Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (136)

Search Parameters:
Keywords = floating receiver

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 562 KB  
Article
Exploring the Role of the Head Rotation Sit-Up Test in Identifying Epley-Responsive, Non-Classical Presentations of BPPV
by Ryo Yoneima, Kenji Nishio, Hiromasa Kawashima, Sota Sakamoto, Tomohiro Nakamura, Akihiro Sawa, Ayaka Kakiwaki, Hiroyuki Taguchi, Satoshi Senzaki, Nobushiro Nishimura, Hidetoshi Matsuoka, Shiro Ono, Masaki Matsubara, Noritaka Yada and Kiyomi Yoshimoto
Medicina 2026, 62(1), 217; https://doi.org/10.3390/medicina62010217 - 20 Jan 2026
Viewed by 174
Abstract
Background and Objectives: The Dix–Hallpike test (DHT) is the standard diagnostic maneuver for posterior semicircular canal benign paroxysmal positional vertigo (BPPV). However, some patients present with positional symptoms compatible with BPPV yet show no observable nystagmus on the DHT. We introduced the [...] Read more.
Background and Objectives: The Dix–Hallpike test (DHT) is the standard diagnostic maneuver for posterior semicircular canal benign paroxysmal positional vertigo (BPPV). However, some patients present with positional symptoms compatible with BPPV yet show no observable nystagmus on the DHT. We introduced the Head Rotation Sit-up Test (HRST) as a symptom-based maneuver and hypothesized that it would identify DHT-negative patients who nonetheless benefit from canalith repositioning. This study aimed to explore the potential role of the HRST. It was introduced as a complementary, symptom-based maneuver for evaluating non-classical vertigo presentations. Materials and Methods: We retrospectively reviewed patients clinically suspected of having BPPV by the attending physicians at Nara Medical University Hospital (August 2018–July 2022). All underwent both the DHT and HRST; those positive on either test received the Epley maneuver and were included. Patients were categorized as Group 1: DHT(−)/HRST(+), and Group 2: DHT(+), irrespective of the HRST, for the purpose of comparing patients who were positive on the HRST with those positive on the DHT. Post-treatment symptom severity was assessed on a 0–10 scale, with the patient’s most severe pre-treatment symptom defined as 10, and responder rates (post-Epley score < 5) were compared. Results: Among 179 patients with suspected BPPV, 80 were test-positive and were treated with the Epley maneuver. Group 1 comprised 31 patients, who more commonly reported non-rotational symptoms such as floating or unsteadiness, whereas rotational vertigo predominated in Group 2 (n = 49). Median post-Epley scores were significantly lower after treatment in both groups (Group 1: 2 [IQR 0–3]; Group 2: 3 [IQR 0–5]). Group 1 demonstrated a higher responder rate than Group 2 (90.3% vs. 65.3%, p = 0.016). Within Group 2, outcomes did not differ significantly between DHT(+)/HRST(+) and DHT(+)/HRST(−) subgroups. Conclusions: The HRST identified a clinically relevant subgroup of DHT-negative patients who nevertheless responded favorably to the Epley maneuver. Incorporating the HRST alongside the DHT may expand the diagnostic reach for BPPV, particularly among patients with non-classical symptoms or without observable nystagmus. These findings support the HRST as a useful complementary maneuver for detecting Epley responsive, symptom based positional vertigo. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 343
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

21 pages, 1766 KB  
Article
Floating Offshore Wind Farm Inter-Array Cabling Topology Optimisation with Metaheuristic Particle Swarm Optimisation
by Sergi Vilajuana Llorente, José Ignacio Rapha, Magnus Daniel Kallinger and José Luis Domínguez-García
Clean Technol. 2025, 7(4), 110; https://doi.org/10.3390/cleantechnol7040110 - 4 Dec 2025
Viewed by 589
Abstract
Floating offshore wind is now receiving much attention as an expansion to bottom-fixed, especially in deep waters with large wind resources. In this regard, improving the performance and efficiency of floating offshore wind farms (FOWFs) is currently a highly addressed topic. The inter-array [...] Read more.
Floating offshore wind is now receiving much attention as an expansion to bottom-fixed, especially in deep waters with large wind resources. In this regard, improving the performance and efficiency of floating offshore wind farms (FOWFs) is currently a highly addressed topic. The inter-array (IA) cable connection is a key aspect to be optimised. Due to floating offshore wind (FOW) particularities such as dynamic cable designs, higher power capacities, and challenging installation, IA cabling is expected to be a primary cost driver for commercial-scale FOWFs. Therefore, IA cabling optimisation can lead to large cost reductions. In this work, an optimisation with an adaptive particle swarm optimisation (PSO) algorithm for such wind farms is proposed, considering the floating substructures’ horizontal translations and its impact on the dynamic cable length. The method provides an optimised IA connection, reducing acquisition costs and power losses by using a clustered minimum spanning tree (MST) as an initial solution and improving it with the PSO algorithm. The PSO achieves a reduction in the levelised cost of energy (LCOE) between 0.018% (0.022 EUR/MWh) and 0.10% (0.12 EUR/MWh) and a reduction in cable acquisition costs between 0.18% (0.3 M EUR) and 1.34% (3.8 M EUR) compared to the initial solution, showing great potential for future commercial-sized FOWFs. Full article
Show Figures

Figure 1

27 pages, 2345 KB  
Article
Freshwater Phenanthrene Removal by Three Emergent Wetland Plants
by Madeline J. Stanley, Aidan Guttormson, Lisa E. Peters, Thor Halldorson, Gregg Tomy, José Luis Rodríguez Gil, Blake Cooney, Richard Grosshans, David B. Levin and Vince P. Palace
Water 2025, 17(22), 3327; https://doi.org/10.3390/w17223327 - 20 Nov 2025
Viewed by 568
Abstract
The use of floating wetlands has been receiving increased attention as a minimally invasive method for oil spill remediation, but the species of vegetation incorporated in floating wetlands may influence the success of oil degradation. Therefore, a freshwater microcosm experiment was conducted at [...] Read more.
The use of floating wetlands has been receiving increased attention as a minimally invasive method for oil spill remediation, but the species of vegetation incorporated in floating wetlands may influence the success of oil degradation. Therefore, a freshwater microcosm experiment was conducted at the IISD Experimental Lakes Area, Canada to assess the potential of common wetland plants Typha sp., Carex utriculata, and C. lasiocarpa, to remove phenanthrene, a polycyclic aromatic hydrocarbon ubiquitously found at oil spill sites. Triplicate microcosms containing 3L of lake water were established with either Typha sp., Carex utriculata, or C. lasiocarpa and then treated with nominal concentration of 1 mg/L phenanthrene and monitored over 21 days. Two types of reference microcosms were also included: one set with the same plant allocations but not treated with phenanthrene and another with water only and no plants or phenanthrene. Phenanthrene declined by over 89.30% in all microcosms that received the compound, but the decline was more rapid in microcosms that included Typha sp. and C. lasiocarpa, than those with C. utriculate or no plants. Declining phenanthrene concentrations in microcosms without plants may have resulted from biofilm stimulation. Specific conductivity and pH were influenced by plant type but not phenanthrene, while dissolved oxygen was influenced by both. There was no influence of phenanthrene on plant growth rates or root biofilm bioactivity, measured by adenosine triphosphate or oxygen consumption. Results indicate there may be plant-specific factors influencing remediation success which should be explored in future research. Full article
Show Figures

Figure 1

21 pages, 6665 KB  
Article
Impacts of Mesoscale Eddy Structural Characteristics on Matched-Field Localization Uncertainty
by Longquan Shang, Kaifeng Han, Ning Wang, Yanqun Wu, Guojun Xu, Pingzheng Li and Wei Guo
Sensors 2025, 25(22), 6842; https://doi.org/10.3390/s25226842 - 8 Nov 2025
Viewed by 509
Abstract
Matched-field processing localizes underwater acoustic targets by measuring the degree of correlation between the acoustic field and replica fields. The intrusion of mesoscale eddies can induce sound speed mismatch in the matched-field process. Therefore, it is essential to investigate the impact of mesoscale [...] Read more.
Matched-field processing localizes underwater acoustic targets by measuring the degree of correlation between the acoustic field and replica fields. The intrusion of mesoscale eddies can induce sound speed mismatch in the matched-field process. Therefore, it is essential to investigate the impact of mesoscale eddies on matched-field localization errors. In this study, the typical vertical structure of mesoscale eddies in a certain region of the Northwestern Pacific was synthesized using the mesoscale eddy dataset META 2.0 and Argo float data. Furthermore, by employing both an idealized eddy model and composite-analysis structure of eddy, the performance of the localization algorithm was evaluated under the influence of mesoscale eddies with different structures and in different regions. The results show that under specific conditions, the distribution of localization errors exhibits certain patterns, which is beneficial for inverting eddy parameters via matched-field processing. Finally, the mechanism behind the systematic distribution of localization errors is discussed and analyzed. In the simulations, the source frequency was swept from 50 to 75 Hz with a 1 Hz step, and a circular array was employed as the receiving aperture. These findings indicate that, in the absence of small-scale interference and within a certain range of sound speed mismatch, the localization error of underwater acoustic targets increases with the strengthening of mesoscale eddy disturbances. Full article
Show Figures

Figure 1

18 pages, 2009 KB  
Article
The Recycling of Plastics and Current Collector Foils from End-of-Life NMC-LCO Type Electric Vehicle Lithium-Ion Batteries Using Selective Froth Flotation
by Fulya Mennik, Nazlım İlkyaz Dinç, Beril Tanç Kaya, Zoran Štirbanović, Ronghao Li and Fırat Burat
Minerals 2025, 15(10), 1072; https://doi.org/10.3390/min15101072 - 14 Oct 2025
Viewed by 1041
Abstract
The recent increase in end-of-life (EoL) lithium-ion batteries (LiBs) has become a significant concern worldwide. Most studies in the literature have primarily focused on recovering cathode active metals from black mass (BM), whereas the separation of anode–cathode foils, plastics, and casing metals which [...] Read more.
The recent increase in end-of-life (EoL) lithium-ion batteries (LiBs) has become a significant concern worldwide. Most studies in the literature have primarily focused on recovering cathode active metals from black mass (BM), whereas the separation of anode–cathode foils, plastics, and casing metals which are the essential components of LiBs has received relatively little attention. To reduce costs and maximize the recovery of valuable metals in subsequent hydrometallurgical or pyrometallurgical processes, EoL LiBs require appropriate pre-treatment. This study aims to scrape off the BM adhering to the electrode foils resulting from gradual crushing and subsequently separate the plastics and copper (Cu) from other metals through a two-step selective flotation process. The results demonstrated that plastics, due to their natural hydrophobicity, could be effectively removed using a frother, achieving more than 95% recovery with less than 5% metallic contamination. Following plastic flotation, Cu particles were floated in the presence of 3418A, yielding a Cu concentrate containing 65.13% Cu with a recovery rate of 96.4%. Additionally, the aluminum (Al) content in the non-floating material, remaining in the cell, increased to approximately 77%. Full article
(This article belongs to the Special Issue Mineral Processing and Recycling Technologies for Sustainable Future)
Show Figures

Graphical abstract

25 pages, 6194 KB  
Article
Exploring the Potential of Cross-City Recreation to Improve Park Green Space Accessibility: The Case of China’s Capital Economic Circle
by Yao Zhao, Xiali Shang, Junhui Liang, Zhen Lin and Ziqing Liu
Land 2025, 14(10), 1973; https://doi.org/10.3390/land14101973 - 30 Sep 2025
Viewed by 644
Abstract
Recently, cross-city recreation has received a considerable amount of attention to meet the challenges of today’s rapid urbanization, the limited green space in cities, and the increasing demand for urban residents to interact with natural environments. We use China’s Capital Economic Circle as [...] Read more.
Recently, cross-city recreation has received a considerable amount of attention to meet the challenges of today’s rapid urbanization, the limited green space in cities, and the increasing demand for urban residents to interact with natural environments. We use China’s Capital Economic Circle as a case study to examine the influence of cross-city recreation on park green space accessibility. Using a Normalized Difference Vegetation Index and an Multi-mode two-step floating catchment area (M2SFCA) model, different travel modes across the space were explored. The results show the following: (1) The landscape of multi-scale Park green space (PGS) accessibility in the study area exhibits a gradual decrease in accessibility from the core area to the periphery. (2) Cross-city recreation changes the spatial distribution of accessibility, with the emergence of hotspots having the greatest impact on PGS accessibility at the scale of 50–100 ha and above. (3) At the urban scale, the multi-scale PGS of peripheral urban areas is higher than central urban areas, and affected by cross-city recreation, this feature is more significant in urban core areas. Our research helps urban planners to develop effective regional environmental planning policies for the green development of urban agglomerations. Full article
Show Figures

Figure 1

29 pages, 8271 KB  
Review
A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition
by Annette von Jouanne, Emmanuel Agamloh and Alex Yokochi
Energies 2025, 18(18), 4798; https://doi.org/10.3390/en18184798 - 9 Sep 2025
Cited by 5 | Viewed by 2315
Abstract
Offshore renewable energy resources are abundant and widely available worldwide, offering significant contributions to the clean energy net-zero carbon emission targets. This paper reviews strong and emerging offshore renewable energy sources, including wind (fixed bottom and floating), hydrokinetic wave and tidal energy, floating [...] Read more.
Offshore renewable energy resources are abundant and widely available worldwide, offering significant contributions to the clean energy net-zero carbon emission targets. This paper reviews strong and emerging offshore renewable energy sources, including wind (fixed bottom and floating), hydrokinetic wave and tidal energy, floating solar photovoltaics (FPVs) and hybrid energy systems. A literature review of recent sources yields a timely comprehensive comparison of the levelized cost of electricity (LCOE), technology readiness levels (TRLs), capacity factors (CFs) and global generation installed and potential, where offshore wind is recognized as being the strongest contributor to the clean energy transition and thus receives the most attention. Offshore wind grid integration, converter technologies, criticality, resiliency and energy storage integration are presented, in addition to challenges and research directions. While wave, tidal and FPV will never dominate the global grid, they have vital roles to play in the global energy transition; thus, they are reviewed, including technologies, installations, potential, challenges and research directions. Offshore hybrid energy systems, combining different offshore renewable energy sources, are also discussed along with example installations. The paper concludes with a discussion of the potential environmental impacts of offshore renewable energy development, including recommendations. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

28 pages, 1790 KB  
Article
Stabilization of Floating Offshore Wind Turbines with a Passive Stability-Enhancing Skirted Trapezoidal Platform
by Hanbyeol Kim, Hassan Saghi, Injae Jeon and Goangseup Zi
J. Mar. Sci. Eng. 2025, 13(9), 1658; https://doi.org/10.3390/jmse13091658 - 29 Aug 2025
Viewed by 1323
Abstract
In this study, an innovative passive stability-enhancing barge platform geometry is presented to improve the operational efficiency of floating offshore wind turbines (FOWTs) by mitigating platform motion caused by wave action. Barge-type FOWTs, which primarily rely on surface support, have received less attention [...] Read more.
In this study, an innovative passive stability-enhancing barge platform geometry is presented to improve the operational efficiency of floating offshore wind turbines (FOWTs) by mitigating platform motion caused by wave action. Barge-type FOWTs, which primarily rely on surface support, have received less attention in terms of geometric optimization. The proposed design incorporates skirts and a trapezoidal cross-sectional shape for the barge platforms.To achieve effective stability given cost-effect considerations, geometrical optimization was performed while maintaining the same mass as the original design. Positioning the skirt with a height-to-diameter ratio of 0.8 reduces platform movements considerably, decreasing the heave by approximately 20% and the pitch by up to 70% relative to the original design. In addition, the analysis demonstrated that increasing the moonpool area to approximately 400 m2 (approximately 10% of the platform’s surface area) led to an additional reduction in the heave and pitch responses. A specific moonpool diameter saturation point value was identified to increase the stability of the floater. Finally, the platform configuration yielded consistently lower peak motions across different wave angles, demonstrating improved stability. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

21 pages, 7834 KB  
Article
Robust and Adaptive Ambiguity Resolution Strategy in Continuous Time and Frequency Transfer
by Kun Wu, Weijin Qin, Daqian Lv, Wenjun Wu, Pei Wei and Xuhai Yang
Remote Sens. 2025, 17(16), 2878; https://doi.org/10.3390/rs17162878 - 18 Aug 2025
Viewed by 971
Abstract
The integer precise point positioning (IPPP) technique significantly improves the accuracy of positioning and time and frequency transfer by restoring the integer nature of carrier-phase ambiguities. However, in practical applications, IPPP performance is often degraded by day-boundary discontinuities and instances of incorrect ambiguity [...] Read more.
The integer precise point positioning (IPPP) technique significantly improves the accuracy of positioning and time and frequency transfer by restoring the integer nature of carrier-phase ambiguities. However, in practical applications, IPPP performance is often degraded by day-boundary discontinuities and instances of incorrect ambiguity resolution, which can compromise the reliability of time transfer. To address these challenges and enable continuous, robust, and stable IPPP time transfer, this study proposes an effective approach that utilizes narrow-lane ambiguities to absorb receiver clock jumps, combined with a robust sliding-window weighting strategy that fully exploits multi-epoch information. This method effectively mitigates day-boundary discontinuities and employs adaptive thresholding to enhance error detection and mitigate the impact of incorrect ambiguity resolution. Experimental results show that at an averaging time of 76,800 s, the frequency stabilities of GPS, Galileo, and BDS IPPP reach 4.838 × 10−16, 4.707 × 10−16, and 5.403 × 10−16, respectively. In the simulation scenario, the carrier-phase residual under the IGIII scheme is 6.7 cm, whereas the robust sliding-window weighting method yields a lower residual of 5.2 cm, demonstrating improved performance. In the zero-baseline time link, GPS IPPP achieves stability at the 10−17 level. Compared to optical fiber time transfer, the GPS IPPP solution demonstrates superior long-term performance in differential analysis. For both short- and long-baseline links, IPPP consistently outperforms the PPP float solution and IGS final products. Specifically, at an averaging time of 307,200 s, IPPP improves average frequency stability by approximately 29.3% over PPP and 32.6% over the IGS final products. Full article
Show Figures

Figure 1

22 pages, 1347 KB  
Article
Multiple Mobile Target Detection and Tracking in Small Active Sonar Array
by Avi Abu, Nikola Mišković, Neven Cukrov and Roee Diamant
Remote Sens. 2025, 17(11), 1925; https://doi.org/10.3390/rs17111925 - 1 Jun 2025
Cited by 1 | Viewed by 2014
Abstract
Biodiversity monitoring requires the discovery of multi-target tracking. The main requirement is not to reduce the localization error but the continuity of the tracks: a high ratio between the duration of the track and the lifetime of the target. To this end, we [...] Read more.
Biodiversity monitoring requires the discovery of multi-target tracking. The main requirement is not to reduce the localization error but the continuity of the tracks: a high ratio between the duration of the track and the lifetime of the target. To this end, we present an algorithm for detecting and tracking mobile underwater targets that utilizes reflections from active acoustic emission of broadband signals received by a rigid hydrophone array. The method overcomes the problem of a high false alarm rate by applying a tracking approach to the sequence of received reflections. A 2D time–distance matrix is created for the reflections received from each transmitted probe signal by performing delay and sum beamforming and pulse compression. The result is filtered by a 2D constant false alarm rate (CFAR) detector to identify reflection patterns that correspond to potential targets. Closely spaced signals for multiple probe transmissions are combined into blobs to avoid multiple detections of a single target. The position and velocity are estimated using the debiased converted measurement Kalman filter. The results are analyzed for simulated scenarios and for experiments in the Adriatic Sea, where six Global Positioning System (GPS)-tagged gilt-head seabream fish were released and tracked by a dedicated autonomous float system. Compared to four recent benchmark methods, the results show favorable tracking continuity and accuracy that is robust to the choice of detection threshold. Full article
Show Figures

Figure 1

19 pages, 1676 KB  
Article
Performance Assessment of Undifferenced GPS/Galileo Precise Time Transfer with a Refined Clock Model
by Wei Xu, Pengfei Zhang, Lei Wang, Chao Yan and Jian Chen
Remote Sens. 2025, 17(11), 1910; https://doi.org/10.3390/rs17111910 - 30 May 2025
Cited by 1 | Viewed by 968
Abstract
Conventional Global Navigation Satellite System (GNSS) time transfer algorithms typically model receiver clock offsets as white noise for estimation, neglecting the physical characteristics of atomic clocks, which consequently limits the performance of GNSS time transfer. To overcome this limitation, this study proposes an [...] Read more.
Conventional Global Navigation Satellite System (GNSS) time transfer algorithms typically model receiver clock offsets as white noise for estimation, neglecting the physical characteristics of atomic clocks, which consequently limits the performance of GNSS time transfer. To overcome this limitation, this study proposes an undifferenced GPS/Galileo combined Precise Point Positioning (PPP) time transfer model, incorporating both one-state (only clock offset parameter) and two-state (both clock offset and frequency offset parameters) refined clock models with clock instantaneous re-initialization (CIR) strategy at the day boundary epoch. Using observations from International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) stations equipped with external hydrogen masers, precise time transfer performance under refined clock models was evaluated based on undifferenced GPS/Galileo combined PPP float solutions and PPP ambiguity resolutions. Experimental results demonstrate that, compared to traditional models, the refined clock models improve time transfer accuracy and frequency stability by an average of 6.7% and 25.8%, respectively. The improvement is most significant for short term frequency stability, with a maximum enhancement exceeding 85%. As the averaging time increases, the improvement in long term frequency stability gradually diminishes. Notably, the two-state refined clock model slightly outperforms the one-state model in time transfer performance, with the two-state refined clock model improving short-, medium-, and long term frequency stability by 11.5%, 8.0%, and 0.2%, respectively, compared to the one-state refined clock model. These findings strongly advocate adopting the two-state refined clock model to optimize both time transfer precision and short term stability in high-accuracy applications. Full article
(This article belongs to the Special Issue Advances in Multi-GNSS Technology and Applications)
Show Figures

Figure 1

20 pages, 6529 KB  
Review
Vestibular Atelectasis: A Narrative Review and Our Experience
by Andrea Tozzi, Andrea Castellucci, Salvatore Martellucci, Pasquale Malara, Michael Eliezer, Giuseppe Ferrulli, Rosanna Rita Ruberto, Pasquale Brizzi, Enrico Armato, Alessio Marchetti, Daniele Marchioni, Angelo Ghidini and Claudio Moratti
Audiol. Res. 2025, 15(3), 61; https://doi.org/10.3390/audiolres15030061 - 18 May 2025
Viewed by 1640
Abstract
Vestibular atelectasis (VA) is a rare clinical entity characterized by a collapse of the endolymphatic space resulting in vestibular loss with the possible onset of positional and/or sound/pressure-induced vertigo. It could be idiopathic or secondary to other inner-ear diseases including Meniere’s disease (MD). [...] Read more.
Vestibular atelectasis (VA) is a rare clinical entity characterized by a collapse of the endolymphatic space resulting in vestibular loss with the possible onset of positional and/or sound/pressure-induced vertigo. It could be idiopathic or secondary to other inner-ear diseases including Meniere’s disease (MD). A collapse of the membranous labyrinth involving the semicircular canals (SCs) and the utricle represents its distinctive histopathological feature. While specific radiological patterns consistent with VA have been described on contrast-enhanced MRI with delayed acquisitions, an impairment of the blood–labyrinthine barrier (BLB) could be detected in several disorders leading to vestibular loss. We conducted a narrative review of the literature on VA focusing on the putative pathomechanisms accounting for positional and sound/pressure-induced nystagmus despite unilateral vestibular loss (UVL) in this condition, providing two novel cases of VA. Both patients presented with a clinical picture consistent with unilateral MD that rapidly turned into progressive UVL and positional and/or sound/pressure-induced vertigo. In both cases, the posterior SC was initially impaired at the video-head impulse test (vHIT) and both cervical and ocular VEMPs were initially reduced. Progressively, they developed unsteadiness with paretic spontaneous nystagmus, an impairment also for the lateral and anterior SCs, caloric hypo/areflexia and VEMPs areflexia. They both exhibited ipsilesional nystagmus to sound/pressure stimuli and in one case a persistent geotropic direction-changing positional nystagmus consistent with a “light cupula” mechanism involving the lateral SC of the affected side. A collapse of the membranous labyrinthine walls resulting in contact between the vestibular sensors and the stapes footplate could explain the onset of nystagmus to loud sounds and/or pressure changes despite no responses to high- and low-frequency inputs as detected by caloric irrigations, vHIT and VEMPs. On the other hand, the onset of positional nystagmus despite UVL could be explained with the theory of the “floating labyrinth”. Both patients received contrast-enhanced brain MRI with delayed acquisition exhibiting increased contrast uptake in the pars superior of the labyrinth, suggesting an impairment of the BLB likely resulting in secondary VA. A small intralabyrinthine schwannoma was detected in one case. VA should always be considered in case of positional and/or sound/pressure-induced vertigo despite UVL. Full article
Show Figures

Figure 1

20 pages, 6268 KB  
Article
Three-Dimensional Localization of Underwater Nodes Using Airborne Visible Light Beams
by Jaeed Bin Saif, Mohamed Younis and Fow-Sen Choa
Photonics 2025, 12(5), 503; https://doi.org/10.3390/photonics12050503 - 18 May 2025
Cited by 1 | Viewed by 756
Abstract
Localizing underwater nodes when they cannot be tethered or float on the surface presents significant challenges, primarily due to node mobility and the absence of fixed anchors with known coordinates. This paper advocates a strategy for tackling such a challenge by using visible [...] Read more.
Localizing underwater nodes when they cannot be tethered or float on the surface presents significant challenges, primarily due to node mobility and the absence of fixed anchors with known coordinates. This paper advocates a strategy for tackling such a challenge by using visible light communication (VLC) from an airborne unit. A novel localization method is proposed where VLC transmissions are made towards the water surface; each transmission is encoded with the Global Positioning System (GPS) coordinates with the incident point of the corresponding light beam. Existing techniques deal with the problem in 2D by assuming that the underwater node has a pressure sensor to measure its depth. The proposed method avoids this limitation and utilizes the intensity of VLC signals to estimate the 3D position of the underwater node. The idea is to map the light intensity at the underwater receiver for airborne light beams and devise an error optimization formulation to estimate the 3D coordinates of the underwater node. Extensive simulations validate the effectiveness of the proposed method and capture its performance across various parameters. Full article
Show Figures

Figure 1

29 pages, 5530 KB  
Article
Insights into Small-Scale LNG Supply Chains for Cost-Efficient Power Generation in Indonesia
by Mujammil Asdhiyoga Rahmanta, Anna Maria Sri Asih, Bertha Maya Sopha, Bennaron Sulancana, Prasetyo Adi Wibowo, Eko Hariyostanto, Ibnu Jourga Septiangga and Bangkit Tsani Annur Saputra
Energies 2025, 18(8), 2079; https://doi.org/10.3390/en18082079 - 17 Apr 2025
Cited by 1 | Viewed by 5960
Abstract
This study demonstrates that small-scale liquefied natural gas (SS LNG) is a viable and cost-effective alternative to High-Speed Diesel (HSD) for power generation in remote areas of Indonesia. An integrated supply chain model is developed to optimize total costs based on LNG inventory [...] Read more.
This study demonstrates that small-scale liquefied natural gas (SS LNG) is a viable and cost-effective alternative to High-Speed Diesel (HSD) for power generation in remote areas of Indonesia. An integrated supply chain model is developed to optimize total costs based on LNG inventory levels. The model minimizes transportation costs from supply depots to demand points and handling costs at receiving terminals, which utilize Floating Storage Regasification Units (FSRUs). LNG distribution is optimized using a Multi-Depot Capacitated Vehicle Routing Problem (MDCVRP), formulated as a Mixed Integer Linear Programming (MILP) problem to reduce fuel consumption, CO2 emissions, and vessel rental expenses. The novelty of this research lies in its integrated cost optimization, combining transportation and handling within a model specifically adapted to Indonesia’s complex geography and infrastructure. The simulation involves four LNG plant supply nodes and 50 demand locations, serving a total demand of 15,528 m3/day across four clusters. The analysis estimates a total investment of USD 685.3 million, with a plant-gate LNG price of 10.35 to 11.28 USD/MMBTU at a 10 percent discount rate, representing a 55 to 60 percent cost reduction compared to HSD. These findings support the strategic deployment of SS LNG to expand affordable electricity access in remote and underserved regions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop