Cascading Landslide–Barrier Dam–Outburst Flood Hazard: A Systematic Study Using Rockfall Analyst and HEC-RAS
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Data
- (1)
- Landslide inventory
- (2)
- Landslide conditioning factors
2.2. Methodology
2.2.1. Landslide Susceptibility Assessment Model
- (1)
- Classification of landslide susceptibility based on Random Forest
- (2)
- Modification of landslide susceptibility based on SABS-InSAR
- The primary image should be selected based on the quality of the imaging effect or minimal climate fluctuations, followed by the process of image registration.
- Utilizing the principle of baseline combination from small baseline subsets, multiple interferogram pairs are generated.
- Differential interferograms are obtained by phase re-flattening process using satellite orbital data, DEM, and the geometric model.
- High coherence points are identified for the purpose of phase unwrapping and calibrating the interferogram.
- Surface deformation parameters and elevation inaccuracies are obtained by the Singular Value Decomposition (SVD) method, grounded in the least squares approach.
- The impacts of atmospheric phase and nonlinear deformation have been estimated.
2.2.2. Analysis of Landslide Dam Based on Physical Model
2.2.3. Risk Analysis of Outburst Floods Based on HEC-RAS
3. Results
3.1. Landslide Susceptibility Map Analysis
3.1.1. Surface Deformation Rate
3.1.2. Landslide Susceptibility Assessment
3.2. Landslide Dam Analysis
3.2.1. Landslide Dam Risk Identification
3.2.2. Landslide Dam Geometry Prediction
3.3. Risk Analysis of Landslide-Induced River Blocking
3.3.1. Outburst Flood
3.3.2. Mountain Flash Flood
4. Discussion
4.1. The LSA Integrated Surface Deformation Rate
4.2. The Systematic Framework of Landslide Hazard Chain
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LSA | Multidisciplinary Digital Publishing Institute |
RA | Rockfall Analyst |
InSAR | Interferometric synthetic aperture radar |
RF | Random forest |
FAT | Outburst flood arrival time |
ROC | Receiver operating characteristic curve |
FPR | False positive rate |
TPR | True positive rate |
Appendix A
Appendix A.1. RockFall Analyst (RA) Model
Appendix A.2. The Prediction Model of Landslide Dam Geometry
References
- Liu, W.; Carling, P.A.; Hu, K.; Wang, H.; Zhou, Z.; Zhou, L.; Liu, D.; Lai, Z.; Zhang, X. Outburst floods in China: A review. Earth Sci. Rev. 2019, 197, 102895. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Tan, Y.J.; Walter, F.; He, S.M.; Chmiel, M.; Su, J.R. Landslide hazard cascades can trigger earthquakes. Nat. Commun. 2024, 15, 2878. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mao, H. Spatio-temporal evolution of post-seismic landslides and debris flows: 2017 Ms 7.0 Jiuzhaigou earthquake. Environ. Sci. Pollut. Res. 2022, 29, 15681–15702. [Google Scholar] [CrossRef] [PubMed]
- Koukouvelas, I.K.; Piper, D.J.; Katsonopoulou, D.; Kontopoulos, N.; Verroios, S.; Nikolakopoulos, K.; Zygouri, V. Earthquake-triggered landslides and mudflows: Was this the wave that engulfed Ancient Helike? Holocene 2020, 30, 1653–1668. [Google Scholar] [CrossRef]
- Wang, F.; Dai, Z.; Okeke, C.A.U.; Mitani, Y.; Yang, H. Experimental study to identify premonitory factors of landslide dam failures. Eng. Geol. 2018, 232, 123–134. [Google Scholar] [CrossRef]
- Peng, M.; Zhang, L.M. Breaching parameters of landslide dams. Landslides 2011, 9, 13–31. [Google Scholar] [CrossRef]
- Ma, J.; Chen, J.; Xu, C. Hydraulic reconstruction of giant paleolandslide-dammed lake outburst floods in high-mountain region, eastern Tibetan Plateau: A case study of the Upper Minjiang River valley. Trans. GIS 2024, 28, 1793–1825. [Google Scholar] [CrossRef]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef]
- Carpignano, A.; Golia, E.; Mauro, C.D.; Bouchon, S.; Nordvik, J.P. A methodological approach for the definition of multi-risk maps at regional level: First application. J. Risk Res. 2009, 12, 513–534. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; Elverfeldt, K.V.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Y.; Wang, H.; Jin, W.; Wu, C.; Bazai, N.A.; Zhang, G.; Carling, P.A.; Chen, H. Assessment of local outburst flood risk from successive landslides: Case study of Baige landslide-dammed lake, upper Jinsha river, eastern Tibet. J. Hydrol. 2021, 599, 126294. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Z.; Li, Y.; Yu, S.; Wang, L.; Zhou, X.; Wu, S. Quantitative assessment on landslide dam risks and mitigation: An in-depth study on the Baige lake breach. Environ. Earth Sci. 2023, 82, 96. [Google Scholar] [CrossRef]
- Ma, J.; Xu, C.; Chen, J. Dam-breach process simulation and risk assessment of outburst flood induced by the Tangjiashan landslide-dammed lake. J. Hydrol. Reg. Stud. 2025, 57, 102164. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, T.; Zhou, Q.; Wu, C.; Chen, Y.-L.; Wu, P. A case study of the Tangjiashan landslide dam-break. J. Hydrodyn. 2015, 27, 223–233. [Google Scholar] [CrossRef]
- Segoni, S.; Pappafico, G.; Luti, T.; Catani, F. Landslide susceptibility assessment in complex geological settings: Sensitivity to geological information and insights on its parameterization. Landslides 2020, 17, 2443–2453. [Google Scholar] [CrossRef]
- Yang, C.; Liu, L.-L.; Huang, F.; Huang, L.; Wang, X.-M. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Res. 2023, 123, 198–216. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kornejady, A.; Kerle, N.; Shabani, F. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. CATENA 2020, 187, 104364. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Res. 2021, 100, 290–301. [Google Scholar] [CrossRef]
- Kulsoom, I.; Hua, W.; Hussain, S.; Chen, Q.; Khan, G.; Shihao, D. SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: A case study of Gilgit-Baltistan, Pakistan. Sci. Rep. 2023, 13, 3344. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Y.; Meng, X.; Rehman, M.U.; Khalid, Z.; Yue, D. Updating inventory, deformation, and development characteristics of landslides in Hunza Valley, NW Karakoram, Pakistan by SBAS-InSAR. Remote Sens. 2022, 14, 4907. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide susceptibility mapping of karakorum highway combined with the application of SBAS-InSAR technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.X.; Martin, C.D.; Lim, C.H. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput. Geosci. 2007, 33, 262–279. [Google Scholar] [CrossRef]
- Yue, X.; Wu, S.; Yin, Y.; Gao, J.; Zheng, J. Risk identification of seismic landslides by joint Newmark and RockFall analyst models: A case study of roads affected by the Jiuzhaigou earthquake. Int. J. Disaster Risk Sci. 2018, 9, 392–406. [Google Scholar] [CrossRef]
- Zhan, J.; Yu, Z.; Lv, Y.; Peng, J.; Song, S.; Yao, Z. Rockfall hazard assessment in the Taihang grand canyon scenic area integrating regional-scale identification of potential rockfall sources. Remote Sens. 2022, 14, 3021. [Google Scholar] [CrossRef]
- Lan, H.; Martin, C.D.; Zhou, C.; Lim, C.H. Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology 2010, 118, 213–223. [Google Scholar] [CrossRef]
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dams. GSA Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Bharath, A.; Shivapur, A.V.; Hiremath, C.; Maddamsetty, R. Dam break analysis using HEC-RAS and HEC-GeoRAS: A case study of Hidkal dam, Karnataka state, India. Environ. Chall. 2021, 5, 100401. [Google Scholar] [CrossRef]
- Walder, J.S.; O’connor, J.E. Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams. Water Resour. Res. 1997, 33, 2337–2348. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, Q.; Chen, L.; Shan, Y. Review on the Simulation Technologies of Breach Mechanism and Breaching Process of Landslide Dam. J. Disaster Prev. Mitig. Eng. 2022, 3, 42. [Google Scholar]
- Fread, D.L. DAMBRK: The NWS Dam-Break Flood Forecasting Model; National Weather Service: Silver Spring, MD, USA, 1980. [Google Scholar]
- Fread, D.L. BREACH: An Erosion Model for Earthen Dam Failures; National Weather Service: Silver Spring, MD, USA, 1988. [Google Scholar]
- Singh, V.P.; Scarlatos, P.D.; Collins, J.G.; Jourdan, M.R. Breach erosion of earthfill dams (BEED) model. Nat. Hazards 1988, 1, 161–180. [Google Scholar] [CrossRef]
- Brunner, G.W. HEC-RAS River Analysis System; Version 1.0; Hydraulic User’s Manual: Jackson, MS, USA, 1995. [Google Scholar]
- Froehlich, D. Embankment dam breach parameters revisited. In Proceedings of the International Water Resources Engineering Conference—Proceedings 1, San Antonio, Texas, USA, 14–18 August 1995. [Google Scholar]
- Froehlich, D.C. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 2008, 134, 1708–1721. [Google Scholar] [CrossRef]
- Thun, J.L.V.; Gillette, D.R. Guidance on Breach Parameters; Unpublished Internal Document; US Bureau of Reclamation: Denver, CO, USA, 1990.
- Macdonald, T.C.; Langridge-Monopolis, J. Breaching charateristics of dam failures. J. Hydraul. Eng. 1984, 110, 567–586. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.M. Breaching parameters for earth and rockfill dams. J. Geotech. Geoenviron. Eng. 2009, 135, 1957–1970. [Google Scholar] [CrossRef]
- Wang, X.; Nie, W.; Xie, W.; Zhang, Y. Incremental learning-random forest model-based landslide susceptibility analysis: A case of Ganzhou City, China. Earth Sci. Inform. 2024, 17, 1645–1661. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision? CATENA 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhang, X.D.; Xie, H.Y.; Xu, Z.D.; Li, Z.W.; Chen, B. Evaluating landslide susceptibility: An AHP method-based approach enhanced with optimized random forest modeling. Nat. Hazards 2024, 120, 8153–8207. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.L.; Kalsoom, I.; Asghar, A.; Shoaib, M. Landslide Susceptibility Mapping Using Machine Learning Algorithm: A Case Study Along Karakoram Highway (KKH), Pakistan. J. Indian Soc. Remote Sens. 2022, 50, 849–866. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Huang, R.; Liu, W. Study on the movement characteristics of rolling rock block on platform. Adv. Earth Sci. 2008, 5, 517. [Google Scholar]
- Kiwanuka, M.; Chelangat, C.; Mubialiwo, A.; Lay, F.J.; Mugisha, A.; Mbujje, W.J.; Mutanda, H.E. Dam breach analysis of Kibimba Dam in Uganda using HEC-RAS and HEC-GeoRAS. Environ. Syst. Res. 2023, 12, 31. [Google Scholar] [CrossRef]
- Zhong, M.; Xiao, L.; Li, X.D.; Mei, Y.W.; Jiang, T.; Song, L.X.; Chen, X.H. A study on compound flood prediction and inundation simulation under future scenarios in a coastal city. J. Hydrol. 2024, 628, 130475. [Google Scholar] [CrossRef]
- Wu, H.; Nian, T.-K.; Chen, G.-Q.; Zhao, W.; Li, D.-Y. Laboratory-scale investigation of the 3-D geometry of landslide dams in a U-shaped valley. Eng. Geol. 2020, 265, 105428. [Google Scholar] [CrossRef]
- Shen, D.Y.; Shi, Z.M.; Peng, M.; Zheng, H.C.; Yang, J.T.; Zhang, L.M. Efficient risk assessment of landslide dam breach floods in the Yarlung Tsangpo river basin. Landslides 2024, 21, 2673–2694. [Google Scholar] [CrossRef]
- Nibigira, L.; Havenith, H.-B.; Archambeau, P.; Dewals, B. Formation, breaching and flood consequences of a landslide dam near Bujumbura, Burundi. Nat. Hazards Earth Syst. Sci. 2018, 18, 1867–1890. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nat. Geosci. 2010, 3, 247–251. [Google Scholar] [CrossRef]
- Chen, S.-C.; Chen, C.-Y.; Huang, W.-Y. Exploring landslide erosion volume–area scaling relationships by slip depth using changes in DTMs for basin sediment volume estimation. J. Mt. Sci. 2019, 16, 581–594. [Google Scholar] [CrossRef]
- Mao, J.; Liu, X.; Zhang, C.; Jia, G.; Zhao, L. Runout prediction and deposit characteristics investigation by the distance potential-based discrete element method: The 2018 Baige landslides, Jinsha River, China. Landslides 2021, 18, 235–249. [Google Scholar] [CrossRef]
Evaluation Factor | Data | Time Resolution/Spatial Resolution (m) | Data Sources |
---|---|---|---|
Meteorological condition | Precipitation | daily | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/zh-hans/data/e5c335d9-cbb9-48a6-ba35-d67dd614bb8c, accessed on 1 November 2024) |
Land cover | NDVI | 250 × 250 | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/zh-hans/data/10535b0b-8502-4465-bc53-78bcf24387b3, accessed on 1 November 2024) |
Land use | 30 × 30 | Landsat-derived annual land cover product of China (http://doi.org/10.5281/zenodo.4417809, accessed on 3 November 2024) | |
Road density | 250 × 250 | OpenStreetMap Data (https://osm.org/go/41dQzc1-, accessed on 3 November 2024) | |
Soil type | 1000 × 1000 | Harmonized World Soil Database version 2.0 (https://doi.org/10.4060/cc3823en, accessed on 4 November 2024) | |
Hydrologic condition | Drainage density | 1000 × 1000 | Science Data Bank platform |
Topographic condition | Elevation | 30 × 30 | ALOS PALSAR DEM from ASF Data Search Platform (https://search.asf.alaska.edu/#/, accessed on 3 November 2024) |
Slope | 30 × 30 | Elevation extraction | |
Profile curvature | 30 × 30 | Elevation extraction | |
Plane curvature | 30 × 30 | Elevation extraction | |
Geological conditions | Lithology | 250 × 250 | the database GLiM |
Surface Material Type | Normal Restitution Coefficient (Rn) | Tangential Restitution Coefficient (Rn) | Friction Angle (°) |
---|---|---|---|
Soil slope with dense vegetation | 0.2 | 0.6 | 30 |
Soil slope with loose vegetation | 0.3 | 0.6 | 30 |
Soil slope with grass | 0.3 | 0.8 | 30 |
Water (rock must stop) | 0 | 0 | 89 |
Weathered rock slope | 0.35 | 0.8 | 30 |
Urban construction land | 0.4 | 0.85 | 30 |
Land Use | n | CN |
---|---|---|
Water | 0.035 | 100 |
Forest | 0.160 | 77 |
Grassland | 0.055 | 80 |
Wetland | 0.035 | 80 |
Cropland | 0.040 | 89 |
Artificial surface | 0.090 | 92 |
Barren | 0.020 | 98 |
Return Periods (a) | Design Value | |
---|---|---|
Precipitation (mm) | Discharge (m3·s−1) | |
100 | 594 | 1620 |
50 | 530 | 1435 |
20 | 447 | 1191 |
10 | 383 | 1009 |
5 | 316 | 818 |
Landslide Initial Susceptibility Evaluation | Landslide Modified Susceptibility Evaluation | ||||
---|---|---|---|---|---|
level | area/km2 | ratio/% | level | area/km2 | ratio/% |
Very low | 4662.47 | 29.77% | Very low | 1953.86 | 12.48% |
Low | 3134.49 | 20.02% | Low | 5794.72 | 37.00% |
Moderate | 3933.35 | 25.12% | Moderate | 2803.89 | 17.91% |
High | 2587.21 | 16.52% | High | 2753.71 | 17.58% |
Very high | 1342.02 | 8.57% | Very high | 2353.37 | 15.03% |
Parameters | V/m3 | b/m | Φl/° | Φr/° | Φ/° | α/° | θ/° |
---|---|---|---|---|---|---|---|
Value | 372,900 | 108 | 8 | 6 | 40 | 60 | 3.4 |
Parameters | H/m | Lt/m | Lb/m | W/m | βd/° | βu/° |
---|---|---|---|---|---|---|
Value | 95.26 | 90.70 | 114.40 | 120.00 | 20.98 | 27.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, M.; Li, X.; Wang, J.; Zhuo, L.; Ling, F. Cascading Landslide–Barrier Dam–Outburst Flood Hazard: A Systematic Study Using Rockfall Analyst and HEC-RAS. Remote Sens. 2025, 17, 1842. https://doi.org/10.3390/rs17111842
Zhong M, Li X, Wang J, Zhuo L, Ling F. Cascading Landslide–Barrier Dam–Outburst Flood Hazard: A Systematic Study Using Rockfall Analyst and HEC-RAS. Remote Sensing. 2025; 17(11):1842. https://doi.org/10.3390/rs17111842
Chicago/Turabian StyleZhong, Ming, Xiaodi Li, Jiao Wang, Lu Zhuo, and Feng Ling. 2025. "Cascading Landslide–Barrier Dam–Outburst Flood Hazard: A Systematic Study Using Rockfall Analyst and HEC-RAS" Remote Sensing 17, no. 11: 1842. https://doi.org/10.3390/rs17111842
APA StyleZhong, M., Li, X., Wang, J., Zhuo, L., & Ling, F. (2025). Cascading Landslide–Barrier Dam–Outburst Flood Hazard: A Systematic Study Using Rockfall Analyst and HEC-RAS. Remote Sensing, 17(11), 1842. https://doi.org/10.3390/rs17111842