of the municipalities in the Cracow Poviat. The paper begins with an introduction and a systematic literature review. The conclusions consist of the proposal of applicable changes in the scope of basic, specialist, and additional training. Areas of missing training are also identified. The firefighters’ knowledge of crisis management procedures is verified, deficiencies are identified, and applicable changes in the organization of field exercises are proposed. Full article
Show Figures

Figure 1

35 pages, 9246 KiB  
Article
Risk Assessment and Management Strategy of Coastal Erosion in the Red River Delta, Vietnam
by Thi Hong Hanh Nguyen, Guanxun Wang, Wenyue Chen, Jing Yu, Ruonan Liu, Xu Huang, Xun Jiang, Van Vuong Bui, Dinh Nam Le and Van Phach Phung
Land 2025, 14(6), 1247; https://doi.org/10.3390/land14061247 - 11 Jun 2025
Viewed by 795
Abstract
Climate change poses substantial threats to natural ecosystems and human livelihoods, particularly in coastal regions, by intensifying coastal erosion. This process leads to land loss, infrastructure damage, and habitat destruction while amplifying challenges such as sea-level rise, flooding, desertification, and salinization. In Vietnam’s [...] Read more.
Climate change poses substantial threats to natural ecosystems and human livelihoods, particularly in coastal regions, by intensifying coastal erosion. This process leads to land loss, infrastructure damage, and habitat destruction while amplifying challenges such as sea-level rise, flooding, desertification, and salinization. In Vietnam’s Red River Delta (RRD), the dynamic interplay between erosion and accretion presents a highly complex challenge, necessitating effective risk assessment and management to safeguard communities and resources. Using the principles of natural disaster risk assessment and comprehensive analysis, this study develops a coastal erosion risk assessment framework incorporating hazard, exposure, and vulnerability dimensions. The framework integrates 17 indicators, including human activities, socioeconomic factors, shoreline type, and vegetation cover, with indicator weights determined through expert evaluation and the analytic hierarchy process. The application of this framework reveals that coastal erosion risk in the RRD is relatively high, with greater risk concentrated in the central and northern segments of the coastline compared to the flanking areas. This framework offers valuable insights for coastal erosion prevention, mitigation strategies, and the optimization of coastal spatial planning. The application of coastal erosion risk assessment methods provides a relatively complete foundation for developing comprehensive prevention and adaptation solutions in the future. Through the system of parameters and corresponding weights, it provides an overview of potential responses to future impacts while identifying current high-risk zones specifically and accurately, thereby assessing the importance of each parameter on that impact. Based on specific analysis of assessment results, a reasonable resource use and management policy can be developed to minimize related natural disasters. Therefore, two main groups of solutions proposed under the “Protection—Adaptation” strategy are proposed to prevent natural disasters, minimize risks and sustainably develop the coastal area of the RRD. Full article
Show Figures

Figure 1

21 pages, 12446 KiB  
Article
The LIFE-GARACHICO Project: A Holistic and Flexible Management of Coastal Flooding Risk in Praia da Vitória, Azores
by Larize Lima, Conceição J. E. M. Fortes, Ana Catarina Zózimo and Liliana V. Pinheiro
GeoHazards 2025, 6(2), 25; https://doi.org/10.3390/geohazards6020025 - 29 May 2025
Viewed by 400
Abstract
This research addresses the increasing vulnerability of coastal urban areas to climate change, with a particular focus on the increased risk of overtopping and coastal flooding events in Praia da Vitória, Azores. This study, conducted within the LIFE-GARACHICO project, aims to develop a [...] Read more.
This research addresses the increasing vulnerability of coastal urban areas to climate change, with a particular focus on the increased risk of overtopping and coastal flooding events in Praia da Vitória, Azores. This study, conducted within the LIFE-GARACHICO project, aims to develop a holistic and flexible management approach to coastal flood risk. The methodology included a comprehensive risk assessment that combined a vulnerability analysis (considering factors such as population, land use, and infrastructure) with the probability of coastal inundation events (using oceanographic data and models). Public risk perception was assessed through surveys to understand residents’ awareness and preferences. A response protocol for overtopping events was developed with civil protection officials, and the HIDRALERTA early warning system was implemented. The risk assessment showed a mostly acceptable risk with some undesirable areas, resulting from a mostly low probability and medium vulnerability. Public surveys indicated that residents had experienced flooding but felt unprepared and preferred softer management measures such as access restrictions and early warning systems. The response protocol developed and integrated into HIDRALERTA responds to these preferences. This study concludes that this integrated framework improves coastal risk management, increases public awareness and confidence, and provides a flexible and sustainable model for coastal risk management. Full article
Show Figures

Figure 1

21 pages, 4767 KiB  
Article
Mapping the Distribution and Discharge of Plastic Pollution in the Ganga River
by Ekta Sharma, Aishwarya Ramachandran, Pariva Dobriyal, Srishti Badola, Heather Koldewey, Syed Ainul Hussain and Ruchi Badola
Sustainability 2025, 17(11), 4932; https://doi.org/10.3390/su17114932 - 27 May 2025
Viewed by 1104
Abstract
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving [...] Read more.
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving critical gaps in understanding plastic pollution’s sources and pathways. Addressing these gaps, the study documents the prevalence and typology of plastic debris in urban and underexplored rural communities along the Ganga River, India, aiming to suggest mechanisms for a reduction in source-based pollution. A stratified random sampling approach was used to select survey sites and plastic debris was quantified and categorised through transect surveys. A total of 37,730 debris items were retrieved, dominated by packaging debris (52.46%), fragments (23.38%), tobacco-related debris (5.03%), and disposables (single-use plastic cutleries) (4.73%) along the surveyed segments with varying abundance trends. Floodplains displayed litter densities nearly 28 times higher than river shorelines (6.95 items/m2 vs. 0.25 items/m2), with minor variations between high- and low-population-density areas (7.14 items/m vs. 6.7 items/m2). No significant difference was found between rural and urban areas (V = 41, p = 0.19), with mean densities of 0.87 items/m2 and 0.81 items/m2, respectively. Seasonal variations were insignificant (V = 13, p = 0.30), but treatment sites displayed significant variance (Chi2 = 10.667, p = 0.004) due to flood impacts. The findings underscore the urgent need for tailored waste management strategies integrating industrial reforms, decentralised governance, and community-driven efforts. Enhanced baseline information and coordinated multi-sectoral efforts, including Extended Producer Responsibility (EPR), are crucial for mitigating plastic pollution and protecting freshwater ecosystems, given rivers’ significant contribution to ocean pollution. Full article
Show Figures

Figure 1

26 pages, 17206 KiB  
Article
Cascading Landslide–Barrier Dam–Outburst Flood Hazard: A Systematic Study Using Rockfall Analyst and HEC-RAS
by Ming Zhong, Xiaodi Li, Jiao Wang, Lu Zhuo and Feng Ling
Remote Sens. 2025, 17(11), 1842; https://doi.org/10.3390/rs17111842 - 25 May 2025
Viewed by 787
Abstract
Landslide hazard chains pose significant threats in mountainous areas worldwide, yet their cascading effects remain insufficiently studied. This study proposes an integrated framework to systematically assess the landslide-landslide dam-outburst flood hazard chain in mountainous river systems. First, landslide susceptibility is assessed through a [...] Read more.
Landslide hazard chains pose significant threats in mountainous areas worldwide, yet their cascading effects remain insufficiently studied. This study proposes an integrated framework to systematically assess the landslide-landslide dam-outburst flood hazard chain in mountainous river systems. First, landslide susceptibility is assessed through a random forest model incorporating 11 static environmental and geological factors. The surface deformation rate derived from SABS-InSAR technology is incorporated as a dynamic factor to improve classification accuracy. Second, motion trajectories of rock masses in high-risk zones are identified by Rockfall Analyst model to predict potential river blockages by landslide dams, and key geometric parameters of the landslide dams are predicted using a predictive model. Third, the 2D HEC-RAS model is used to simulate outburst flood evolution. Results reveal that: (1) incorporating surface deformation rate as a dynamic factor significantly improves the predictive accuracy of landslide susceptibility assessment; (2) landslide-induced outburst floods exhibit greater destructive potential and more complex inundation dynamics than conventional mountain flash floods; and (3) the outburst flood propagation process exhibits three sequential phases defined by the Outburst Flood Arrival Time (FAT): initial rapid advancement phase, intermediate lateral diffusion phase, and mature floodplain development phase. These phases represent critical temporal thresholds for initiating timely downstream evacuation. This study contributes to the advancement of early warning systems aimed at protecting downstream communities from outburst floods triggered by landslide hazard chains. It enables researchers to better analyze the complex dynamics of such cascading events and to develop effective risk reduction strategies applicable in vulnerable regions. Full article
Show Figures

Figure 1

19 pages, 8687 KiB  
Article
Assessment of Coastal Zone Vulnerability in Context of Sea-Level Rise and Inundation Risk in Qatar
by Abdulaziz Ali M. Al-Mannai, Sarra Ouerghi and Mohamed Elhag
Atmosphere 2025, 16(5), 622; https://doi.org/10.3390/atmos16050622 - 19 May 2025
Viewed by 685
Abstract
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated [...] Read more.
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated by high-intensity human activities and urban expansion. The ongoing challenges posed by rising sea levels and climate change necessitate robust scientific assessments of coastal vulnerability to ensure effective disaster prevention and environmental protection. This paper introduces a comprehensive evaluation system for assessing coastal zone vulnerability, utilizing multi-source data to address ecological vulnerabilities stemming from sea-level rise and climate change impacts. This system is applied to examine the specific case of Qatar, where rapid urban development and a high population density in coastal areas heighten the risk of flooding and inundation. Employing remote sensing data and Geographic Information Systems (GISs), this research leverages spatial interpolation techniques and high-resolution digital elevation models (DEMs) to identify and evaluate high-risk zones susceptible to sea-level rise. In this study, the hydrological connectivity model, bathtub technique, and CVI are interconnected tools that complement each other to assess future flooding risks under various climate change projections, highlighting the increased probability of coastal hazards. The findings underscore the urgent need for adaptive planning and regulatory frameworks to mitigate these risks, providing technical support for the sustainable development of coastal communities globally and in Qatar. This approach not only informs policy makers, but also aids in the strategic planning required to foster resilient coastal infrastructure capable of withstanding both current and future environmental challenges. Full article
Show Figures

Figure 1

Back to TopTop