Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = flexible manufacturing shop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2546 KiB  
Article
Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy
by Like Zhang, Wenpu Liu, Hua Wang, Guoqiang Shi, Qianwang Deng and Xinyu Yang
Sustainability 2025, 17(15), 6978; https://doi.org/10.3390/su17156978 - 31 Jul 2025
Viewed by 154
Abstract
Carbon cap-and-trade is a practical policy in guiding manufacturers to produce economic and environmental production plans. However, previous studies on carbon cap-and-trade are from a macro level to guide manufacturers to make production plans, rather than from a perspective of specific production scheduling, [...] Read more.
Carbon cap-and-trade is a practical policy in guiding manufacturers to produce economic and environmental production plans. However, previous studies on carbon cap-and-trade are from a macro level to guide manufacturers to make production plans, rather than from a perspective of specific production scheduling, which leads to a lack of theoretical guidance for manufacturers to develop reasonable production scheduling schemes for specific production orders. This article investigates a specific scheduling problem in a flexible job-shop environment that considers the carbon cap-and-trade policy, aiming to provide guidance for specific production scheduling (i.e., resource allocation). In the proposed problem, carbon emissions have an upper limit. A penalty will be generated if the emissions overpass the predetermined cap. To satisfy the carbon emission cap, the manufacturer can trade carbon credits or adopt outsourcing strategy, that is, outsourcing partial orders to partners at the expense of outsourcing costs. To solve the proposed model, a novel and efficient memetic algorithm (NEMA) is proposed. An initialization method and four local search operators are developed to enhance the search ability. Numerous experiments are conducted and the results validate that NEMA is a superior algorithm in both solution quality and efficiency. Full article
Show Figures

Figure 1

35 pages, 2713 KiB  
Article
Leveraging the Power of Human Resource Management Practices for Workforce Empowerment in SMEs on the Shop Floor: A Study on Exploring and Resolving Issues in Operations Management
by Varun Tripathi, Deepshi Garg, Gianpaolo Di Bona and Alessandro Silvestri
Sustainability 2025, 17(15), 6928; https://doi.org/10.3390/su17156928 - 30 Jul 2025
Viewed by 300
Abstract
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry [...] Read more.
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry revolution scenario, industry personnel often face failure due to a laggard mindset in the face of industry revolutions. There are higher possibilities of failure because of standardized operations controlling the shop floor. Organizations utilize well-established human resource concepts, including McClelland’s acquired needs theory, Herzberg’s two-factor theory, and Maslow’s hierarchy of needs, in order to enhance the workforce’s performance on the shop floor. Current SME individuals require fast-paced approaches for tracking the performance and idleness of a workforce in order to control them more efficiently in both flexible and transformational stages. The present study focuses on investigating the parameters and factors that contribute to workforce empowerment in an industrial revolution scenario. The present research is used to develop a framework utilizing operations and human resource management approaches in order to identify and address the issues responsible for deteriorating workforce contributions. The framework includes HRM and operations management practices, including Herzberg’s two-factor theory, Maslow’s theory, and lean and smart approaches. The developed framework contains four phases for achieving desired outcomes on the shop floor. The developed framework is validated by implementing it in a real-life electric vehicle manufacturing organization, where the human resources and operations team were exhausted and looking to resolve employee-related issues instantly and establish a sustainable work environment. The current industry is transforming from Industry 3.0 to Industry 4.0, and seeks future-ready innovations in operations, control, and monitoring of shop floor setups. The operations management and human resource management practices teams reviewed the results over the next three months after the implementation of the developed framework. The results revealed an improvement in workforce empowerment within the existing work environment, as evidenced by reductions in the number of absentees, resignations, transfer requests, and medical issues, by 30.35%, 94.44%, 95.65%, and 93.33%, respectively. A few studies have been conducted on workforce empowerment by controlling shop floor scenarios through modifications in operations and human resource management strategies. The results of this study can be used to fulfil manufacturers’ needs within confined constraints and provide guidelines for efficiently controlling workforce performance on the shop floor. Constraints refer to barriers that have been decided, including production time, working time, asset availability, resource availability, and organizational policy. The study proposes a decision-making plan for enhancing shop floor performance by providing suitable guidelines and an action plan, taking into account both workforce and operational performance. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

17 pages, 1509 KiB  
Article
Objective Functions for Minimizing Rescheduling Changes in Production Control
by Gyula Kulcsár, Mónika Kulcsárné Forrai and Ákos Cservenák
Automation 2025, 6(3), 30; https://doi.org/10.3390/automation6030030 - 11 Jul 2025
Viewed by 242
Abstract
This paper presents an advanced rescheduling approach that jointly applies two sets of objective functions within a novel multi-objective search algorithm and a production simulation of the manufacturing system. The role of the first set of objective functions is to optimize the performance [...] Read more.
This paper presents an advanced rescheduling approach that jointly applies two sets of objective functions within a novel multi-objective search algorithm and a production simulation of the manufacturing system. The role of the first set of objective functions is to optimize the performance of production systems, while the second newly proposed set of objective functions aims to minimize the intervention changes from the original schedule, thereby supporting schedule stability and smooth manufacturing processes. The combined use of these two objective sets is ensured by a flexible candidate-qualification method, which allows for priorities to be assigned to each objective function, offering precise control over the rescheduling process. The applicability of this approach is presented through an example of an extended flexible flow shop manufacturing system. A new test problem containing 16 objective functions has been developed. The effectiveness of the proposed new objective functions and rescheduling method is validated by a simulation model. The obtained numerical results are also presented in this paper. The aim of this study is not to compare different search algorithms but rather to demonstrate the beneficial impact of change-minimizing objective functions within a given search framework. Full article
Show Figures

Figure 1

34 pages, 1253 KiB  
Article
A Discrete Improved Gray Wolf Optimization Algorithm for Dynamic Distributed Flexible Job Shop Scheduling Considering Random Job Arrivals and Machine Breakdowns
by Chun Wang, Jiapeng Chen, Binzi Xu and Sheng Liu
Processes 2025, 13(7), 1987; https://doi.org/10.3390/pr13071987 - 24 Jun 2025
Viewed by 444
Abstract
Dueto uncertainties in real-world production, dynamic factors have become increasingly critical in the research of distributed flexible job shop scheduling problems. Effectively responding to dynamic events can significantly enhance the adaptability and quality of scheduling solutions, thereby improving the resilience of manufacturing systems. [...] Read more.
Dueto uncertainties in real-world production, dynamic factors have become increasingly critical in the research of distributed flexible job shop scheduling problems. Effectively responding to dynamic events can significantly enhance the adaptability and quality of scheduling solutions, thereby improving the resilience of manufacturing systems. This study addresses the dynamic distributed flexible job shop scheduling problem, which involves random job arrivals and machine breakdowns, and proposes an effective discrete improved gray wolf optimization (DIGWO) algorithm-based predictive–reactive method. The first contribution of our work lies in its dynamic scheduling strategy: a periodic- and event-driven approach is used to capture the dynamic nature of the problem, and a static scheduling window is constructed based on updated factory and workshop statuses to convert dynamic scheduling into static scheduling at each rescheduling point. Second, a mathematical model of multi-objective distributed flexible job shop scheduling (MODDFJSP) is established, optimizing makespan, tardiness, maximal factory load, and stability. The novelty of the model is that it is capable of optimizing both production efficiency and operational stability in the workshop. Third, by designing an efficacious initialization mechanism, prey search, and an external archive, the DIGWO algorithm is developed to solve conflicting objectives and search for a set of trade-off solutions. Experimental results in a simulated dynamic distributed flexible job shop demonstrate that DIGWO outperforms three well-known algorithms (NSGA-II, SPEA2, and MOEA/D). The proposed method also surpasses completely reactive scheduling approaches based on rule combinations. This study provides a reference for distributed manufacturing systems facing random job arrivals and machine breakdowns. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

36 pages, 3529 KiB  
Article
Solving Collaborative Scheduling of Production and Logistics via Deep Reinforcement Learning: Considering Limited Transportation Resources and Charging Constraints
by Xianping Huang, Yong Chen, Wenchao Yi, Zhi Pei and Ziwen Cheng
Appl. Sci. 2025, 15(13), 6995; https://doi.org/10.3390/app15136995 - 20 Jun 2025
Viewed by 426
Abstract
With the advancement of logistics technology, Automated Guided Vehicles (AGVs) have been widely adopted in manufacturing enterprises due to their high flexibility and stability, particularly in flexible and discrete manufacturing domains such as tire production and electronic assembly. However, existing studies seldom systematically [...] Read more.
With the advancement of logistics technology, Automated Guided Vehicles (AGVs) have been widely adopted in manufacturing enterprises due to their high flexibility and stability, particularly in flexible and discrete manufacturing domains such as tire production and electronic assembly. However, existing studies seldom systematically consider practical constraints such as limited AGV transport resources, AGV charging requirements, and charging station capacity limitations. To address this gap, this paper proposes a flexible job shop production-logistics collaborative scheduling model that incorporates transport and charging constraints, aiming to minimize the maximum makespan. To solve this problem, an improved PPO algorithm—CRGPPO-TKL—has been developed, which integrates candidate probability ratio calculations and a dynamic clipping mechanism based on target KL divergence to enhance the exploration capability and stability during policy updates. Experimental results demonstrate that the proposed method outperforms composite dispatching rules and mainstream DRL methods across multiple scheduling scenarios, achieving an average improvement of 8.2% and 10.5% in makespan, respectively. Finally, sensitivity analysis verifies the robustness of the proposed method with respect to parameter combinations. Full article
Show Figures

Figure 1

19 pages, 1053 KiB  
Article
Symmetry-Aware Dynamic Scheduling Optimization in Hybrid Manufacturing Flexible Job Shops Using a Time Petri Nets Improved Genetic Algorithm
by Xuanye Lin, Zhenxiong Xu, Shujun Xie, Fan Yang, Juntao Wu and Deping Li
Symmetry 2025, 17(6), 907; https://doi.org/10.3390/sym17060907 - 8 Jun 2025
Viewed by 413
Abstract
Dynamic scheduling in hybrid flexible job shops (HFJSs) presents a critical challenge in modern manufacturing systems, particularly under dynamic and uncertain conditions. These systems often exhibit inherent structural and behavioral symmetry, such as uniform machine–job relationships and repeatable event response patterns. To leverage [...] Read more.
Dynamic scheduling in hybrid flexible job shops (HFJSs) presents a critical challenge in modern manufacturing systems, particularly under dynamic and uncertain conditions. These systems often exhibit inherent structural and behavioral symmetry, such as uniform machine–job relationships and repeatable event response patterns. To leverage this, we propose a time Petri nets (TPNs) model that integrates time and logic constraints, capturing symmetric processing and setup behaviors across machines as well as dynamic job and machine events. A transition select coding mechanism is introduced, where each transition node is assigned a normalized priority value in the range [0, 1], preserving scheduling consistency and symmetry during decision-making. Furthermore, we develop a symmetry-aware time Petri nets-based improved genetic algorithm (TPGA) to solve both static and dynamic scheduling problems in HFJSs. Experimental evaluations show that TPGA significantly outperforms classical dispatching rules such as Shortest Job First (SJF) and Highest Response Ratio Next (HRN), achieving makespan reductions of 23%, 10%, and 13% in process, discrete, and hybrid manufacturing scenarios, respectively. These results highlight the potential of exploiting symmetry in system modeling and optimization for enhanced scheduling performance. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Intelligent Control and Computing)
Show Figures

Figure 1

30 pages, 5391 KiB  
Article
Dual-Resource Scheduling with Improved Forensic-Based Investigation Algorithm in Smart Manufacturing
by Yuhang Zeng, Ping Lou, Jianmin Hu, Chuannian Fan, Quan Liu and Jiwei Hu
Mathematics 2025, 13(9), 1432; https://doi.org/10.3390/math13091432 - 27 Apr 2025
Viewed by 492
Abstract
With increasing labor costs and rapidly dynamic changes in the market demand, as well as realizing the refined management of production, more and more attention is being given to considering workers, not just machines, in the process of flexible job shop scheduling. Hence, [...] Read more.
With increasing labor costs and rapidly dynamic changes in the market demand, as well as realizing the refined management of production, more and more attention is being given to considering workers, not just machines, in the process of flexible job shop scheduling. Hence, a new dual-resource flexible job shop scheduling problem (DRFJSP) is put forward in this paper, considering workers with flexible working time arrangements and machines with versatile functions in scheduling production, as well as a multi-objective mathematical model for formalizing the DRFJSP and tackling the complexity of scheduling in human-centric manufacturing environments. In addition, a two-stage approach based on a forensic-based investigation (TSFBI) is proposed to solve the problem. In the first stage, an improved multi-objective FBI algorithm is used to obtain the Pareto front solutions of this model, in which a hybrid real and integer encoding–decoding method is used for exploring the solution space and a fast non-dominated sorting method for improving efficiency. In the second stage, a multi-criteria decision analysis method based on an analytic hierarchy process (AHP) is used to select the optimal solution from the Pareto front solutions. Finally, experiments validated the TSFBI algorithm, showing its potential for smart manufacturing. Full article
Show Figures

Figure 1

25 pages, 1122 KiB  
Review
Intelligent Scheduling Methods for Optimisation of Job Shop Scheduling Problems in the Manufacturing Sector: A Systematic Review
by Atefeh Momenikorbekandi and Tatiana Kalganova
Electronics 2025, 14(8), 1663; https://doi.org/10.3390/electronics14081663 - 19 Apr 2025
Viewed by 2250
Abstract
This article aims to review the industrial applications of AI-based intelligent system algorithms in the manufacturing sector to find the latest methods used for sustainability and optimisation. In contrast to previous review articles that broadly summarised existing methods, this paper specifically emphasises the [...] Read more.
This article aims to review the industrial applications of AI-based intelligent system algorithms in the manufacturing sector to find the latest methods used for sustainability and optimisation. In contrast to previous review articles that broadly summarised existing methods, this paper specifically emphasises the most recent techniques, providing a systematic and structured evaluation of their practical applications within the sector. The primary objective of this study is to review the applications of intelligent system algorithms, including metaheuristics, evolutionary algorithms, and learning-based methods within the manufacturing sector, particularly through the lens of optimisation of workflow in the production lines, specifically Job Shop Scheduling Problems (JSSPs). It critically evaluates various algorithms for solving JSSPs, with a particular focus on Flexible Job Shop Scheduling Problems (FJSPs), a more advanced form of JSSPs. The manufacturing process consists of several intricate operations that must be meticulously planned and scheduled to be executed effectively. In this regard, Production scheduling aims to find the best possible schedule to maximise one or more performance parameters. An integral part of production scheduling is JSSP in both traditional and smart manufacturing; however, this research focuses on this concept in general, which pertains to industrial system scheduling and concerns the aim of maximising operational efficiency by reducing production time and costs. A common feature among research studies on optimisation is the lack of consistent and more effective solution algorithms that minimise time and energy consumption, thus accelerating optimisation with minimal resources. Full article
Show Figures

Figure 1

22 pages, 21962 KiB  
Article
A Mixed-Integer Linear Programming Model for Addressing Efficient Flexible Flow Shop Scheduling Problem with Automatic Guided Vehicles Consideration
by Dekun Wang, Hongxu Wu, Wengang Zheng, Yuhao Zhao, Guangdong Tian, Wenjie Wang and Dong Chen
Appl. Sci. 2025, 15(6), 3133; https://doi.org/10.3390/app15063133 - 13 Mar 2025
Cited by 1 | Viewed by 1305
Abstract
With the development of Industry 4.0, discrete manufacturing systems are accelerating their transformation toward flexibility and intelligence to meet the market demand for various products and small-batch production. The flexible flow shop (FFS) paradigm enhances production flexibility, but existing studies often address FFS [...] Read more.
With the development of Industry 4.0, discrete manufacturing systems are accelerating their transformation toward flexibility and intelligence to meet the market demand for various products and small-batch production. The flexible flow shop (FFS) paradigm enhances production flexibility, but existing studies often address FFS scheduling and automated guided vehicle (AGV) path planning separately, resulting in resource competition conflicts, such as equipment idle time and AGV congestion, which prolong the manufacturing cycle time and reduce system energy efficiency. To solve this problem, this study proposes an integrated production–transportation scheduling framework (FFSP-AGV). By using the adjacent sequence modeling idea, a mixed-integer linear programming (MILP) model is established, which takes into account the constraints of the production process and AGV transportation task conflicts with the aim of minimizing the makespan and improving overall operational efficiency. Systematic evaluations are carried out on multiple test instances of different scales using the CPLEX solver. The results show that, for small-scale instances (job count ≤10), the MILP model can generate optimal scheduling solutions within a practical computation time (several minutes). Moreover, it is found that there is a significant marginal diminishing effect between AGV quantity and makespan reduction. Once the number of AGVs exceeds 60% of the parallel equipment capacity, their incremental contribution to cycle time reduction becomes much smaller. However, the computational complexity of the model increases exponentially with the number of jobs, making it slightly impractical for large-scale problems (job count > 20). This research highlights the importance of integrated production–transportation scheduling for reducing manufacturing cycle time and reveals a threshold effect in AGV resource allocation, providing a theoretical basis for collaborative optimization in smart factories. Full article
(This article belongs to the Special Issue Multiobjective Optimization: Theory, Methods and Applications)
Show Figures

Figure 1

31 pages, 4303 KiB  
Article
Research on Flexible Job Shop Scheduling Method for Agricultural Equipment Considering Multi-Resource Constraints
by Zhangliang Wei, Zipeng Yu, Renzhong Niu, Qilong Zhao and Zhigang Li
Agriculture 2025, 15(4), 442; https://doi.org/10.3390/agriculture15040442 - 19 Feb 2025
Viewed by 689
Abstract
The agricultural equipment market has the characteristics of rapid demand changes and high demand for machine models, etc., so multi-variety, small-batch, and customized production methods have become the mainstream of agricultural machinery enterprises. The flexible job shop scheduling problem (FJSP) in the context [...] Read more.
The agricultural equipment market has the characteristics of rapid demand changes and high demand for machine models, etc., so multi-variety, small-batch, and customized production methods have become the mainstream of agricultural machinery enterprises. The flexible job shop scheduling problem (FJSP) in the context of agricultural machinery and equipment manufacturing is addressed, which involves multiple resources including machines, workers, and automated guided vehicles (AGVs). The aim is to optimize two objectives: makespan and the maximum continuous working hours of all workers. To tackle this complex problem, a Multi-Objective Discrete Grey Wolf Optimization (MODGWO) algorithm is proposed. The MODGWO algorithm integrates a hybrid initialization strategy and a multi-neighborhood local search to effectively balance the exploration and exploitation capabilities. An encoding/decoding method and a method for initializing a mixed population are introduced, which includes an operation sequence vector, machine selection vector, worker selection vector, and AGV selection vector. The solution-updating mechanism is also designed to be discrete. The performance of the MODGWO algorithm is evaluated through comprehensive experiments using an extended version of the classic Brandimarte test case by randomly adding worker and AGV information. The experimental results demonstrate that MODGWO achieves better performance in identifying high-quality solutions compared to other competitive algorithms, especially for medium- and large-scale cases. The proposed algorithm contributes to the research on flexible job shop scheduling under multi-resource constraints, providing a novel solution approach that comprehensively considers both workers and AGVs. The research findings have practical implications for improving production efficiency and balancing multiple objectives in agricultural machinery and equipment manufacturing enterprises. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

32 pages, 1230 KiB  
Article
Addressing Due Date and Storage Restrictions in the S-Graph Scheduling Framework
by Krisztián Attila Bakon and Tibor Holczinger
Machines 2025, 13(2), 131; https://doi.org/10.3390/machines13020131 - 9 Feb 2025
Viewed by 913
Abstract
This paper addresses the Flexible Job Shop Scheduling Problem (FJSP) with the objective of minimizing both earliness/tardiness (E/T) and intermediate storage time (IST). An extended S-graph framework that incorporates E/T and IST minimization while maintaining the structural advantages of the original S-graph approach [...] Read more.
This paper addresses the Flexible Job Shop Scheduling Problem (FJSP) with the objective of minimizing both earliness/tardiness (E/T) and intermediate storage time (IST). An extended S-graph framework that incorporates E/T and IST minimization while maintaining the structural advantages of the original S-graph approach is presented. The framework is further enhanced by integrating linear programming (LP) techniques to adjust machine assignments and operation timings dynamically. The following four methodological approaches are systematically analyzed: a standalone S-graph for E/T minimization, an S-graph for combined E/T and IST minimization, a hybrid S-graph with LP for E/T minimization, and a comprehensive hybrid approach addressing both E/T and IST. Computational experiments on benchmark problems demonstrate the efficacy of the proposed methods, with the standalone S-graph showing efficiency for smaller instances and the hybrid approaches offering improved solution quality for more complex scenarios. The research provides insights into the trade-offs between computational time and solution quality across different problem configurations and storage policies. This work contributes to the field of production scheduling by offering a versatile framework capable of addressing the multi-objective nature of modern manufacturing environments. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

39 pages, 6324 KiB  
Article
Solving Dynamic Multi-Objective Flexible Job Shop Scheduling Problems Using a Dual-Level Integrated Deep Q-Network Approach
by Hua Xu, Jianlu Zheng, Lingxiang Huang, Juntai Tao and Chenjie Zhang
Processes 2025, 13(2), 386; https://doi.org/10.3390/pr13020386 - 31 Jan 2025
Cited by 1 | Viewed by 1400
Abstract
Economic performance in modern manufacturing enterprises is often influenced by random dynamic events, requiring real-time scheduling to manage multiple conflicting production objectives simultaneously. However, traditional scheduling methods often fall short due to their limited responsiveness in dynamic environments. To address this challenge, this [...] Read more.
Economic performance in modern manufacturing enterprises is often influenced by random dynamic events, requiring real-time scheduling to manage multiple conflicting production objectives simultaneously. However, traditional scheduling methods often fall short due to their limited responsiveness in dynamic environments. To address this challenge, this paper proposes an innovative online rescheduling framework called the Dual-Level Integrated Deep Q-Network (DLIDQN). This framework is designed to solve the dynamic multi-objective flexible job shop scheduling problem (DMOFJSP), which is affected by six types of dynamic events: new job insertion, job operation modification, job deletion, machine addition, machine tool replacement, and machine breakdown. The optimization focuses on three key objectives: minimizing makespan, maximizing average machine utilization (Uave), and minimizing average job tardiness rate (TRave). The DLIDQN framework leverages a hierarchical reinforcement learning approach and consists of two integrated IDQN-based agents. The high-level IDQN serves as the decision-maker during rescheduling, implementing dual-level decision-making by dynamically selecting optimization objectives based on the current system state and guiding the low-level IDQN’s actions. To meet diverse optimization requirements, two reward mechanisms are designed, focusing on job tardiness and machine utilization, respectively. The low-level IDQN acts as the executor, selecting the best scheduling rules to achieve the optimization goals determined by the high-level agent. To improve scheduling adaptability, nine composite scheduling rules are introduced, enabling the low-level IDQN to flexibly choose strategies for job sequencing and machine assignment, effectively addressing both sub-tasks to achieve optimal scheduling performance. Additionally, a local search algorithm is incorporated to further enhance efficiency by optimizing idle time between jobs. The numerical experimental results show that in 27 test scenarios, the DLIDQN framework consistently outperforms all proposed composite scheduling rules in terms of makespan, surpasses the widely used single scheduling rules in 26 instances, and always exceeds other reinforcement learning-based methods. Regarding the Uave metric, the framework demonstrates superiority in 21 instances over all composite scheduling rules and maintains a consistent advantage over single scheduling rules and other RL-based strategies. For the TRave metric, DLIDQN outperforms composite and single scheduling rules in 20 instances and surpasses other RL-based methods in 25 instances. Specifically, compared to the baseline methods, our model achieves maximum performance improvements of approximately 37%, 34%, and 30% for the three objectives, respectively. These results validate the robustness and adaptability of the proposed framework in dynamic manufacturing environments and highlight its significant potential to enhance scheduling efficiency and economic benefits. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

23 pages, 960 KiB  
Article
A Deep Reinforcement Advantage Actor-Critic-Based Co-Evolution Algorithm for Energy-Aware Distributed Heterogeneous Flexible Job Shop Scheduling
by Hua Xu, Juntai Tao, Lingxiang Huang, Chenjie Zhang and Jianlu Zheng
Processes 2025, 13(1), 95; https://doi.org/10.3390/pr13010095 - 3 Jan 2025
Cited by 3 | Viewed by 1462
Abstract
With the rapid advancement of the manufacturing industry and the widespread implementation of intelligent manufacturing systems, the energy-aware distributed heterogeneous flexible job shop scheduling problem (DHFJSP) has emerged as a critical challenge in optimizing modern production systems. This study introduces an innovative method [...] Read more.
With the rapid advancement of the manufacturing industry and the widespread implementation of intelligent manufacturing systems, the energy-aware distributed heterogeneous flexible job shop scheduling problem (DHFJSP) has emerged as a critical challenge in optimizing modern production systems. This study introduces an innovative method to reduce both the makespan and the total energy consumption (TEC) in the context of the DHFJSP. A deep reinforcement advantage Actor-Critic-based co-evolution algorithm (DRAACCE) is proposed to address the issue, which leverages the powerful decision-making and perception abilities of the advantage Actor-Critic (AAC) method. The DRAACCE algorithm consists of three main components: First, to ensure a balance between global and local search capabilities, we propose a new co-evolutionary strategy. This enables the algorithm to explore the solution space efficiently while maintaining robust exploration and exploitation. Next, a novel evolution strategy is introduced to improve the algorithm’s convergence rate and solution diversity, ensuring that the search process is both fast and effective. Finally, we integrate deep reinforcement learning with the advantage Actor-Critic framework to select elite solutions, enhancing the optimization process and leading to superior performance in minimizing both TEC and makespan. Extensive experiments validate the effectiveness of the proposed DRAACCE algorithm. The experimental results show that DRAACCE significantly outperforms existing state-of-the-art methods on all 20 instances and a real-world case, achieving better solutions in terms of both makespan and TEC. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

26 pages, 5235 KiB  
Article
Flexible Symbiosis for Simulation Optimization in Production Scheduling: A Design Strategy for Adaptive Decision Support in Industry 5.0
by Mohaiad Elbasheer, Francesco Longo, Giovanni Mirabelli and Vittorio Solina
J. Manuf. Mater. Process. 2024, 8(6), 275; https://doi.org/10.3390/jmmp8060275 - 30 Nov 2024
Cited by 2 | Viewed by 1368
Abstract
In the rapidly evolving landscape of Industry 4.0 and the transition towards Industry 5.0, manufacturing systems face the challenge of adapting to dynamic, hyper-customized demands. Current Simulation Optimization (SO) systems struggle with the flexibility needed for quick reconfiguration, often requiring time-consuming, resource-intensive efforts [...] Read more.
In the rapidly evolving landscape of Industry 4.0 and the transition towards Industry 5.0, manufacturing systems face the challenge of adapting to dynamic, hyper-customized demands. Current Simulation Optimization (SO) systems struggle with the flexibility needed for quick reconfiguration, often requiring time-consuming, resource-intensive efforts to develop custom models. To address this limitation, this study introduces an innovative SO design strategy that integrates three flexible simulation modeling techniques—template-based, structural modeling, and parameterization. The goal of this integrated design strategy is to enable the rapid adaptation of SO systems to diverse production environments without extensive re-engineering. The proposed SO versatility is validated across three manufacturing scenarios (flow shop, job shop, and open shop scheduling) using modified benchmark instances from Taillard’s dataset. The results demonstrate notable effectiveness in optimizing production schedules across these diverse scenarios, enhancing decision-making processes, and reducing SO development efforts. Unlike conventional SO system design, the proposed design framework ensures real-time adaptability, making it highly relevant to the dynamic requirements of Industry 5.0. This strategic integration of flexible modeling techniques supports efficient decision support, minimizes SO development time, and reinforces manufacturing resilience, therefore sustaining competitiveness in modern industrial ecosystems. Full article
(This article belongs to the Special Issue Smart Manufacturing in the Era of Industry 4.0)
Show Figures

Figure 1

15 pages, 3664 KiB  
Article
Literacy Deep Reinforcement Learning-Based Federated Digital Twin Scheduling for the Software-Defined Factory
by Jangsu Ahn, Seongjin Yun, Jin-Woo Kwon and Won-Tae Kim
Electronics 2024, 13(22), 4452; https://doi.org/10.3390/electronics13224452 - 13 Nov 2024
Cited by 1 | Viewed by 2004
Abstract
As user requirements become increasingly complex, the demand for product personalization is growing, but traditional hardware-centric production relies on fixed procedures that lack the flexibility to support diverse requirements. Although bespoke manufacturing has been introduced, it provides users with only a few standardized [...] Read more.
As user requirements become increasingly complex, the demand for product personalization is growing, but traditional hardware-centric production relies on fixed procedures that lack the flexibility to support diverse requirements. Although bespoke manufacturing has been introduced, it provides users with only a few standardized options, limiting its ability to meet a wide range of needs. To address this issue, a new manufacturing concept called the software-defined factory has emerged. It is an autonomous manufacturing system that provides reconfigurable manufacturing services to produce tailored products. Reinforcement learning has been suggested for flexible scheduling to satisfy user requirements. However, fixed rule-based methods struggle to accommodate conflicting needs. This study proposes a novel federated digital twin scheduling that combines large language models and deep reinforcement learning algorithms to meet diverse user requirements in the software-defined factory. The large language model-based literacy module analyzes requirements in natural language and assigns weights to digital twin attributes to achieve highly relevant KPIs, which are used to guide scheduling decisions. The deep reinforcement learning-based scheduling module optimizes scheduling by selecting the job and machine with the maximum reward. Different types of user requirements, such as reducing manufacturing costs and improving productivity, are input and evaluated by comparing the flow-shop scheduling with job-shop scheduling based on reinforcement learning. Experimental results indicate that in requirement case 1 (the manufacturing cost), the proposed method outperforms flow-shop scheduling by up to 14.9% and job-shop scheduling by 5.6%. For requirement case 2 (productivity), it exceeds the flow-shop method by up to 13.4% and the job-shop baseline by 7.2%. The results confirm that the literacy DRL scheduling proposed in this paper can handle the individual characteristics of requirements. Full article
(This article belongs to the Special Issue Metaverse and Digital Twins, 2nd Edition)
Show Figures

Figure 1

Back to TopTop