Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = flexible loop domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5378 KB  
Article
Design of Fault Protection Stra for Unified Power Flow Controller in Distribution Networks
by Xiaochun Mou, Ruijun Zhu, Xuejun Zhang, Wu Chen, Jilong Song, Xinran Huo and Kai Wang
Energies 2026, 19(1), 79; https://doi.org/10.3390/en19010079 - 23 Dec 2025
Abstract
The capacity of traditional distribution networks is limited. After large-scale distributed power sources are connected, it is difficult to consume them at the same voltage level, which can lead to transformer reverse overloading and voltage limit violations. Although the unified power flow controller [...] Read more.
The capacity of traditional distribution networks is limited. After large-scale distributed power sources are connected, it is difficult to consume them at the same voltage level, which can lead to transformer reverse overloading and voltage limit violations. Although the unified power flow controller (UPFC) excels in flexible power flow regulation and power quality optimization, existing research on it is mostly focused on the transmission grid, focusing on device topology, power flow control, etc. Fault protection is also targeted at high-voltage and ultra-high-voltage domains and only covers a single overvoltage or overcurrent fault. Research on the protection of the unified power flow controller in a distribution network (D-UPFC) remains scarce. A key challenge is the absence of fault protection schemes that are compatible with the unified power flow controller in a distribution network, which cannot meet the requirements of the distribution network for monitoring and protecting multiple fault types, rapid response, and equipment economy. This paper first designs a protection device centered on the distribution thyristor bypass switch (D-TBS), completes the thyristor selection and transient energy extraction, optimizes the overvoltage protection loop parameter, then builds a three-level coordinated protection architecture, and, finally, verifies through functional and system tests. The results show that the thyristor control unit trigger is reliable and the total overvoltage response delay is 1.08 μs. In the case of a three-phase short-circuit fault in a 600 kVA/10 kV system, the distribution thyristor bypass switch can rapidly reduce the secondary voltage of the series transformer, suppress transient overcurrent, achieve isolation protection of the main equipment, provide a reliable guarantee for the engineering application of the distribution network unified power flow controller, and expand its distribution network application scenarios. Full article
Show Figures

Figure 1

22 pages, 4663 KB  
Article
In Silico Characterization of ADAR1: Structure, Dynamics, and Functional Implications
by Carolyn N. Ashley, Emmanuel Broni, ChaNyah M. Wood and Whelton A. Miller
Curr. Issues Mol. Biol. 2025, 47(11), 958; https://doi.org/10.3390/cimb47110958 - 18 Nov 2025
Viewed by 566
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an essential RNA-editing enzyme responsible for the hydrolytic deamination of adenosine to inosine (A-to-I) in double-stranded RNA. This editing mechanism plays a critical role in gene regulation, particularly in neural and immune contexts. Dysregulation of [...] Read more.
Adenosine deaminase acting on RNA 1 (ADAR1) is an essential RNA-editing enzyme responsible for the hydrolytic deamination of adenosine to inosine (A-to-I) in double-stranded RNA. This editing mechanism plays a critical role in gene regulation, particularly in neural and immune contexts. Dysregulation of ADAR1 activity has been implicated in neurological disorders, cancer progression, and immune dysfunction, making ADAR1 an emerging therapeutic target. However, progress in therapeutic development has been hindered by the lack of structural insight into the full-length protein and how its dynamic behavior influences RNA-editing specificity and protein–protein interactions. In this study, we present computational models of the full-length ADAR1p150 isoform generated by homology modeling and further analyzed using molecular dynamics (MD) simulations and principal component analysis (PCA). Our analyses reveal that the dsRBD3 and CDD remain structurally stable, crucial for protein binding and catalytic function, whereas ZBDs and dsRBD1/2 exhibit extensive flexibility, particularly in inter-domain loops, facilitating RNA recognition indicative of conformational selection and fly-casting mechanisms. Free-energy landscape mapping identifies multiple low-energy conformations, highlighting conserved domain cores and flexible loop arrangements. Together, these findings underscore the importance of ADAR1’s dynamic architecture in regulating its function. By linking static structural information with dynamic behavior, the full-length models and dynamic insights presented here provide a valuable framework for future studies of ADAR1 complex formation, editing specificity, and therapeutic targeting. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

25 pages, 1886 KB  
Article
Cyber-Physical Power System Digital Twins—A Study on the State of the Art
by Nathan Elias Maruch Barreto and Alexandre Rasi Aoki
Energies 2025, 18(22), 5960; https://doi.org/10.3390/en18225960 - 13 Nov 2025
Cited by 1 | Viewed by 937
Abstract
This study explores the transformative role of Cyber-Physical Power System (CPPS) Digital Twins (DTs) in enhancing the operational resilience, flexibility, and intelligence of modern power grids. By integrating physical system models with real-time cyber elements, CPPS DTs provide a synchronized framework for real-time [...] Read more.
This study explores the transformative role of Cyber-Physical Power System (CPPS) Digital Twins (DTs) in enhancing the operational resilience, flexibility, and intelligence of modern power grids. By integrating physical system models with real-time cyber elements, CPPS DTs provide a synchronized framework for real-time monitoring, predictive maintenance, energy management, and cybersecurity. A structured literature review was conducted using the ProKnow-C methodology, yielding a curated portfolio of 74 publications from 2017 to 2025. This corpus was analyzed to identify key application areas, enabling technologies, simulation methods, and conceptual maturity levels of CPPS DTs. The study highlights seven primary application domains, including real-time decision support and cybersecurity, while emphasizing essential enablers such as data acquisition systems, cloud/edge computing, and advanced simulation techniques like co-simulation and hardware-in-the-loop testing. Despite significant academic interest, real-world implementations remain limited due to interoperability and integration challenges. The paper identifies gaps in standard definitions, maturity models, and simulation frameworks, underscoring the need for scalable, secure, and interoperable architectures and highlighting key areas for scientific development and real-life application of CPPS DTs, such as grid predictive maintenance, forecasting, fault handling, and power system cybersecurity. Full article
(This article belongs to the Special Issue Trends and Challenges in Cyber-Physical Energy Systems)
Show Figures

Figure 1

10 pages, 1094 KB  
Article
Crystal Structure of Candida antarctica Lipase B with a Putative Pro-Peptide Region
by Anil A. Sohail, Rosario Recacha and Lloyd W. Ruddock
Crystals 2025, 15(11), 927; https://doi.org/10.3390/cryst15110927 - 28 Oct 2025
Viewed by 708
Abstract
There are 25 crystal structures of Lipase B from Candida antarctica (CalB) that have been previously reported. In this study, we report the first CalB crystal structure that shows the assumed pro-peptide region at the N-terminus (Ala19–Arg25). This 1.45 Å structure shows that [...] Read more.
There are 25 crystal structures of Lipase B from Candida antarctica (CalB) that have been previously reported. In this study, we report the first CalB crystal structure that shows the assumed pro-peptide region at the N-terminus (Ala19–Arg25). This 1.45 Å structure shows that this segment of seven amino acids is an extension of the N-terminal loop and that it does not interact with or effect conformational changes in the flexible lid domain, which covers the active site of the enzyme. As such, this region is unlikely to be a classical pro-peptide. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

34 pages, 6096 KB  
Review
Recent Progress of AI-Based Intelligent Air-Confrontation Technology Test and Verification Framework
by Feng Wang, Biao Chen, Yan Wang, Zhekai Pang, Zhu Shao, Yanhui Liu and Heyuan Huang
Aerospace 2025, 12(11), 959; https://doi.org/10.3390/aerospace12110959 - 27 Oct 2025
Viewed by 1319
Abstract
Artificial intelligence technology is profoundly reshaping the aviation field, driving the accelerated evolution of air confrontation patterns toward intelligence and autonomy. Given that experimental aircraft platforms are key means to verify intelligent air confrontation technologies, this paper—on the basis of systematically sorting out [...] Read more.
Artificial intelligence technology is profoundly reshaping the aviation field, driving the accelerated evolution of air confrontation patterns toward intelligence and autonomy. Given that experimental aircraft platforms are key means to verify intelligent air confrontation technologies, this paper—on the basis of systematically sorting out the progress of intelligent technologies in the air confrontation domain at home and abroad—first focuses on analyzing the connotation, technological evolution path, and application prospects of experimental aircraft platforms, and deeply interprets the technological breakthroughs and application practices of typical experimental platforms such as X-37B and X-62A in the field of artificial intelligence integration. Furthermore, through the analysis of three typical air confrontation projects, it reveals the four core advantages of experimental aircraft platforms in intelligent technology research: efficient iterative verification, risk reduction, promotion of capability emergence, and provision of flexible carriers. Finally, this paper focuses on constructing a technical implementation framework for the deep integration of intelligent technologies and flight tests, covering key links such as requirement analysis and environmental test design, construction of intelligent test aircraft platforms and capability generation, ground verification, and test evaluation, and summarizes various key technologies involved in the technical implementation framework. This study can provide theoretical support for the deep integration of artificial intelligence technology and the aviation field, including an engineering path from intelligent algorithm design, verification to iterative optimization, supporting the transformation of air confrontation patterns from “human-in-the-loop” to “autonomous gaming,” thereby enhancing the intelligence level and actual confrontation effectiveness in the aviation field. Full article
(This article belongs to the Special Issue Advanced Aircraft Structural Design and Applications)
Show Figures

Graphical abstract

27 pages, 369 KB  
Review
Industrial Scheduling in the Digital Era: Challenges, State-of-the-Art Methods, and Deep Learning Perspectives
by Alina Itu
Appl. Sci. 2025, 15(19), 10823; https://doi.org/10.3390/app151910823 - 9 Oct 2025
Cited by 1 | Viewed by 2094
Abstract
Industrial scheduling plays a central role in Industry 4.0, where efficiency, robustness, and adaptability are essential for competitiveness. This review surveys recent advances in reinforcement learning, digital twins, and hybrid artificial intelligence (AI)–operations research (OR) approaches, which are increasingly used to address the [...] Read more.
Industrial scheduling plays a central role in Industry 4.0, where efficiency, robustness, and adaptability are essential for competitiveness. This review surveys recent advances in reinforcement learning, digital twins, and hybrid artificial intelligence (AI)–operations research (OR) approaches, which are increasingly used to address the complexity of flexible job-shop and distributed scheduling problems. We focus on how these methods compare in terms of scalability, robustness under uncertainty, and integration with industrial IT systems. To move beyond an enumerative survey, the paper introduces a structured analysis in three domains: comparative strengths and limitations of different approaches, ready-made tools and integration capabilities, and representative industrial case studies. These cases, drawn from recent literature, quantify improvements such as reductions in makespan, tardiness, and cycle time variability, or increases in throughput and schedule stability. The review also discusses critical challenges, including data scarcity, computational cost, interoperability with Enterprise Resource Planning (ERP)/Manufacturing Execution System (MES) platforms, and the need for explainable and human-in-the-loop frameworks. By synthesizing methodological advances with industrial impact, the paper highlights both the potential and the limitations of current approaches and outlines key directions for future research in resilient, data-driven production scheduling. Full article
(This article belongs to the Special Issue Advances in AI and Optimization for Scheduling Problems in Industry)
13 pages, 3038 KB  
Article
Theoretical Study of the Influence of K20N Glycosylation on the Dynamic Behavior of Im7 Protein
by Jianqiang Wang, Panpan Wang, Guojie Cheng and Dawei Zhang
Molecules 2025, 30(19), 3939; https://doi.org/10.3390/molecules30193939 - 1 Oct 2025
Viewed by 556
Abstract
This study employed molecular dynamics simulations to investigate the impact of N-linked glycosylation (GlcNAc2) at the K20N position on the structural dynamics and stability of the bacterial immunity protein Im7. Simulations were conducted in both aqueous and 2 M urea denaturing [...] Read more.
This study employed molecular dynamics simulations to investigate the impact of N-linked glycosylation (GlcNAc2) at the K20N position on the structural dynamics and stability of the bacterial immunity protein Im7. Simulations were conducted in both aqueous and 2 M urea denaturing environments. The simulation results in aqueous solution indicate that glycosylation has only a minor effect on the protein, consistent with expectations. In contrast, simulations in urea reveal that K20N glycosylation significantly destabilizes Im7. Analyses of RMSD, native contacts, SASA, RMSF, correlation matrix, PCA, helical content and hydrophobic centroid distance consistently demonstrate that K20N glycosylation increases the flexibility of Helix I and Helix II and weakens the concerted motion among helical domains (particularly between Helix I and Helix II/IV). The destabilizing effect of K20N glycosylation on Im7 originates in Helix I (where glycan attaches) and propagates to Helix II and the loop region connecting Helix I and Helix II. The instability of Helix II is closely associated with the disruption of hydrophobic interactions within the hydrophobic core. These findings provide new insights into the relationship between site-specific glycosylation and protein stability. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

21 pages, 8988 KB  
Article
Investigation of the Substrate Selection Mechanism of Poly (A) Polymerase Based on Molecular Dynamics Simulations and Markov State Model
by Yongxin Jiang, Xueyan Duan, Jingxian Zheng, Fuyan Cao, Linlin Zeng and Weiwei Han
Int. J. Mol. Sci. 2025, 26(19), 9512; https://doi.org/10.3390/ijms26199512 - 29 Sep 2025
Viewed by 604
Abstract
RNA polymerases are essential enzymes that catalyze DNA transcription into RNA, vital for protein synthesis, gene expression regulation, and cellular responses. Non-template-dependent RNA polymerases, which synthesize RNA without a template, are valuable in biological research due to their flexibility in producing RNA without [...] Read more.
RNA polymerases are essential enzymes that catalyze DNA transcription into RNA, vital for protein synthesis, gene expression regulation, and cellular responses. Non-template-dependent RNA polymerases, which synthesize RNA without a template, are valuable in biological research due to their flexibility in producing RNA without predefined sequences. However, their substrate polymerization mechanisms are not well understood. This study examines Poly (A) polymerase (PAP), a nucleotide transferase superfamily member, to explore its substrate selectivity using computational methods. Previous research shows PAP’s polymerization efficiency for nucleoside triphosphates (NTPs) ranks ATP > GTP > CTP > UTP, though the reasons remain unclear. Using 500 ns Gaussian accelerated molecular dynamics simulations, stability analysis, secondary structure analysis, MM-PBSA calculations, and Markov state modeling, we investigate PAP’s differential polymerization efficiencies. Results show that ATP binding enhances PAP’s structural flexibility and increases solvent-accessible surface area, likely strengthening protein–substrate or protein–solvent interactions and affinity. In contrast, polymerization of other NTPs leads to a more open conformation of PAP’s two domains, facilitating substrate dissociation from the active site. Additionally, ATP binding induces a conformational shift in residues 225–230 of the active site from a loop to an α-helix, enhancing regional rigidity and protein stability. Both ATP and GTP form additional π–π stacking interactions with PAP, further stabilizing the protein structure. This theoretical study of PAP polymerase’s substrate selectivity mechanisms aims to clarify the molecular basis of substrate recognition and selectivity in its catalytic reactions. These findings offer valuable insights for the targeted engineering and optimization of polymerases and provide robust theoretical support for developing novel polymerases for applications in drug discovery and related fields. Full article
Show Figures

Figure 1

16 pages, 3912 KB  
Article
Evaluating AlphaFold 3 Folding of the Intrinsically Disordered Human DNA Topoisomerase IIα C-Terminal Domain
by Charisse M. Nartey and Joseph E. Deweese
DNA 2025, 5(4), 46; https://doi.org/10.3390/dna5040046 - 25 Sep 2025
Viewed by 1622
Abstract
Background/Objectives: Intrinsically disordered protein regions (IDRs) are difficult to study due to their flexible nature and transient interactions. Computational folding using AlphaFold may offer one way to explore potential folding of these regions under various conditions. Human DNA topoisomerase IIα (TOP2A) is an [...] Read more.
Background/Objectives: Intrinsically disordered protein regions (IDRs) are difficult to study due to their flexible nature and transient interactions. Computational folding using AlphaFold may offer one way to explore potential folding of these regions under various conditions. Human DNA topoisomerase IIα (TOP2A) is an essential enzyme involved in regulating DNA topology during replication and cell division. TOP2A has an IDR at the C-terminal domain (CTD) that has been shown to be important for regulating TOP2A function, but little is known about potential conformations that it may undertake. Methods: Utilizing the AlphaFold 3 (AF3) model by way of AlphaFold Server, TOP2A was folded as a dimer first without and then with 29 literature-supported post-translational modifications (PTMs) and DNA to observe whether there is predicted folding. Results: TOP2A CTD does not fold in the absence of PTMs. With the addition of PTMs, however, the CTD is predicted to fold into a globular bundle of loops and α-helices. While DNA alone did not induce folding, in the presence of PTMs, DNA ligands increased helicity of the folded CTD and caused it to interact at different core domain interfaces. In addition, DNA is predicted to enable folding of the TOP2A CTD in the presence of fewer PTMs when compared to the absence of DNA. Conclusions: AF3 predicts the folding of TOP2A CTD in the presence of specific PTMs, and this folding appears to shift to allow binding to DNA in functionally relevant regions. These studies provide predicted folding patterns that can be tested by biochemical approaches. AF3 may support the development of testable hypotheses regarding IDRs and enables researchers to model protein-DNA interactions. Full article
Show Figures

Figure 1

28 pages, 4648 KB  
Article
Allosteric Control Overcomes Steric Limitations for Neutralizing Antibodies Targeting Conserved Binding Epitopes of the SARS-CoV-2 Spike Protein: Exploring the Intersection of Binding, Allostery, and Immune Escape with a Multimodal Computational Approach
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Biomolecules 2025, 15(9), 1340; https://doi.org/10.3390/biom15091340 - 18 Sep 2025
Viewed by 1180
Abstract
Understanding the atomistic basis of multi-layer mechanisms employed by broadly reactive neutralizing antibodies of the SARS-CoV-2 spike protein without directly blocking receptor engagement remains an important challenge in coronavirus immunology. Class 4 antibodies represent an intriguing case: they target a deeply conserved, cryptic [...] Read more.
Understanding the atomistic basis of multi-layer mechanisms employed by broadly reactive neutralizing antibodies of the SARS-CoV-2 spike protein without directly blocking receptor engagement remains an important challenge in coronavirus immunology. Class 4 antibodies represent an intriguing case: they target a deeply conserved, cryptic epitope on the receptor-binding domain yet exhibit variable neutralization potency across subgroups F1 (CR3022, EY6A, COVA1-16), F2 (DH1047), and F3 (S2X259). The molecular basis for this variability is not fully understood. Here, we employed a multi-modal computational approach integrating atomistic and coarse-grained molecular dynamics simulations, binding free energy calculations, mutational scanning, and dynamic network analysis to elucidate how these antibodies engage the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and influence its function. Our results reveal that neutralization efficacy arises from the interplay of direct interfacial interactions and allosteric effects. Group F1 antibodies (CR3022, EY6A, COVA1-16) primarily operate via classic allostery, modulating flexibility in RBD loop regions to indirectly interfere with the ACE2 receptor binding through long-range effects. Group F2 antibody DH1047 represents an intermediate mechanism, combining partial steric hindrance—through engagement of ACE2-critical residues T376, R408, V503, and Y508—with significant allosteric influence, facilitated by localized communication pathways linking the epitope to the receptor interface. Group F3 antibody S2X259 achieves potent neutralization through a synergistic mechanism involving direct competition with ACE2 and localized allosteric stabilization, albeit with potentially increased escape vulnerability. Dynamic network analysis identified a conserved “allosteric ring” within the RBD core that serves as a structural scaffold for long-range signal propagation, with antibody-specific extensions modulating communication to the ACE2 interface. These findings support a model where Class 4 neutralization strategies evolve through the refinement of peripheral allosteric connections rather than epitope redesign. This study establishes a robust computational framework for understanding the atomistic basis of neutralization activity and immune escape for Class 4 antibodies, highlighting how the interplay of binding energetics, conformational dynamics, and allosteric modulation governs their effectiveness against SARS-CoV-2. Full article
(This article belongs to the Special Issue Protein Biophysics)
Show Figures

Graphical abstract

20 pages, 4121 KB  
Article
The Allosteric Communication Network in the Activation of Antithrombin by Heparin
by Gonzalo Izaguirre
Int. J. Mol. Sci. 2025, 26(18), 8984; https://doi.org/10.3390/ijms26188984 - 15 Sep 2025
Viewed by 728
Abstract
The allosteric activation of antithrombin (AT) involves a conformational shift from a native, repressed (R) to a heparin-bound, activated (AH) state. Using computational structural analysis, we identified an evolutionarily conserved allosteric communication network (ACN) comprising the residues H120, Y131, and Y166, which undergo [...] Read more.
The allosteric activation of antithrombin (AT) involves a conformational shift from a native, repressed (R) to a heparin-bound, activated (AH) state. Using computational structural analysis, we identified an evolutionarily conserved allosteric communication network (ACN) comprising the residues H120, Y131, and Y166, which undergo key structural displacements during this transition. Site-directed mutagenesis of these residues markedly enhanced AT native reactivity toward FXa and reduced thermal stability, indicating their role in stabilizing the R state. These findings support a three-step “slingshot” model in which the ACN functions as a molecular lock that restrains stored conformational energy, preventing premature activation. Heparin binding disengages this lock, triggering a cascade of structural changes that propagate from the heparin-binding site (HBS) to the reactive center loop (RCL). Additional mutational analyses of residues bridging the β-sheet A (βsA) and the RCL/exosite domains revealed a delicate energetic balance involving the S380 insertion and E381–R197 salt bridge, which collectively tune the activation threshold. Molecular dynamics simulations of ACN mutants further revealed increased flexibility at both HBS and RCL domains, consistent with concerted allosteric coupling. Together, these results provide new mechanistic insights into the structural basis of AT activation and suggest avenues for engineering heparin-independent AT variants. Full article
(This article belongs to the Special Issue Proteases and Their Inhibitors: From Biochemistry to Applications)
Show Figures

Figure 1

23 pages, 7958 KB  
Article
Non-Parametric Loop-Shaping Algorithm for High-Order Servo Systems Based on Preset Frequency Domain Specifications
by Pengcheng Lan, Ming Yang and Chaoyi Shang
Energies 2025, 18(16), 4334; https://doi.org/10.3390/en18164334 - 14 Aug 2025
Viewed by 497
Abstract
Loop shaping the controller for high-order systems, especially in the presence of flexible transmission components such as elastic shafts, gearboxes, and belts commonly found in servo systems, poses significant challenges. Therefore, developing a non-parametric, versatile tuning algorithm that adapts to multi-order systems is [...] Read more.
Loop shaping the controller for high-order systems, especially in the presence of flexible transmission components such as elastic shafts, gearboxes, and belts commonly found in servo systems, poses significant challenges. Therefore, developing a non-parametric, versatile tuning algorithm that adapts to multi-order systems is essential for general control applications. This article first obtains the frequency characteristics of plants through a frequency sweep. Then, based on preset frequency domain specifications, the boundaries representing disturbance rejection and stability constraints are defined in the complex plane with explicit mathematical and graphical expressions. Subsequently, a system of equations is developed based on the tangency between the open-loop curve of the system and the boundaries in the complex plane. On this basis, a versatile tuning algorithm is designed to calculate parameters of a PI controller cascaded with a low-pass filter that ensures the system meets the preset constraints. The proposed approach does not rely on parametric modeling, and the zeros and poles of the controller can be flexibly placed. Experimental validation is carried out on mechanical platforms. Full article
Show Figures

Figure 1

15 pages, 3717 KB  
Article
Multi-Objective ADRC-Based Aircraft Gust Load Control
by Chengxiang Li, Zheng Gong, Yalei Bai, Sikai Guo and Longbin Zhang
Appl. Sci. 2025, 15(16), 8882; https://doi.org/10.3390/app15168882 - 12 Aug 2025
Viewed by 565
Abstract
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show [...] Read more.
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show that compared to the uncontrolled case, the ADRC controller reduces the wing root bending moment peak by 38%, the normal load factor peak by 32%, and the pitch angle fluctuation by 38%. Robustness tests under actuator delays (4 Δt and 8 Δt) and gain perturbations (−50% and +100%) further confirm that the system maintains time-domain stability and effective load mitigation across varying conditions. These results demonstrate that the proposed ADRC scheme not only improves load suppression but also offers strong robustness against parameter uncertainty, providing theoretical and practical support for next-generation active control systems in aeroelastic environments. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

16 pages, 2994 KB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Viewed by 784
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

25 pages, 7784 KB  
Article
Diversity in the Common Fold: Structural Insights into Class D β-Lactamases from Gram-Negative Pathogens
by Clyde A. Smith and Anastasiya Stasyuk
Pathogens 2025, 14(8), 761; https://doi.org/10.3390/pathogens14080761 - 1 Aug 2025
Viewed by 1131
Abstract
Class D β-lactamases (DBLs) represent a major threat to antibiotic efficacy by hydrolyzing β-lactam drugs, including last-resort carbapenems, thereby driving antimicrobial resistance in Gram-negative bacteria. The enzymes share a structurally conserved two-domain α/β architecture with seven active-site motifs and three flexible extended loops [...] Read more.
Class D β-lactamases (DBLs) represent a major threat to antibiotic efficacy by hydrolyzing β-lactam drugs, including last-resort carbapenems, thereby driving antimicrobial resistance in Gram-negative bacteria. The enzymes share a structurally conserved two-domain α/β architecture with seven active-site motifs and three flexible extended loops (the P-loop, Ω-loop, and newly designated B-loop) that surround the active site. While each of these loops is known to influence enzyme function, their coordinated roles have not been fully elucidated. To investigate the significance of their interplay, we compared the sequences and crystal structures of 40 DBLs from clinically relevant Gram-negative pathogens and performed molecular dynamics simulations on selected representatives. Combined structural and dynamical analyses revealed a strong correlation between B-loop architecture and carbapenemase activity in the pathogens Klebsiella and Acinetobacter, particularly regarding loop length and spatial organization. These findings emphasize the B-loop’s critical contribution, in concert with the P- and Ω-loops, in tuning active site versatility, substrate recognition, catalytic activity, and structural stability. A deeper understanding of how these motifs and loops govern DBL function may inform the development of novel antibiotics and inhibitors targeting this class of enzymes. Full article
Show Figures

Figure 1

Back to TopTop