Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = flash rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2826 KB  
Article
Characterization of the Extraction System of Supersonic Gas Curtain-Based Ionization Profile Monitor for FLASH Proton Therapy
by Farhana Thesni Mada Parambil, Milaan Patel, Narender Kumar, Bharat Singh Rawat, William Butcher, Tony Price and Carsten P. Welsch
Instruments 2026, 10(1), 4; https://doi.org/10.3390/instruments10010004 - 25 Jan 2026
Viewed by 117
Abstract
FLASH radiotherapy requires real-time, non-invasive beam monitoring systems capable of operating under ultra-high dose rate (UHDR) conditions without perturbing the therapeutic beam. In this work, we characterized the extraction system of Supersonic Gas Curtain-based Ionization Profile Monitor (SGC-IPM) for its capabilities as a [...] Read more.
FLASH radiotherapy requires real-time, non-invasive beam monitoring systems capable of operating under ultra-high dose rate (UHDR) conditions without perturbing the therapeutic beam. In this work, we characterized the extraction system of Supersonic Gas Curtain-based Ionization Profile Monitor (SGC-IPM) for its capabilities as a transverse beam profile and position monitor for FLASH protons. The monitor utilizes a tilted gas curtain intersected by the incident beam, leading to the generation of ions that are extracted through a tailored electrostatic field, and detected using a two stage microchannel plate (MCP) coupled to a phosphor screen and CMOS camera. CST Studio Suite was employed to conduct electrostatic and particle tracking simulations evaluating the ability of the extraction system to measure both beam profile and position. The ion interface, at the interaction region of proton beam and gas curtain, was modeled with realistic proton beam parameters and uniform gas curtain density distributions. The ion trajectory was tracked to evaluate the performance across multiple beam sizes. The simulations suggest that the extraction system can reconstruct transverse beam profiles for different proton beam sizes. Simulations also supported the system’s capability as a beam position monitor within the boundary defined by the beam size, the dimensions of the extraction system, and the height of the gas curtain. Some simulation results were benchmarked against experimental data of 28 MeV proton beam with 70 nA average beam current. This study will further help to optimize the design of the extraction system to facilitate the integration of SGC-IPM in medical accelerators. Full article
(This article belongs to the Special Issue Plasma Accelerator Technologies)
Show Figures

Figure 1

14 pages, 513 KB  
Review
Solid-State Detector for FLASH Radiotherapy: Dosimetric Applications and Emerging Concepts
by Pablo P. Yepes
Condens. Matter 2026, 11(1), 3; https://doi.org/10.3390/condmat11010003 - 23 Jan 2026
Viewed by 143
Abstract
The implementation of FLASH Radiotherapy (FLASH-RT), characterized by ultra-high dose rates (UHDRs) frequently exceeding 106 Gy/s in microsecond pulses, imposes stringent requirements on real-time dosimetry. Conventional ionization chambers suffer severe ion recombination and space-charge limitations under these conditions. This review summarizes the [...] Read more.
The implementation of FLASH Radiotherapy (FLASH-RT), characterized by ultra-high dose rates (UHDRs) frequently exceeding 106 Gy/s in microsecond pulses, imposes stringent requirements on real-time dosimetry. Conventional ionization chambers suffer severe ion recombination and space-charge limitations under these conditions. This review summarizes the state of SSD technologies—including conventional standard silicon diodes, advanced SiC diodes, Low-Gain Avalanche Detectors (LGADs), and pixel detectors—and compares their performance, linearity, and dynamic range in UHDR environments. Particular attention is devoted to operational modes (integrating vs. counting), saturation mechanisms, and readout electronics, which frequently dominate detector behavior at FLASH conditions. We discuss the experimental results from recent UHDR beamlines and highlight emerging concepts that will shape future clinical translation. Full article
Show Figures

Figure 1

21 pages, 2047 KB  
Article
A Feasibility Study of Real-Time FMRI with Neurofeedback of Motor Performance in Cerebellar Ataxia
by Joshua G. Berenbaum, Cherie L. Marvel, Jonathan M. Lisinski, Jeffrey S. Soldate, Owen P. Morgan, Ashley N. Kucharski, Luca P. Lutzel, Jonathan A. Ecker, Laura C. Rice, Amy Mistri, Prianca A. Nadkarni, Liana S. Rosenthal and Stephen M. LaConte
Brain Sci. 2026, 16(2), 120; https://doi.org/10.3390/brainsci16020120 - 23 Jan 2026
Viewed by 495
Abstract
Background/Objectives: Neurodegenerative cerebellar ataxia (CA) is a movement disorder caused by progressive cell death in the cerebellum. Motor imagery represents a potential therapeutic tool to improve motor function by “exercising” brain regions associated with movement, without the need for overt activity. This study [...] Read more.
Background/Objectives: Neurodegenerative cerebellar ataxia (CA) is a movement disorder caused by progressive cell death in the cerebellum. Motor imagery represents a potential therapeutic tool to improve motor function by “exercising” brain regions associated with movement, without the need for overt activity. This study assessed the feasibility of combining motor imagery with real-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) to improve motor function in CA. Methods: During finger tapping conditions, 16 participants with CA pushed a button at the same frequency in time with cross flashing at 1 Hz or 4 Hz, and this information was used to train the model. During motor imagery, participants imagined finger tapping while undergoing rt-fMRI-NF with visual feedback, steering them toward activating their motor circuit. Afterwards, they completed finger tapping again. FMRI analysis compared successful motor imagery trials versus all other imagery events. Brain activity on successful trials was covaried with pre–post rt-fMRI-NF tapping improvement scores. Results: Tapping was more accurate at 1 Hz than 4 Hz, and larger tapping error rates correlated with greater movement impairments. While not significant at the group level, 9 of the 16 participants improved tapping accuracy following rt-fMRI-NF. The size of motor improvements correlated with successful motor imagery activity at 1 Hz in the frontal lobe, insula, parietal lobe, basal ganglia, and cerebellum. Motor improvements were not associated with neurological impairment severity, mood, cognition, or imagery vividness. Conclusions: Feasibility was demonstrated for motor imagery therapy with neurofeedback to potentially improve fine motor precision in people with CA. Brain regions relevant to this process may be considered for targets of non-invasive therapeutic interventions. Full article
Show Figures

Figure 1

18 pages, 266 KB  
Article
Associations Between Adoption Discounts, Length-of-Stay, and Adoption Rates of Dogs in an Open-Admission Municipal Animal Shelter in NSW, Australia
by Tianyang Qiu, Simone J. Maher, Evelyn Hall and Mark E. Westman
Animals 2026, 16(2), 321; https://doi.org/10.3390/ani16020321 - 21 Jan 2026
Viewed by 138
Abstract
This study explored possible associations between adoption discounts, length-of-stay (LOS), and adoption rates for dogs at a municipal (council) shelter in New South Wales (NSW), Australia, over a one-year period (4 April 2023–3 April 2024). Data from 479 rehomed dogs and eight temporary [...] Read more.
This study explored possible associations between adoption discounts, length-of-stay (LOS), and adoption rates for dogs at a municipal (council) shelter in New South Wales (NSW), Australia, over a one-year period (4 April 2023–3 April 2024). Data from 479 rehomed dogs and eight temporary promotional campaigns were analysed, considering the following factors: discount levels applied, breed group, body size, age group, coat colour, intake method (stray, privately surrendered, or seized), and return-to-shelter history after adoption. Dogs with ≥75% discount and 0–50% discount had a longer LOS compared to those without a discount (p < 0.001), likely because many discounted dogs already had a prolonged LOS prior to the campaign’s commencement. Other important LOS predictors included breed group (p < 0.001), body size (p < 0.001), age group (p = 0.004), and intake method (p < 0.001). Gundogs/hounds/terriers (purebred), and toy/non-sporting groups (both purebred and crossbred), small-sized dogs, seniors, puppies, and privately surrendered dogs had significantly lower LOS compared to their counterparts. However, when daily adoption rates were examined, temporary price-discounting campaigns resulted in substantially increased rehoming rates. In particular, Flash Sales (≤48 h) increased daily adoptions by 204% compared to non-campaign periods. One Flash Sale event resulted in higher daily adoption rates, but also significantly higher return rates compared to other temporary campaigns, highlighting a possible risk of impulse adoptions and necessitating future work with adopters to identify potentially problematic decision-making. Shelters should be aware that, on an individual level, factors other than price can be more important for potential adopters. On a broader level, temporary campaigns involving a reduced adoption price can increase overall adoption rates and therefore should be considered as part of any marketing exposure strategy for animal shelters. Full article
(This article belongs to the Section Animal Welfare)
19 pages, 393 KB  
Article
HybridSense-LLM: A Structured Multimodal Framework for Large-Language-Model–Based Wellness Prediction from Wearable Sensors with Contextual Self-Reports
by Cheng-Huan Yu and Mohammad Masum
Bioengineering 2026, 13(1), 120; https://doi.org/10.3390/bioengineering13010120 - 20 Jan 2026
Viewed by 224
Abstract
Wearable sensors generate continuous physiological and behavioral data at a population scale, yet wellness prediction remains limited by noisy measurements, irregular sampling, and subjective outcomes. We introduce HybridSense, a unified framework that integrates raw wearable signals and their statistical descriptors with large language [...] Read more.
Wearable sensors generate continuous physiological and behavioral data at a population scale, yet wellness prediction remains limited by noisy measurements, irregular sampling, and subjective outcomes. We introduce HybridSense, a unified framework that integrates raw wearable signals and their statistical descriptors with large language model–based reasoning to produce accurate and interpretable estimates of stress, fatigue, readiness, and sleep quality. Using the PMData dataset, minute-level heart rate and activity logs are transformed into daily statistical features, whose relevance is ranked using a Random Forest model. These features, together with short waveform segments, are embedded into structured prompts and evaluated across seven prompting strategies using three large language model families: OpenAI 4o-mini, Gemini 2.0 Flash, and DeepSeek Chat. Bootstrap analyses demonstrate robust, task-dependent performance. Zero-shot prompting performs best for fatigue and stress, while few-shot prompting improves sleep-quality estimation. HybridSense further enhances readiness prediction by combining high-level descriptors with waveform context, and self-consistency and tree-of-thought prompting stabilize predictions for highly variable targets. All evaluated models exhibit low inference cost and practical latency. These results suggest that prompt-driven large language model reasoning, when paired with interpretable signal features, offers a scalable and transparent approach to wellness prediction from consumer wearable data. Full article
Show Figures

Figure 1

25 pages, 3538 KB  
Article
Pushing the Limits of Large Language Models in Quantum Operations
by Dayton C. Closser and Zbigniew J. Kabala
Quantum Rep. 2026, 8(1), 7; https://doi.org/10.3390/quantum8010007 - 19 Jan 2026
Viewed by 180
Abstract
What is the fastest Artificial Intelligence Large Language Model (AI LLM) for generating quantum operations? To answer this, we present the first benchmarking study comparing popular and publicly available AI models tasked with creating quantum gate designs. The Wolfram Mathematica framework was used [...] Read more.
What is the fastest Artificial Intelligence Large Language Model (AI LLM) for generating quantum operations? To answer this, we present the first benchmarking study comparing popular and publicly available AI models tasked with creating quantum gate designs. The Wolfram Mathematica framework was used to interface with the six AI LLMs, including Google Gemini 2.0 Flash, Anthropic Claude 3 Haiku, WolframLLM Notebook Assistant For Mathematica V14.3.0.0, OpenAI ChatGPT Omni 4 Mini, Google Gemma 3 4b 1t, and DeepSeek Chat V3. Our novel study found the following: (1) Gemini 2.0 Flash is overall the fastest AI LLM of the models tested in producing average quantum gate designs at 2.66101 s, factoring in the “thinking” execution time and ServiceConnect network latencies. (2) On average, four out of the ten quantum operations that the six LLMs produced compiled in Python version 3.13.5 (40.8% success rate). (3) Quantum operations averaged approximately 21–45 Lines of Code (omitting nonsensical outliers). (4) DeepSeek Chat V3 produced the shortest code with an average of 21.6 lines. This comparison evaluates the time taken by each AI LLM platform to generate quantum operations (including ServiceConnect networking times). These findings highlight a promising horizon where publicly available Large Language Models can become fast collaborators with quantum computers, enabling rapid quantum gate synthesis and paving the way for greater interoperability between two remarkable and cutting-edge technologies. Full article
Show Figures

Figure 1

22 pages, 1849 KB  
Review
Key Considerations for Treatment Planning System Development in Electron and Proton FLASH Radiotherapy
by Chang Cheng, Gaolong Zhang, Nan Li, Xinyu Hu, Zhen Huang, Xiaoyu Xu, Shouping Xu and Weiwei Qu
Quantum Beam Sci. 2026, 10(1), 3; https://doi.org/10.3390/qubs10010003 - 8 Jan 2026
Viewed by 365
Abstract
The global cancer burden continues to increase worldwide. Among the various treatment options, radiotherapy (RT), which employs high-energy ionizing radiation to destroy cancer cells, is one of the primary modalities for cancer. However, increasing the absorbed dose to the target volume also increases [...] Read more.
The global cancer burden continues to increase worldwide. Among the various treatment options, radiotherapy (RT), which employs high-energy ionizing radiation to destroy cancer cells, is one of the primary modalities for cancer. However, increasing the absorbed dose to the target volume also increases the risk of damage to surrounding healthy tissues. This radiation-induced toxicity to normal tissues limits the desirable dosage that can be delivered to the tumor, thereby constraining the effectiveness of radiation therapy in achieving tumor control. FLASH radiotherapy (FLASH-RT) has emerged as a promising technique due to its biological advantages. FLASH-RT involves the delivery of radiation at an ultra-high dose rate (≥40 Gy/s). Unlike conventional RT, FLASH-RT achieves comparable tumor control rates while significantly reducing damage to surrounding normal tissues, a phenomenon known as the FLASH effect. Although the mechanism behind the FLASH effect is not fully understood, this approach shows considerable promise for future cancer treatment. The development of specialized treatment planning systems (TPS) becomes imperative to facilitate the clinical implementation of FLASH-RT from experimental studies. These systems must account for the unique characteristics of FLASH-RT, including ultra-high dose rate delivery and its distinctive radiobiological effects. Critical reassessment and optimization of treatment planning protocols are essential to fully leverage the therapeutic potential of the FLASH effect. This review examines key considerations for the TPS development of electron and proton FLASH-RT, including electron and proton FLASH techniques, biological models, crucial beam parameters, and dosimetry, providing essential insights for optimizing TPS and advancing the clinical implementation of this promising therapeutic modality. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

25 pages, 6507 KB  
Article
Potential of Thermal Sanitation of Stored Wheat Seeds by Flash Dry Heat as Protection Against Fungal Diseases
by Vladimír Brummer, Tomáš Juřena, Pavel Skryja, Melanie Langová, Jiří Bojanovský, Marek Pernica, Antonín Drda and Jan Nedělník
Appl. Sci. 2026, 16(2), 639; https://doi.org/10.3390/app16020639 - 7 Jan 2026
Viewed by 282
Abstract
The presented study aims to experimentally investigate the potential of flash sanitation (short time exposure to hot air stream) for wheat seeds to control surface contamination and protect against fungal diseases. Experiments were conducted at the laboratory scale using very short residence times [...] Read more.
The presented study aims to experimentally investigate the potential of flash sanitation (short time exposure to hot air stream) for wheat seeds to control surface contamination and protect against fungal diseases. Experiments were conducted at the laboratory scale using very short residence times (2–4 s) and higher temperature range (150–350 °C) of dry air stream at two different flow rates (280 L/min and 557 L/min). The goal was to identify thermal conditions that provide high sanitation efficiency while maintaining seed viability. A design of the experiment approach, employing central-composite design and face-centred response surface methodology, was used to evaluate the effects of the thermal treatment on seed surface temperature, sanitation efficiency, and germination capabilities. Higher air flow rate (557 L/min) significantly increased post-treatment seed surface temperatures (42.1–122.7 °C) compared to the flow rate of 280 L/min (36.7–80.5 °C). Pronounced germination drops were observed with air temperatures above 175 °C. Satisfactory sanitation efficiency >90% was achieved only with high-temperature air >250 °C, which, however, caused unacceptable germination loss. Extending residence time beyond the experimental plan is unlikely to yield significant benefits, as the factor was identified as weak and insignificant compared to temperature. Higher flow rates improve heat transfer but require strict control to prevent variability affecting seed quality. The heating media flow rate should be considered an essential factor in thermal treatment studies. Dry air has not proven to be appropriate for seeds’ flash sanitation within the selected experimental condition framework. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Graphical abstract

19 pages, 1680 KB  
Article
Fractionated Anionic PAM Dosing Under High Salinity: Controlling Floc Growth and Stability
by Jahir Ramos, Eder Piceros, Tiare D. Medina, Pedro Robles, Gonzalo R. Quezada, Williams Leiva and Ricardo I. Jeldres
Polymers 2026, 18(1), 50; https://doi.org/10.3390/polym18010050 - 24 Dec 2025
Viewed by 341
Abstract
The use of seawater in mineral processing poses significant challenges for solid–liquid separation, including polymer chain contraction, accelerated coagulation, and brittle aggregate formation. This study evaluates the impact of fractional dosing of anionic polyacrylamide (PAM) on the formation, structure, and sedimentation performance of [...] Read more.
The use of seawater in mineral processing poses significant challenges for solid–liquid separation, including polymer chain contraction, accelerated coagulation, and brittle aggregate formation. This study evaluates the impact of fractional dosing of anionic polyacrylamide (PAM) on the formation, structure, and sedimentation performance of flocs in quartz-kaolinite suspensions prepared in seawater. Four dosing schemes (1, 2, 3, and 4 pulses) were analyzed, maintaining a total dose of 15 g/t and flocculation times of 75, 90, and 105 s. Sedimentation assays, kinetic monitoring using FBRM, size distributions, fractal dimensions, and bulk density were integrated to characterize the aggregation process. The results show that all fractional strategies outperform single-pulse dosing, with the three-pulse scheme (0–30–60 s) standing out, achieving the highest settling rates, the most significant fines reduction, and the best structural robustness. FBRM kinetics reveal stepped growth, less shear breakage, and more stable maturation when polymer addition is divided temporally. Consistently, fractal dimension and aggregate density reach their maximum values after three 90 s pulses, indicating more compact, less porous structures. Zeta potential analysis confirms a strong polymer-particle interaction in kaolinite under high salinity. The superior performance of the multi-pulse strategy is explained by the progressive availability of active polymer segments during aggregate formation and maturation. Each pulse is incorporated into a partially structured suspension, in which unoccupied mineral surfaces and flocs from the early stages of consolidation still exist. This staggered adsorption avoids local overdosing associated with flash injections, improves bridging efficiency, reduces brittle aggregate formation, and promotes more uniform restructuring. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

15 pages, 629 KB  
Systematic Review
Efficacy and Safety of Placental Extract on Menopausal Symptoms: A Systematic Review
by Sára Papp, László Tűű, Katalin Nas, Zsófia Telkes, Lotti Keszthelyi, Márton Keszthelyi, Nándor Ács, Szabolcs Várbíró and Marianna Török
Nutrients 2025, 17(24), 3857; https://doi.org/10.3390/nu17243857 - 10 Dec 2025
Viewed by 1260
Abstract
Background: Menopause affects every woman worldwide, with varying degrees of severity. In addition to traditional treatments such as hormone replacement therapy, there is also a growing interest in alternative treatments. One possible way to address this need is through the use of placenta [...] Read more.
Background: Menopause affects every woman worldwide, with varying degrees of severity. In addition to traditional treatments such as hormone replacement therapy, there is also a growing interest in alternative treatments. One possible way to address this need is through the use of placenta extracts. This systematic review is the first to evaluate the efficacy of placental extracts in randomized controlled trials (RCTs). Methods: A systematic search of three databases (MEDLINE, Scopus, Embase) identified studies on placental extract treatment of menopausal symptoms in women, yielding 272 records, with 11 eligible studies. Results: Menopausal severity scores (Kupperman Menopausal Index, Simplified Menopausal Index, Menopausal Rating Scale), somatic and vasomotor symptoms, skin conditions, and certain psychological indicators were significantly improved in the 11 enrolled randomized controlled trials, including perimenopausal and postmenopausal women treated with porcine or human dried, purified placental extract. Placental extract was well tolerated in all studies; no significant side effects or clinically significant laboratory abnormalities were recorded. Conclusions: Porcine and human placental extracts appear to offer potential benefits for alleviating menopausal symptoms. Full article
(This article belongs to the Special Issue Exploring the Role of Bioactive Compounds in Immunonutrition)
Show Figures

Figure 1

16 pages, 1353 KB  
Article
Comparing Artificial Intelligence (ChatGPT, Gemini, DeepSeek) and Oral Surgeons in Detecting Clinically Relevant Drug–Drug Interactions in Dental Therapy
by Subhi Tayeb, Carlo Barausse, Gerardo Pellegrino, Martina Sansavini, Roberto Pistilli and Pietro Felice
Appl. Sci. 2025, 15(23), 12851; https://doi.org/10.3390/app152312851 - 4 Dec 2025
Viewed by 832
Abstract
Patients undergoing oral surgery are frequently polymedicated and preoperative prescriptions (analgesics, corticosteroids, antibiotics) can generate clinically significant drug–drug interactions (DDIs) associated with bleeding risk, serotonin toxicity, cardiovascular instability and other adverse events. This study prospectively evaluated whether large language models (LLMs) can assist [...] Read more.
Patients undergoing oral surgery are frequently polymedicated and preoperative prescriptions (analgesics, corticosteroids, antibiotics) can generate clinically significant drug–drug interactions (DDIs) associated with bleeding risk, serotonin toxicity, cardiovascular instability and other adverse events. This study prospectively evaluated whether large language models (LLMs) can assist in detecting clinically relevant DDIs at the point of care. Five LLMs (ChatGPT-5, DeepSeek-Chat, DeepSeek-Reasoner, Gemini-Flash, and Gemini-Pro) were compared with a panel of experienced oral surgeons in 500 standardized oral-surgery cases constructed from realistic chronic medication profiles and typical postoperative regimens. For each case, all chronic and procedure-related drugs were provided and the task was to identify DDIs and rate their severity using an ordinal Lexicomp-based scale (A–X), with D/X considered “action required”. Primary outcomes were exact agreement with surgeon consensus and ordinal concordance; secondary outcomes included sensitivity for actionable DDIs, specificity, error pattern and response latency. DeepSeek-Chat reached the highest exact agreement with surgeons (50.6%) and showed perfect specificity (100%) but low sensitivity (18%), missing 82% of actionable D/X alerts. ChatGPT-5 showed the highest sensitivity (98.0%) but lower specificity (56.7%) and generated more false-positive warnings. Median response time was 3.6 s for the fastest model versus 225 s for expert review. These findings indicate that current LLMs can deliver rapid, structured DDI screening in oral surgery but exhibit distinct safety trade-offs between missed critical interactions and alert overcalling. They should therefore be considered as decision-support tools rather than substitutes for clinical judgment and their integration should prioritize validated, supervised workflows. Full article
Show Figures

Figure 1

20 pages, 6450 KB  
Article
An Edge AI Approach for Low-Power, Real-Time Atrial Fibrillation Detection on Wearable Devices Based on Heartbeat Intervals
by Eliana Cinotti, Maria Gragnaniello, Salvatore Parlato, Jessica Centracchio, Emilio Andreozzi, Paolo Bifulco, Michele Riccio and Daniele Esposito
Sensors 2025, 25(23), 7244; https://doi.org/10.3390/s25237244 - 27 Nov 2025
Viewed by 1263
Abstract
Atrial fibrillation (AF) is the most common type of heart rhythm disorder worldwide. Early recognition of brief episodes of atrial fibrillation can provide important diagnostic information and lead to prompt treatment. AF is mainly characterized by an irregular heartbeat. Today, many personal devices [...] Read more.
Atrial fibrillation (AF) is the most common type of heart rhythm disorder worldwide. Early recognition of brief episodes of atrial fibrillation can provide important diagnostic information and lead to prompt treatment. AF is mainly characterized by an irregular heartbeat. Today, many personal devices such as smartphones, smartwatches, smart rings, or small wearable medical devices can detect heart rhythm. Sensors can acquire different types of heart-related signals and extract the sequence of inter-beat intervals, i.e., the instantaneous heart rate. Various algorithms, some of which are very complex and require significant computational resources, are used to recognize AF based on inter-beat intervals (RR). This study aims to verify the possibility of using neural networks algorithms directly on a microcontroller connected to sensors for AF detection. Sequences of 25, 50, and 100 RR were extracted from a public database of electrocardiographic signals with annotated episodes of atrial fibrillation. A custom 1D convolutional neural network (1D-CNN) was designed and then validated via a 5-fold subject-wise split cross-validation scheme. In each fold, the model was tested on a set of 3 randomly selected subjects, which had not previously been used for training, to ensure a subject-independent evaluation of model performance. Across all folds, all models achieved high and stable performance, with test accuracies of 0.963 ± 0.031, 0.976 ± 0.022, and 0.980 ± 0.023, respectively, for models using 25 RR, 50 RR, and 100 RR sequences. Precision, recall, F1-score, and AUC-ROC exhibited similarly high performance, confirming robust generalization across unseen subjects. Performance systematically improved with longer RR windows, indicating that richer temporal context enhances discrimination of AF rhythm irregularities. A complete Edge AI prototype integrating a low-power ECG analog front-end, an ARM Cortex M7 microcontroller and an IoT transmitting module was utilized for realistic tests. Inferencing time, peak RAM usage, flash usage and current absorption were measured. The results obtained show the possibility of using neural network algorithms directly on microcontrollers for real-time AF recognition with very low power consumption. The prototype is also capable of sending the suspicious ECG trace to the cloud for final validation by a physician. The proposed methodology can be used for personal screening not only with ECG signals but with any other signal that reproduces the sequence of heartbeats (e.g., photoplethysmographic, pulse oximetric, pressure, accelerometric, etc.). Full article
(This article belongs to the Special Issue Sensors for Heart Rate Monitoring and Cardiovascular Disease)
Show Figures

Figure 1

17 pages, 11795 KB  
Article
3D Imaging of Proton FLASH Radiation Using a Multi-Detector Small Animal PET System
by Wen Li, Yuncheng Zhong, Youfang Lai, Lingshu Yin, Daniel Sforza, Devin Miles, Heng Li and Xun Jia
Tomography 2025, 11(12), 131; https://doi.org/10.3390/tomography11120131 - 26 Nov 2025
Viewed by 438
Abstract
Objectives: Ultra-high dose-rate FLASH radiotherapy has demonstrated strong potential in reducing normal tissue toxicity while maintaining effective tumor control. However, its underlying radiobiological mechanisms remain unclear, highlighting the need for novel approaches to probe the effects of radiation during and immediately after delivery. [...] Read more.
Objectives: Ultra-high dose-rate FLASH radiotherapy has demonstrated strong potential in reducing normal tissue toxicity while maintaining effective tumor control. However, its underlying radiobiological mechanisms remain unclear, highlighting the need for novel approaches to probe the effects of radiation during and immediately after delivery. This study presents the first exploration of 3D PET imaging of positron-emitting nuclei (PENs) generated by a FLASH proton beam. Methods: A home-built 12-panel preclinical small-animal PET system was employed for recording coincidence events. A 142.4 MeV FLASH proton beam with a 100 ms delivery time was directed into a solid water phantom. PET coincidence signals were recorded during the first 1 s and up to 11 min. The system’s capability for 3D localization was also assessed, and Monte Carlo simulations were performed for validation. Results: The PET system successfully recorded coincidence data within the first second, including the 100 ms beam delivery interval. Detector dead-time effects under the high beam flux were observed, leading to underestimated event counts. Following irradiation, the measured activity and decay behavior were consistent with simulations. The PET system accurately reconstructed the spatial distribution of PEN activities, with discrepancies in measured versus calculated line profiles ranging from 3.35–6.85%. Reconstructed PET images enabled reliable 3D localization with sub-millimeter accuracy in both lateral and depth dimensions. Conclusions: Our findings demonstrate that a multi-detector PET system is a promising tool for investigating the radiation effects of FLASH beams. Full article
Show Figures

Figure 1

26 pages, 174853 KB  
Article
Understanding Flash Droughts in Greece: Implications for Sustainable Water and Agricultural Management
by Evangelos Leivadiotis, Evangelia Farsirotou, Ourania Tzoraki, Silvia Kohnová and Aris Psilovikos
Land 2025, 14(11), 2290; https://doi.org/10.3390/land14112290 - 20 Nov 2025
Viewed by 734
Abstract
Flash droughts—characterized by their sudden development, severity, and short duration—impose considerable challenges on the soil–water complex of agricultural systems, especially under the Mediterranean climate. Though gaining increasing global significance, Mediterranean flash droughts are still understudied. This study examines the spatiotemporal variability of flash [...] Read more.
Flash droughts—characterized by their sudden development, severity, and short duration—impose considerable challenges on the soil–water complex of agricultural systems, especially under the Mediterranean climate. Though gaining increasing global significance, Mediterranean flash droughts are still understudied. This study examines the spatiotemporal variability of flash droughts in Greece for the period 1990–2024 using 5-day (pentad) ERA5-Land root-zone soil moisture (0–100 cm) at 0.25° resolution. A percentile-threshold approach detected flash drought events, and their main features—including frequency, duration, magnitude, intensity, decline rate, recovery rate, and recovery duration—were evaluated at the annual and seasonal levels. Findings indicate that Central Greece and Thessaly face the highest frequency and longevity of flash droughts, while Western Greece and Peloponnese and Western Macedonia are characterized by rapid development but intense recovery. An innovative empirical classification framework founded on decline and recovery rates indicated that Mild Fast Recovery events prevail in northern and central Greece, while Intense but Recovering events dominate in western and southern Greece. These results offer new perspectives on how flash droughts impact soil–water availability and agricultural resilience, providing a data-driven platform to aid sustainable water management, early warning systems, and adaptation strategies for Mediterranean agriculture in conditions of climate variability. Full article
Show Figures

Figure 1

38 pages, 504 KB  
Review
Factors Influencing the Biological Effects of FLASH Irradiation
by Sergey Igorevich Glukhov, Elena Ananievna Kuznetsova and Sergey Vsevolodovich Akulinichev
Antioxidants 2025, 14(11), 1372; https://doi.org/10.3390/antiox14111372 - 19 Nov 2025
Viewed by 1164
Abstract
Among the methods for increasing the specificity of tumor radiotherapy, FLASH radiotherapy (FLASH-RT) stands out, having recently entered clinical trials. A distinctive feature of this treatment method is the delivery of a therapeutic dose in a fraction of a second with a typical [...] Read more.
Among the methods for increasing the specificity of tumor radiotherapy, FLASH radiotherapy (FLASH-RT) stands out, having recently entered clinical trials. A distinctive feature of this treatment method is the delivery of a therapeutic dose in a fraction of a second with a typical mean dose rate greater than 40 Gy/s. In addition to improved patient comfort and a shorter hospital stay, this therapy potentially carries a lower risk of radiation-related side effects due to reduced damage to normal tissues. Numerous preclinical and in vivo laboratory trials of FLASH-RT have demonstrated that, in addition to reducing the severity of radiation-related complications, FLASH radiotherapy has antitumor efficacy similar to conventional radiotherapy. Partly reduced radiotoxicity after such a dose rate delivery obtained, in a broader radiobiological sense, an eponymous term FLASH effect. Although the first clinical trials aimed to evaluate the safety and efficiency of FLASH-RT against bone metastases (FAST-01/02), melanoma skin metastases (IMPulse, Flash-Skin I), Squamous Cell Carcinoma, or Basal Cell Carcinoma (LANCE) have already started or even finished and showed promising results (FAST-01), the radiobiological basis of the FLASH effect is far from a complete explanation. The fundamental factors explaining the nature of the FLASH effect are mainly considered to be the following: (1) changes in the balance of water radiolysis products and a decrease in the generation of stable reactive oxygen species (ROS), (2) differential oxygen depletion, depending on the initial oxygen concentration in tissues, and (3) physiological and metabolic, gene expression and probably epigenetic shifts in response to irradiation in normal and tumor cells. The main purpose of this review is the systematization of the radiobiological manifestations of the FLASH effect together with a consideration of the elementary processes laying in the basis of the FLASH effect in order to actualize rationale and future application developments of FLASH-RT. Full article
(This article belongs to the Special Issue Oxidative Stress, Antioxidants, and Mechanisms in FLASH Radiotherapy)
Show Figures

Graphical abstract

Back to TopTop