Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = flavonoid nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 744 KiB  
Review
Chrysin: A Comprehensive Review of Its Pharmacological Properties and Therapeutic Potential
by Magdalena Kurkiewicz, Aleksandra Moździerz, Anna Rzepecka-Stojko and Jerzy Stojko
Pharmaceuticals 2025, 18(8), 1162; https://doi.org/10.3390/ph18081162 - 5 Aug 2025
Abstract
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic [...] Read more.
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic ring (C). One representative flavonoid is chrysin, a compound found in honey, propolis, and passionflower (Passiflora spp.). Chrysin exhibits a range of biological activities, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and anxiolytic effects. Its biological activity is primarily attributed to the presence of hydroxyl groups, which facilitate the neutralization of free radicals and the modulation of intracellular signaling pathways. Cellular uptake of chrysin and other flavonoids occurs mainly through passive diffusion; however, certain forms may be transported via specific membrane-associated carrier proteins. Despite its therapeutic potential, chrysin’s bioavailability is significantly limited due to poor aqueous solubility and rapid metabolism in the gastrointestinal tract and liver, which reduces its systemic efficacy. Ongoing research aims to enhance chrysin’s bioavailability through the development of delivery systems such as lipid-based carriers and nanoparticles. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

49 pages, 3170 KiB  
Review
Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications
by Nargish Parvin, Mohammad Aslam, Sang Woo Joo and Tapas Kumar Mandal
Molecules 2025, 30(15), 3177; https://doi.org/10.3390/molecules30153177 - 29 Jul 2025
Viewed by 259
Abstract
Phytochemicals from medicinal plants offer significant therapeutic benefits, yet their clinical utility is often limited by poor solubility, instability, and low bioavailability. Nanotechnology presents a transformative approach to overcome these challenges by encapsulating phytochemicals in nanocarriers that enhance stability, targeted delivery, and controlled [...] Read more.
Phytochemicals from medicinal plants offer significant therapeutic benefits, yet their clinical utility is often limited by poor solubility, instability, and low bioavailability. Nanotechnology presents a transformative approach to overcome these challenges by encapsulating phytochemicals in nanocarriers that enhance stability, targeted delivery, and controlled release. This review highlights major classes of phytochemicals such as polyphenols, flavonoids, and alkaloids and explores various nanocarrier systems including liposomes, polymeric nanoparticles, and hybrid platforms. It also discusses their mechanisms of action, improved pharmacokinetics, and disease-specific targeting. Further, the review examines clinical advancements, regulatory considerations, and emerging innovations such as smart nanocarriers, AI-driven formulation, and sustainable manufacturing. Nano-phytomedicine offers a promising path toward safer, more effective, and personalized therapies, bridging traditional herbal knowledge with modern biomedical technology. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

18 pages, 3748 KiB  
Article
Enhancement of Phenolic and Polyacetylene Production in Chinese Lobelia (Lobelia chinensis Lour.) Plant Suspension Culture by Employing Silver, Iron Oxide Nanoparticles and Multiwalled Carbon Nanotubes as Elicitors
by Xinlei Bai, Han-Sol Lee, Jong-Eun Han, Hosakatte Niranjana Murthy and So-Young Park
Processes 2025, 13(8), 2370; https://doi.org/10.3390/pr13082370 - 25 Jul 2025
Viewed by 199
Abstract
Silver nanoparticles (AgNPs), iron oxide nanoparticles (Fe2O4NPs), and multiwalled carbon nanotubes (MWCNTs) are widely used in various applications, such as biomedicine, environmental remediation, and agriculture. In addition, these nanomaterials can affect the production of bioactive compounds in plants that [...] Read more.
Silver nanoparticles (AgNPs), iron oxide nanoparticles (Fe2O4NPs), and multiwalled carbon nanotubes (MWCNTs) are widely used in various applications, such as biomedicine, environmental remediation, and agriculture. In addition, these nanomaterials can affect the production of bioactive compounds in plants that have pharmacological activities. In the current study, the in vitro plant cultures of Chinese lobelia (Lobelia chinensis Lour.) were established in MS medium and treated with 0, 12.5, 25, 37.5, and 50 mg L−1 AgNPs or Fe2O4NPs, or MWCNTs. Initially, plants were grown for four weeks without any elicitors, and after that, the cultures were treated with nano-elicitors for one week. After five weeks, the effects of nano-elicitors were estimated on growth, total phenolic, flavonoids, polyacetylenes, and ABTS/DPPH/FRAP antioxidant activity was investigated. The results showed that lower levels of AgNPs (25 mg L−1), Fe2O4NPs (25 mg L−1), and MWCNTs (12.5 mg L−1) favored the accumulation of fresh and dry biomass. Whereas, 37.5 mg L−1 AgNPs, 25 mg L−1 Fe2O4NPs, and 37.5 mg L−1 MWCNTs enhanced the accumulation of total phenolics, flavonoids, specific phenolic compounds including chlorogenic acid, catechin, phloretic acid, coumaric acid, salicylic acid, naringin, myricetin, linarin, and polyacetylenes viz. lobetylonin and lobetyolin in higher concentrations. The plant extracts elicited by nanomaterials also depicted very good antioxidant activities according to ABTS, DPPH, and FRAP assays. These results suggest that specific nanomaterials, and at specific levels, could be used for the production of bioactive compounds from shoot cultures of Chinese lobelia. Full article
Show Figures

Graphical abstract

19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 403
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

13 pages, 1628 KiB  
Article
Eco-Friendly Fabrication of Zinc Oxide Nanoparticles Using Gaultheria fragrantissima: Phytochemical Analysis, Characterization, and Antimicrobial Potential
by Bhoj Raj Poudel, Sujan Dhungana, Anita Dulal, Aayush Raj Poudel, Laxmi Tiwari, Devendra Khadka, Megh Raj Pokhrel, Milan Babu Poudel, Allison A. Kim and Janaki Baral
Inorganics 2025, 13(7), 247; https://doi.org/10.3390/inorganics13070247 - 19 Jul 2025
Viewed by 374
Abstract
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and [...] Read more.
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and hazardous chemicals, posing environmental and human health risks. To overcome these limitations, this research focuses on utilizing G. fragrantissima, rich in bioactive compounds such as phenolics and flavonoids, with the methyl salicylate previously reported in the literature for this species, which helps reduce and stabilize NPs. ZnO NPs were characterized through X-ray diffraction (XRD), UV–visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy (EDS). The ZnO NPs were found to have a well-defined crystalline structure, with their average crystallite size measured at around 8.26 nm. ZnO NPs exhibited moderate antimicrobial activity against selected microbial strains. These findings underscore the potential of G. fragrantissima-mediated synthesis as an environmentally sustainable and efficient method for producing ZnO NPs with multifunctional applications. This study provides a greener alternative to conventional synthesis approaches, demonstrating a method that is both eco-friendly and capable of yielding NPss with desirable properties. Full article
Show Figures

Figure 1

24 pages, 10648 KiB  
Article
Green-Synthesized Silver Nanoparticle-Loaded Antimicrobial Films: Preparation, Characterization, and Food Preservation
by Wenxi Yu, Qin Lei, Jingxian Jiang, Jianwei Yan, Xijian Yi, Juan Cheng, Siyu Ou, Wenjia Yin, Ziyan Li and Yuru Liao
Foods 2025, 14(14), 2509; https://doi.org/10.3390/foods14142509 - 17 Jul 2025
Viewed by 390
Abstract
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and [...] Read more.
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and concentration of AgNO3 were considered using a central composite design coupled with response surface methodology to obtain the optimum AgNPs (2 h, 75 °C, 2 mM). Analysis of substance concentration changes confirmed that the higher phenolic and flavonoid content in MRLE acted as reducing agents and stabilizers in AgNP synthesis, participating in the reaction rather than adsorbing to nanoparticles. TEM, XRD, and FTIR images revealed a spherical shape of the prepared AgNPs, with an average diameter of 8.23 ± 4.27 nm. The incorporation of AgNPs@MMT significantly enhanced the mechanical properties of the films, with the elongation at break and shear strength increasing by 65.19% and 52.10%, respectively, for the PAM2 sample. The films exhibited strong antimicrobial activity against both Escherichia coli (18.56 mm) and Staphylococcus aureus (20.73 mm). The films demonstrated effective food preservation capabilities, significantly reducing weight loss and extending the shelf life of packaged grapes and bananas. Molecular dynamics simulations reveal the diffusion behavior of AgNPs in different matrices, while the measured silver migration (0.25 ± 0.03 mg/kg) complied with EFSA regulations (10 mg/kg), confirming its food safety. These results demonstrate the film’s potential as an active packaging material for fruit preservation. Full article
Show Figures

Figure 1

19 pages, 1855 KiB  
Article
Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract
by Noor Akhras, Abuzer Çelekli and Hüseyin Bozkurt
Foods 2025, 14(14), 2449; https://doi.org/10.3390/foods14142449 - 11 Jul 2025
Viewed by 646
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on [...] Read more.
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on their physicochemical properties. The nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX). Successful synthesis was achieved through a co-precipitation method, resulting in an average particle size of 36.6 nm. The presence of polyphenols and flavonoids in A. absinthium L. extract acted as both a reducing agent and stabilizer for the nanoparticles. The physicochemical characterization revealed strong absorption peaks indicative of ZnO, confirming successful nanoparticle formation. In addition to the structural findings, this study presents novel insights by demonstrating that Artemisia-mediated ZnO NPs possess significantly enhanced antimicrobial activity compared to both pure ZnO NPs and the plant extract alone. The biosynthesized nanoparticles exhibited notably lower minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values against Staphylococcus aureus, Escherichia coli, and Candida albicans, suggesting a strong synergistic effect between ZnO and the phytochemicals of A. absinthium L. Thus, the study confirms and quantifies the superior antibacterial potential of Artemisia-derived ZnO NPs, offering promising implications for food, biomedical and pharmaceutical applications. Full article
Show Figures

Figure 1

19 pages, 3265 KiB  
Article
Biofortified Calcium Phosphate Nanoparticles Elicit Secondary Metabolite Production in Carob Callus via Biosynthetic Pathway Activation
by Doaa E. Elsherif, Fatmah A. Safhi, Mai A. El-Esawy, Alaa T. Mohammed, Osama A. Alaziz, Prasanta K. Subudhi and Abdelghany S. Shaban
Plants 2025, 14(14), 2093; https://doi.org/10.3390/plants14142093 - 8 Jul 2025
Viewed by 337
Abstract
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate [...] Read more.
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate nanoparticles, which refer to CaP-NPs that have been enriched with bioactive compounds via green synthesis using Jania rubens extract, thereby enhancing their functional properties as elicitors in carob callus. CaP-NPs were green-synthesized using Jania rubens extract and applied to 7-week-old callus cultures at 0, 25, 50, and 75 mg/L concentrations. At the optimal concentration (50 mg/L), CaP-NPs increased callus fresh weight by 23.9% and dry weight by 35.1%. At 50 mg/L CaP-NPs, phenolic content increased by 95.7%, flavonoids by 34.4%, tannins by 131.8%, and terpenoids by 211.9% compared to controls. Total antioxidant capacity rose by 76.2%, while oxidative stress markers malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased by 34.8% and 14.1%, respectively. Gene expression analysis revealed upregulation of PAL (4-fold), CHI (3.15-fold), FLS (1.16-fold), MVK (8.3-fold), and TA (3.24-fold) at 50 mg/L CaP-NPs. Higher doses (75 mg/L) induced oxidative damage, demonstrating a hormetic threshold. These findings indicate that CaP-NPs effectively enhance secondary metabolite production in carob callus by modulating biosynthetic pathways and redox balance, offering a scalable, eco-friendly approach for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

24 pages, 4729 KiB  
Article
Formulation and Stability of Quercetin-Loaded Pickering Emulsions Using Chitosan/Gum Arabic Nanoparticles for Topical Skincare Applications
by Mathukorn Sainakham, Paemika Arunlakvilart, Napatwan Samran, Pattavet Vivattanaseth and Weeraya Preedalikit
Polymers 2025, 17(13), 1871; https://doi.org/10.3390/polym17131871 - 4 Jul 2025
Viewed by 542
Abstract
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of [...] Read more.
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of quercetin (QE), a plant-derived flavonoid known for its potent radical-scavenging activity but limited by oxidative degradation. A systematic formulation strategy was employed to evaluate the effects of CH/GA concentration (0.5–2.0% w/v), oil type (olive, soybean, sunflower, and coconut), and oil volume fraction (ϕ = 0.5–0.7) on emulsion stability. The formulation containing 1.5% CH/GA and olive oil at ϕ = 0.6 exhibited optimal physical and interfacial stability. Quercetin (0.1% w/w) was incorporated into the optimized emulsions and characterized for long-term stability, particle size, droplet morphology, rheology, antioxidant activity (DPPH), cytocompatibility, and intracellular reactive oxygen species (ROS) protection using HaCaT keratinocytes. The olive oil-based formulation (D1-QE) exhibited greater viscosity retention and antioxidant stability than its soybean-based counterpart (E2-QE) under both room temperature (RT) and accelerated heating–cooling (H/C) storage conditions. Confocal microscopy confirmed the accumulation of CH/GA nanoparticles at the oil–water interface, forming a dense interfacial barrier and enhancing emulsion stability. HPLC analysis showed that D1-QE retained 92.8 ± 0.5% of QE at RT and 82.8 ± 1.5% under H/C conditions after 30 days. Antioxidant activity was largely preserved, with only 4.7 ± 1.7% and 14.9 ± 4.8% loss of DPPH radical scavenging activity at RT and H/C, respectively. Cytotoxicity testing in HaCaT keratinocytes confirmed that the emulsions were non-toxic at 1 mg/mL QE and effectively reduced H2O2-induced oxidative stress, decreasing intracellular ROS levels by 75.16%. These results highlight the potential of CH/GA-stabilized Pickering emulsions as a polymer-based delivery system for maintaining the stability and functional antioxidant activity of QE in bioactive formulations. Full article
Show Figures

Figure 1

26 pages, 2898 KiB  
Article
Phytochemical Characterization, Bioactivities, and Nanoparticle-Based Topical Gel Formulation Development from Four Mitragyna speciosa Varieties
by Pimporn Anantaworasakul, Weeraya Preedalikit, Phunsuk Anantaworasakul, Sudarshan Singh, Aekkhaluck Intharuksa, Warunya Arunotayanun, Mingkwan Na Takuathung, Songwut Yotsawimonwat and Chuda Chittasupho
Gels 2025, 11(7), 494; https://doi.org/10.3390/gels11070494 - 26 Jun 2025
Viewed by 476
Abstract
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), [...] Read more.
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), Tai Bai-yao (KY), and Kan Keaw (KG). Kratom NPs were prepared using a solvent displacement method. The resulting nanoparticles (NPs) exhibited sizes of 201.9–256.2 nm, polydispersity indices (PDI) below 0.3, and a zeta potential between −22.6 and −29.6 mV. The phytochemical analysis revealed that KG and KY extracts contained the highest total phenolic content (TPC) and total flavonoid content (TFC), which were mostly retained after NP formulation. The HPLC analysis confirmed HK as the richest source of mitragynine (9.97 ± 0.10% w/w), while NP formulations displayed slightly reduced levels. Antioxidant activities assessed by DPPH, ABTS, and FRAP assays revealed enhanced radical scavenging in nanoparticle formulations, with IC50 values ranging from 151.23 to 199.87 µg/mL (DPPH) and 207.37 to 272.83 µg/mL (ABTS). All formulations exhibited a significant inhibition of collagenase (80.56 ± 1.60 to 97.23 ± 0.29%), elastase (45.46 ± 6.53 to 52.19 ± 1.20%), and hyaluronidase (83.23 ± 2.34 to 91.67 ± 3.56%), with nanoparticle forms showing superior enzyme inhibition. Notably, nanoparticle formulations exhibited superior inhibitory effects compared to crude extracts. HaCaT cytotoxicity tests confirmed high biocompatibility (IC50 > 700 µg/mL), especially for KD and KG NPs. The NP-loaded gels demonstrated acceptable physicochemical stability after heating/cooling cycle testing, with pH (7.27 to 7.88), viscosity (10.719 to 12.602 Pa·s), and favorable visual and textural properties. In summary, KG and KY cultivars emerged as the most promising cosmeceutical candidates due to their superior phytochemical content, antioxidant capacity, enzyme-inhibitory activities, and formulation performance. These findings support the potential use of KG NP and KY NP-loaded gels as multifunctional cosmeceutical agents for antioxidant protection, anti-aging, and skin rejuvenation. Full article
Show Figures

Figure 1

31 pages, 1043 KiB  
Review
Targeted Delivery Strategies for Hydrophilic Phytochemicals
by Marta Sharafan, Anna Dziki, Magdalena Anna Malinowska, Elżbieta Sikora and Agnieszka Szopa
Appl. Sci. 2025, 15(13), 7101; https://doi.org/10.3390/app15137101 - 24 Jun 2025
Cited by 1 | Viewed by 482
Abstract
Hydrophilic phytochemicals, such as flavonoids and phenolic acids, possess important biological activities, including antioxidant, anti-inflammatory, and anticancer effects. However, their application is hindered by low membrane permeability, poor chemical stability, and limited skin penetration. This review provides a comprehensive analysis of advanced delivery [...] Read more.
Hydrophilic phytochemicals, such as flavonoids and phenolic acids, possess important biological activities, including antioxidant, anti-inflammatory, and anticancer effects. However, their application is hindered by low membrane permeability, poor chemical stability, and limited skin penetration. This review provides a comprehensive analysis of advanced delivery strategies aimed at enhancing the solubility, bioavailability, and therapeutic efficacy of selected hydrophilic compounds. Specifically, it focuses on the encapsulation of flavonoids such as quercetin, luteolin, and apigenin, as well as phenolic acids including ferulic acid, caffeic acid, and chlorogenic acid. The review discusses various nanocarrier systems: liposomes, niosomes, exosomes, and polymeric nanoparticles (e.g., nanocapsules, nanospheres) and compares their structural characteristics, preparation methods, and functional benefits. These delivery systems improve the physicochemical stability of active compounds, enable controlled and targeted release, and enhance skin and cellular absorption. Despite certain challenges related to large-scale production and regulatory constraints, such approaches offer promising solutions for the pharmaceutical and cosmetic application of hydrophilic plant-derived compounds. Full article
(This article belongs to the Special Issue Applications of Nanocarriers for Phytochemical Delivery)
Show Figures

Figure 1

17 pages, 1443 KiB  
Article
Morin Flavonoid Interaction with Albumin and Its Nanoparticle Conjugation: An Efficient Antioxidant Vehicle for Nutraceuticals
by Guillermo Montero, Víctor Guarnizo-Herrero, Catalina Sandoval-Altamirano, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Antioxidants 2025, 14(7), 764; https://doi.org/10.3390/antiox14070764 - 21 Jun 2025
Viewed by 551
Abstract
Morin is a natural flavonoid with potent antioxidant activity, yet its clinical and nutraceutical applications remain limited due to poor aqueous solubility and low bioavailability. This study explores the interaction of morin with bovine serum albumin (BSA) and the development of BSA-based nanoparticles [...] Read more.
Morin is a natural flavonoid with potent antioxidant activity, yet its clinical and nutraceutical applications remain limited due to poor aqueous solubility and low bioavailability. This study explores the interaction of morin with bovine serum albumin (BSA) and the development of BSA-based nanoparticles as a delivery platform. Fluorescence spectroscopy confirmed the formation of a stable 1:1 morin–BSA complex, governed by hydrophobic interactions, with a binding constant (Ka) of 1.87 × 105 L·mol−1. Binding conferred enhanced photostability, as BSA attenuated morin degradation under oxidative stress conditions. BSA nanoparticles prepared by desolvation encapsulated morin with high monodispersity and encapsulation efficiencies up to 26%. Co-encapsulation with ellagic acid or tocopherol succinate improved loading capacity but reduced morin release, suggesting intermolecular stabilization. Release studies in simulated intestinal fluid showed controlled diffusion, while compatibility assays in milk-based food matrices confirmed colloidal stability in whole and reduced-fat milk. These findings support BSA–morin nanoparticles as a promising system for the oral delivery and functional food incorporation of polyphenolic antioxidants. Full article
Show Figures

Figure 1

25 pages, 3287 KiB  
Article
Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote)
by Alejandra Ortiz-De Lira, J. A. Lozano-Álvarez, N. A. Chávez-Vela, C. E. Escárcega-González, Enrique D. Barriga-Castro, Hilda E. Reynel-Ávila and Iliana E. Medina-Ramírez
Clean Technol. 2025, 7(3), 51; https://doi.org/10.3390/cleantechnol7030051 - 20 Jun 2025
Viewed by 584
Abstract
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent [...] Read more.
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent is relevant since it contains high-value compounds (ferulic acid (FA)) with appropriate activity for the ecological synthesis of silver nanoparticles (AgNPs). This study explores the synthesis of AgNPs using Nej as a reducing and stabilizing agent and evaluates the antibacterial effectiveness of AgNPs against Escherichia coli (E. coli). The AgNPs under study possess excellent optical (UV-Vis) and structural properties (XRD). HR-TEM images show predominantly spherical particles, with an average size of 20 nm. FTIR spectroscopy identified functional groups, including phenols and flavonoids, on the nanoparticle surface, acting as stabilizing agents. HPLC supports the existence of FA in the AgNPs. Biogenic AgNPs exhibit enhanced antibacterial activity due to the adsorption of these functional groups onto their surface, which contributes to bacterial membrane disruption. Finally, no hemolytic or cytotoxic activity was observed, suggesting that the AgNPs exert antimicrobial activity without potentially harmful doses (biocompatibility). The study highlights the potential of Nej as a sustainable source for use in nanoparticle synthesis, promoting the recycling of agro-industrial waste and the production of materials with technological applications. Full article
Show Figures

Graphical abstract

21 pages, 2306 KiB  
Article
ZnO NPs: A Nanomaterial-Based Fertilizer That Significantly Enhanced Salt Tolerance of Glycyrrhiza uralensis Fisch and Improved the Yield and Quality of Its Root
by Ning Wu and Miao Ma
Plants 2025, 14(12), 1763; https://doi.org/10.3390/plants14121763 - 9 Jun 2025
Viewed by 610
Abstract
Glycyrrhiza uralensis Fisch. is an important economic plant. With its wild populations on the brink of extinction and the area of salinized soil increasing sharply, farmers have gradually used saline soil to carry out artificial cultivation of the licorice. However, the salt stress [...] Read more.
Glycyrrhiza uralensis Fisch. is an important economic plant. With its wild populations on the brink of extinction and the area of salinized soil increasing sharply, farmers have gradually used saline soil to carry out artificial cultivation of the licorice. However, the salt stress has led to a significant decrease in the yield and quality of its medicinal organ (root), seriously restricting the sustainable development of the licorice industry. Therefore, we investigated zinc oxide nanoparticles (ZnO NPs) as a nano-fertilizer to enhance root biomass and bioactive compound accumulation under salinity. Our results indicate that under 160 mM NaCl stress, the application of 30 mg/kg ZnO NPs increased the root biomass of the licorice and the contents of glycyrrhizic acid, glycyrrhizin, and total flavonoids in the roots by 182%, 158%, 87%, and 201%, respectively. And the ZnO treatment made the enzyme activities of SOD, CAT, and POD exhibit increase, and made the levels of superoxide anions, electrolyte leakage, soluble sugar, and proline reduce. These results demonstrate that ZnO NPs not only enhance salt tolerance but also redirect metabolic resources toward medicinal compound biosynthesis. Our findings provide a mechanistic basis for utilizing nanotechnology to sustainably cultivate the licorice in marginal saline environments, bridging agricultural productivity and pharmacological value. Full article
Show Figures

Graphical abstract

24 pages, 5675 KiB  
Article
Green Synthesis of Silver Nanoparticles Using Circaea lutetiana Ethanolic Extract: Phytochemical Profiling, Characterization, and Antimicrobial Evaluation
by Zhanar Iskakova, Akmaral Kozhantayeva, Aliya Temirbekova, Saule Mukhtubayeva, Gulmira Bissenova, Zhanar Tekebayeva, Kairtai Almagambetov, Yerbolat Tashenov and Zinigul Sarmurzina
Int. J. Mol. Sci. 2025, 26(12), 5505; https://doi.org/10.3390/ijms26125505 - 8 Jun 2025
Viewed by 877
Abstract
In the current decade, the use of plant extracts for the green preparation of metal nanoparticles has garnered increasing attention due to their eco-friendliness, cost-effectiveness, and sustainability. In the current study, silver nanoparticles (AgNPs) were synthesized using the ethanolic extract of Circaea lutetiana [...] Read more.
In the current decade, the use of plant extracts for the green preparation of metal nanoparticles has garnered increasing attention due to their eco-friendliness, cost-effectiveness, and sustainability. In the current study, silver nanoparticles (AgNPs) were synthesized using the ethanolic extract of Circaea lutetiana for the first time. Thetotal flavonoid content (TFC) and total phenolic content (TPC)of the extract were analyzed by spectrophotometric methods. Fourier transform infrared (FT-IR) spectroscopy was employed to determine the functional groups involved in both the reduction and stabilization processes of AgNPs. The formation and optical properties of AgNPs were confirmed by Ultraviolet–Visible (UV–Vis) spectroscopy. The greenlysynthesized AgNPs were characterized by FT-IR, UV–Vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS) and zeta potential analyses, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results confirmed that the AgNPs were spherical in shape with an average size of approximately 3.8 nm and showed a good crystalline nature. Additionally, the AgNPs exhibited significant antimicrobial activity against both Gram-positive and Gram-negative bacteria, demonstrating their potential as green antimicrobial agents. Full article
(This article belongs to the Special Issue Antimicrobial Nanomaterials: Approaches, Strategies and Applications)
Show Figures

Figure 1

Back to TopTop