Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,371)

Search Parameters:
Keywords = fish nutrition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2250 KiB  
Article
Glutamate Supplementation Ameliorated Growth Impairment and Intestinal Injury in High-Soya-Meal-Fed Epinephelus coioides
by Aozhuo Wang, Ruyi Xiao, Cong Huo, Kun Wang and Jidan Ye
Animals 2025, 15(16), 2392; https://doi.org/10.3390/ani15162392 - 14 Aug 2025
Viewed by 155
Abstract
This research assessed the efficacy of glutamate (Glu) supplementation to feed in counteracting growth restriction and intestinal stress-induced injury in juvenile groupers (Epinephelus coioides; initial weight 15.11 ± 0.03 g). The study comprised five isonitrogenous and iso-lipidic diets: a fish-meal-based (FM) [...] Read more.
This research assessed the efficacy of glutamate (Glu) supplementation to feed in counteracting growth restriction and intestinal stress-induced injury in juvenile groupers (Epinephelus coioides; initial weight 15.11 ± 0.03 g). The study comprised five isonitrogenous and iso-lipidic diets: a fish-meal-based (FM) diet, a soya-meal-based (SBM) diet, and SBM diets containing varying Glu levels of 1.0% (G-1), 2.0% (G-2), or 3.0% (G-3). The trial employed a randomized design with five treatment groups. Each group was housed in triplicate aquariums and received assigned diets for 56 consecutive days. Supplementation with Glu resulted in dose-dependent enhancements in weight gain, specific growth rate, serum high-density lipoprotein cholesterol, intestinal superoxide dismutase activity, digestive enzyme activity (trypsin, lipase, amylase), amino acid metabolic enzyme activity (glutaminase, GLS; glutamine synthetase), and intestinal mRNA levels of GLS, IL-10, and TGF-β1. Maximal values of the G-3 diet were restored to the levels of the FM diet (p > 0.05). Serum total cholesterol, intestinal total antioxidant capacity, and catalase activity followed a similar increasing trend with Glu level, attaining maxima in diet G-3, yet these values remained markedly lower than those of the FM diet (p < 0.05). Conversely, intestinal malondialdehyde content and mRNA levels of genes IL-8, IL-12, IL-1β, and TNF-α exhibited a significant dose-dependent decrease, reaching minimal levels in diet G-3 that were restored to the levels of the FM diet (p > 0.05). The results above demonstrate that Glu addition enhances nutritional status and intestinal structural integrity by augmenting antioxidant and digestive capacity and mitigating inflammatory responses, consequently enhancing growth performance and intestinal health. Full article
(This article belongs to the Special Issue Advances in Aquaculture Nutrition for Sustainable Health Management)
Show Figures

Figure 1

13 pages, 2815 KiB  
Article
Diel Catch Variation of the Primary Fish Species Captured by Trammel Nets in a Shallow Eutrophic Lake in Jiangsu Province, China
by Jiyang Dong, Xiumiao Song, Yong Zhu, Qigen Liu and Zhongjun Hu
Fishes 2025, 10(8), 409; https://doi.org/10.3390/fishes10080409 - 14 Aug 2025
Viewed by 147
Abstract
Fish diel activity can affect the catch of fishing gear, such as gill nets, thereby influencing fishery resource assessment and management. This study investigated diel catch variations of primary fish species in Gehu Lake using monofilament trammel nets from April to November of [...] Read more.
Fish diel activity can affect the catch of fishing gear, such as gill nets, thereby influencing fishery resource assessment and management. This study investigated diel catch variations of primary fish species in Gehu Lake using monofilament trammel nets from April to November of 2016. Fish sampling occurred monthly, with nets set and fish caught at four-hour intervals in each month. The results showed that significant diel effects and diel × month interaction were found on Chinese silver carp (SC) and diel × month interaction on common carp (CC). Topmouth, humpback, and Wuchang bream (WB) displayed significantly higher catch per unit effort (CPUE) during twilight or daytime than at night, and no diel × month interactions were detected. For Chinese bighead carp (BC), Mongolian redfin (MR), Japanese grenadier anchovy (JGA), and crucian carp, no diel effect and diel × month interaction were observed. The study suggested that most activities occurring in daytime and at twilight were caused by visual orientation to prey for topmouth and humpback, and by the herbivorous feeding habitat of WB. Food competition between BC and JGA may drive a pronounced temporal partitioning of their diel activity. Overnight gillnet fishing could underestimate the population sizes of herbivores, such as WB, and visually oriented predators, for example, humpback, and might not influence the estimation for BC, JGA, and crucian carp. However, its effects on the stock estimation of SC and CC would vary with months. Notably, future winter investigations into diel catch in this lake could potentially augment the conclusions of the present study. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes, Second Edition)
Show Figures

Figure 1

19 pages, 4634 KiB  
Article
Optimizing Muscle Quality in Common Carp (Cyprinus carpio L.): Impacts of Body Size on Nutrient Composition, Texture, and Volatile Profile
by Zijie He, Junli Wang, Yun Wei, Xiao Yan, Yuanyou Li, Dizhi Xie and Guoxing Nie
Foods 2025, 14(16), 2794; https://doi.org/10.3390/foods14162794 - 11 Aug 2025
Viewed by 198
Abstract
To investigate the effect of body size on muscle quality of common carp (Cyprinus carpio L.), we systematically tracked the dynamic changes in nutrient content, texture, and volatile organic compounds (VOCs) among small-sized (~100 g), medium-sized (~250 g), and large-sized (~600 g) [...] Read more.
To investigate the effect of body size on muscle quality of common carp (Cyprinus carpio L.), we systematically tracked the dynamic changes in nutrient content, texture, and volatile organic compounds (VOCs) among small-sized (~100 g), medium-sized (~250 g), and large-sized (~600 g) fish (SYRC, MYRC, and HYRC, respectively) over a 30-week feeding trial. The results indicated that the HYRC showed significantly reduced moisture and lipid content, along with increased protein content, hydroxyproline, hardness, and chewiness compared to the SYRC (p < 0.05). The long-chain polyunsaturated fatty acids (LC-PUFAs) and fish lipid quality in the MYRC were significantly lower than those in both the SYRC and HYRC (p < 0.05). The HYRC demonstrated an elevated health-promoting index and a reduced atherogenicity value compared to the SYRC (p < 0.05). The contents of alcohol, ketones, and furans in the HYRC increased by 32.53%, 44.62%, and 144.29%, respectively, compared with those in the SYRC (p < 0.05), including key VOCs in aquatic products such as oct-1-en-3-ol and pent-1-en-3-ol. In conclusion, the SYRC have higher levels of LC-PUFAs and lower hardness; the MYRC have poor levels of LC-PUFAs; and the HYRC have an optimal synergy of nutrition, texture, and VOCs, but the overaccumulation of undesirable VOCs requires mitigation. This provides theoretical references and data support for fish quality optimization, processing, and consumption guidelines. Full article
(This article belongs to the Special Issue Seafood Components and Functional Characteristics)
Show Figures

Figure 1

29 pages, 1182 KiB  
Article
Effect of Organic Plant Ingredients on the Growth Performance of European Sea Bass (Dicentrarchus labrax): Nutritional Efficiency, Fillet Nutritional Indexes, Purchase Intention, and Economic Analysis
by Edilson Ronny Cusiyunca-Phoco, Manuel Saiz-García, Juan Benito Calanche-Morales, Ana Tomás-Vidal, Silvia Martínez-Llorens and Miguel Jover-Cerdá
Animals 2025, 15(16), 2339; https://doi.org/10.3390/ani15162339 - 10 Aug 2025
Viewed by 386
Abstract
The objective of the present study was to ascertain the effect of diverse organic feeds (25ECO, 30ECO, and 35ECO) containing varying levels of fishmeal (25%, 30%, and 35%) on the growth and fillet quality of juvenile sea bass. The ECO diets were composed [...] Read more.
The objective of the present study was to ascertain the effect of diverse organic feeds (25ECO, 30ECO, and 35ECO) containing varying levels of fishmeal (25%, 30%, and 35%) on the growth and fillet quality of juvenile sea bass. The ECO diets were composed of a blend of organic vegetable proteins. The control diet contained 30% fishmeal without any organic ingredients. The experimental period spanned 196 days, during which the fish were fed twice daily, with an initial mean weight of 40 g. The results indicated that reducing fishmeal to 25% in the 25ECO diet negatively affected growth and increased feed consumption. The 30ECO diet, which contains 30% fishmeal, exhibited no adverse effects; however, its biometric outcomes diverged from those of the control diet. The 25ECO diet demonstrated superior Met retention levels, and certain free amino acids that enhance flavour (SER, ALA, ASP, and GLU) exhibited higher concentrations in fillets from fish fed ECO diets (35ECO and 30ECO). No substantial disparities were observed in the fatty acid profile or fillet nutritional indexes, which were deemed to be satisfactory and conducive to good health. From an economic perspective, the 30 ECO diet was deemed optimal and exhibited the greatest inclination towards purchase. Full article
(This article belongs to the Special Issue Advances in Aquaculture Nutrition for Sustainable Health Management)
Show Figures

Figure 1

17 pages, 2019 KiB  
Article
Sport Participation and Gender Differences in Dietary Preferences: A Cross-Sectional Study in Italian Adults
by Francesca Campoli, Elvira Padua, Michele Panzarino, Lucio Caprioli, Giuseppe Annino and Mauro Lombardo
Sports 2025, 13(8), 258; https://doi.org/10.3390/sports13080258 - 6 Aug 2025
Viewed by 271
Abstract
Background: The relationship between sports participation and food preferences in adults, as well as the influence of gender, is still unclear. Objective: The objective of this study was to investigate the association between sports participation and individual food preferences and to explore potential [...] Read more.
Background: The relationship between sports participation and food preferences in adults, as well as the influence of gender, is still unclear. Objective: The objective of this study was to investigate the association between sports participation and individual food preferences and to explore potential gender differences among sports participants in a large group of Italian adults. Methods: This cross-sectional study involved 2665 adults (aged ≥ 18 years) who lead normal lives and underwent a routine lifestyle and dietary assessment at a clinical centre specialising in nutrition, metabolic health, and lifestyle counselling in Rome. Participants completed an online questionnaire on food preferences (19 foods) and sports practice. Multivariate logistic regression models, adjusted for age, sex, and smoking, were used to assess associations. Results: Sports participation was defined as engaging in structured physical activity at least once per week and was reported by 53.5% of subjects (men: 60.1%; women: 49.0%; p < 0.0001). After adjustment, active individuals were significantly more likely to prefer plant-based drinks, low-fat yoghurt, fish, cooked and raw vegetables, fruit, whole grains, tofu, and dark chocolate (all p < 0.05) and less likely to prefer cow’s milk (p = 0.018). Among sport participants, males were more likely to prefer meat (general, white, red, processed) and eggs, while females preferred plant-based drinks. No significant gender differences were observed for dairy products, legumes, or fish. Differences in food preferences were also observed according to the type of sport, with bodybuilders showing higher preference for tofu and dark chocolate. The strongest associations were found in the 25–44 age group. Conclusions: Sports participation is independently associated with specific food preferences, characterised by greater preference for plant-based and fibre-rich foods, and gender differences in food choices persist even among active adults. These findings highlight the need to consider both sports participation and gender when designing nutritional interventions. Full article
(This article belongs to the Special Issue Enhancing Performance and Promoting Health Through Nutrition)
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Viewed by 814
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

16 pages, 2547 KiB  
Article
Formation and Biological Characteristics Analysis of Artificial Gynogenetic WuLi Carp Induced by Inactivated Sperm of Megalobrama Amblycephala
by Xiaowei Xu, Enkui Hu, Qian Xiao, Xu Huang, Chongqing Wang, Xidan Xu, Kun Zhang, Yue Zhou, Jinhai Bai, Zhengkun Liu, Yuchen Jiang, Yan Tang, Xinyi Deng, Siyang Li, Wanjing Peng, Ling Xiong, Yuhan Yang, Zeyang Li, Ming Ma, Qinbo Qin and Shaojun Liuadd Show full author list remove Hide full author list
Biology 2025, 14(8), 994; https://doi.org/10.3390/biology14080994 - 4 Aug 2025
Viewed by 366
Abstract
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2 [...] Read more.
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2n = 48, BSB). As anticipated, gonadal section examination confirmed that all gynogenetic WuLi carp (2n = 100, GWB) were female. To investigate whether paternal DNA fragments from BSB were integrated into the GWB genome, comparative analyses of morphological traits, DNA content, chromosomal numbers, 5S rDNA sequences, microsatellite DNA markers, fluorescence in situ hybridization (FISH), growth performance and nutritional composition were systematically conducted between GWB and maternal WLC. The results revealed pronounced maternal inheritance patterns across morphological characteristics, DNA quantification, chromosomal configurations, 5S rDNA sequences and FISH signals, while microsatellite detection unequivocally confirmed paternal BSB DNA fragment integration into the GWB genome. Remarkably, GWB demonstrated significantly superior growth performance and elevated unsaturated fatty acid content relative to the maternal line. This approach not only addressed germplasm degradation in WLC but also provided valuable theoretical foundations for breeding programs in this commercially significant species. Full article
Show Figures

Figure 1

22 pages, 598 KiB  
Article
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
by Karl T. Ulrich
Sustainability 2025, 17(15), 7034; https://doi.org/10.3390/su17157034 - 2 Aug 2025
Viewed by 229
Abstract
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive [...] Read more.
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Graphical abstract

27 pages, 2289 KiB  
Review
Harnessing Chitin from Edible Insects for Livestock Nutrition
by Linda Abenaim and Barbara Conti
Insects 2025, 16(8), 799; https://doi.org/10.3390/insects16080799 - 1 Aug 2025
Viewed by 616
Abstract
In recent years, edible insects have gained significant attention as a sustainable and innovative source of feed for animal nutrition due to their excellent content of protein, fats, vitamins, and chitin. Among these, chitin is the least studied nutritional component, despite its promising [...] Read more.
In recent years, edible insects have gained significant attention as a sustainable and innovative source of feed for animal nutrition due to their excellent content of protein, fats, vitamins, and chitin. Among these, chitin is the least studied nutritional component, despite its promising properties and potential benefits. Chitin, an important polysaccharide found in the exoskeleton of arthropods, including insects, presents both negative and positive aspects in animal nutrition. As is known, the main drawback is its digestibility, which varies among livestock animal species depending on their ability to produce chitinase. However, chitin also exhibits benefits, including the enhancement of gut microbiota and immune response, together with the reduction in cholesterol and pathogen levels in animals. This review aims to summarise the current knowledge on the effects of chitin derived from edible insects on animal nutrition by analysing both the negative aspects and benefits for the different farmed animals for which insect feeding is legally permitted (fish, poultry, and pigs), while proposing future research directions. Full article
(This article belongs to the Special Issue Insects as the Nutrition Source in Animal Feed)
Show Figures

Graphical abstract

15 pages, 1391 KiB  
Article
Valorization of Food By-Products: Formulation and Evaluation of a Feed Complement for Broiler Chickens Based on Bonito Fish Meal and Única Potato Peel Flour
by Ashley Marianella Espinoza Davila and Rebeca Salvador-Reyes
Resources 2025, 14(8), 125; https://doi.org/10.3390/resources14080125 - 1 Aug 2025
Viewed by 528
Abstract
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal ( [...] Read more.
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal (Sarda chiliensis chiliensis) and Única potato peel flour (Solanum tuberosum L. cv. Única). This study was conducted in three phases: (i) production and nutritional characterization of the two by-product flours; (ii) formulation of a 48:52 (w/w) blend, incorporated into broiler diets at 15%, 30%, and 45% replacement levels over a 7-week trial divided into starter (3 weeks), grower (3 weeks), and finisher (1 week) phases; and (iii) assessment of growth performance (weight gain, final weight, and feed conversion ratio), followed by a sensory evaluation of the resulting meat using a Check-All-That-Apply (CATA) analysis. The Bonito fish meal exhibited 50.78% protein, while the Única potato peel flour was rich in carbohydrates (74.08%). The final body weights of broiler chickens ranged from 1872.1 to 1886.4 g across treatments, and the average feed conversion ratio across all groups was 0.65. Replacing up to 45% of commercial feed with the formulated complement did not significantly affect growth performance (p > 0.05). Sensory analysis revealed that meat from chickens receiving 15% and 45% substitution levels was preferred in terms of aroma and taste, whereas the control group was rated higher in appearance. These findings suggest that the formulated feed complement may represent a viable poultry-feed alternative with potential sensory and economic benefits, supporting future circular-economy strategies. Full article
Show Figures

Figure 1

21 pages, 3469 KiB  
Article
The Effects of Dietary Supplementation with 25-Hydroxyvitamin D3 on the Antioxidant Capacity and Inflammatory Responses of Pelteobagrus fulvidraco
by Yi Liu, Jiang Xie, Qingchao Shi, Quan Gong and Chuanjie Qin
Biology 2025, 14(8), 967; https://doi.org/10.3390/biology14080967 - 1 Aug 2025
Viewed by 274
Abstract
Based on the limited hepatic hydroxylation efficiency of dietary VD3 in teleosts and the superior bioavailability of its metabolite, 25(OH)D3, this study investigated the regulatory mechanisms of dietary 25(OH)D3 supplementation in yellow catfish—an economically significant species lacking prior nutritional data on this metabolite. [...] Read more.
Based on the limited hepatic hydroxylation efficiency of dietary VD3 in teleosts and the superior bioavailability of its metabolite, 25(OH)D3, this study investigated the regulatory mechanisms of dietary 25(OH)D3 supplementation in yellow catfish—an economically significant species lacking prior nutritional data on this metabolite. A total of 360 fish were divided into three groups—control (basal diet), VD3 (2500 IU/kg VD3), and 25(OH)D3 (2500 IU/kg 25(OH)D3)—and fed for 8 weeks. Compared to the control, both supplemented groups showed elevated superoxide dismutase (SOD), total antioxidant capacity (T-AOC), catalase (CAT), and transforming growth factor-β (TGF-β) activities, alongside reduced malondialdehyde (MDA), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels. The 25(OH)D3 group exhibited higher T-AOC and CAT activities and lower TNF-α than the VD3 group. Metabolomic and transcriptomic analyses identified 65 differentially expressed metabolites (DEMs) and 3515 differentially expressed genes (DEGs). Enrichment analysis indicated that the DEMs (e.g., indole compounds, organic acids, aldosterone, L-kynurenine) and DEGs (pgd, mthfr, nsdhl, nox5, prdx2, mpx, itih2, itih3, eprs1) that were highly and significantly expressed in the 25(OH)D3 group were primarily associated with antioxidant defense and inflammatory responses. Dietary 25(OH)D3 was more effective than VD3 in promoting antioxidant capacity and modulating inflammation in yellow catfish. Full article
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 442
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

15 pages, 1262 KiB  
Article
Bycatch in Cetaceans from the North-Western Mediterranean Sea: Retrospective Study of Lesions and Utility of Bycatch Criteria
by Laura Martino, Mariona Leiva Forns, Marina Cid Cañete, Lola Pérez, Cèlia Pradas and Mariano Domingo
Vet. Sci. 2025, 12(8), 711; https://doi.org/10.3390/vetsci12080711 - 29 Jul 2025
Viewed by 722
Abstract
Bycatch is the most common cause of death of small delphinids worldwide, including the Mediterranean Sea. The diagnosis of bycatch as cause of death in stranded cetaceans depends on the cumulative presence of multiple findings, termed bycatch criteria. In this study, we retrospectively [...] Read more.
Bycatch is the most common cause of death of small delphinids worldwide, including the Mediterranean Sea. The diagnosis of bycatch as cause of death in stranded cetaceans depends on the cumulative presence of multiple findings, termed bycatch criteria. In this study, we retrospectively evaluated the presence of bycatch criteria in 138 necropsied cetaceans, 136 stranded and 2 confirmed bycaught, in the Catalan Mediterranean Sea across a 13-year period. With the aim of identifying the most specific and reliable bycatch criteria, the animals’ cause of death was classified as either bycaught or other causes. Animals were necropsied according to standard procedures with complete histopathological examination and ancillary diagnostic techniques. We reviewed the necropsy reports and photographs of 138 cetaceans of seven species. Bycatch had been determined as the cause of death/stranding in 40 (29%) necropsied cetaceans. Both sexes were equally represented in the bycatch group. Bycatch was diagnosed in the Mediterranean common bottlenose dolphin (10/14; 71.4%), striped dolphin (29/108; 26.9%), and Risso’s dolphin (1/11; 9.1%). Sixty-seven out of 98 (68.3%) cetaceans that had been classified as non-bycatch had one or two bycatch criteria. Cetaceans with two and three major criteria had an overlap of causes of death, as some animals were diagnosed with bycatch and others with other causes of mortality. Animals with four criteria were invariably diagnosed as being bycaught. Recent feeding, absence of disease, good nutritional status, marks of fishing gear, multiorgan intravascular gas bubbles, hyphema and amputations or sharp incisions presumably inflicted by humans were significantly more likely to result in a diagnosis of bycatch, while loss of teeth and cranial fractures were not. None of the dolphins diagnosed as bycatch had ingested fishing gear. Our results highlight the relevance of bycatch as the cause of death of dolphins in the Mediterranean and suggest that some criteria traditionally linked to bycatch are not specific for bycatch in our region. Full article
(This article belongs to the Special Issue Pathology of Marine Large Vertebrates)
Show Figures

Figure 1

19 pages, 3238 KiB  
Article
Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels
by Wanyi Sun, Qiuyu Lu, Jiajing Chen, Xinxin Fan, Shengnan Zhan, Wenge Yang, Tao Huang and Fulai Li
Foods 2025, 14(15), 2631; https://doi.org/10.3390/foods14152631 - 26 Jul 2025
Viewed by 575
Abstract
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) [...] Read more.
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) or κ-carrageenan (κC, 0.07% (w/v)). The results revealed that the gel strength, hardness, and chewiness of the composite gels initially increased (pH 4–6) and subsequently decreased with rising pH levels. This trend correlated with the formation of a dense gel network structure. Furthermore, as pH increased, in vitro digestibility showed a similar pH-dependent trend, with FG–XG demonstrating superior enhancement compared to FG–κC. The addition of XG and κC resulted in increased gas production and a decreased pH during fermentation. Intestinal microbiota analysis revealed that both FG–XG and FG–κC improved the abundances of Proteobacteria and Bacteroidete while reducing Firmicutes. Compared to FG–XG and FG, FG–κC promoted higher levels of the genera Lachnospiraceae and Bacteroides, suggesting a more favorable impact on intestinal health. These findings provide valuable insights into the pH-responsive functional properties of FG-based hydrogels and their potential applications in designing novel food matrices with enhanced nutritional and probiotic attributes. Full article
Show Figures

Figure 1

15 pages, 933 KiB  
Article
A Prospective Interventional Study on the Beneficial Effect of Fish Oil-Enriched High-Protein Oral Nutritional Supplement (FOHP-ONS) on Malnourished Older Cancer Patients
by Hui-Fang Chiu, Shu Ru Zhuang, You-Cheng Shen, Subramanian Thangaleela and Chin-Kun Wang
Nutrients 2025, 17(15), 2433; https://doi.org/10.3390/nu17152433 - 25 Jul 2025
Viewed by 472
Abstract
Background: Malnutrition and cancer-related fatigue (CRF) are prevalent in cancer patients, significantly impacting prognosis and quality of life. Oral nutritional supplements (ONSs) enriched with protein and ω-3 fatty acids may improve nutritional status and mitigate CRF. This study evaluates the effects of a [...] Read more.
Background: Malnutrition and cancer-related fatigue (CRF) are prevalent in cancer patients, significantly impacting prognosis and quality of life. Oral nutritional supplements (ONSs) enriched with protein and ω-3 fatty acids may improve nutritional status and mitigate CRF. This study evaluates the effects of a high-protein, fish oil-enriched ONS (FOHP-ONS) on nutritional intake, body composition, fatigue, and quality of life in malnourished cancer patients. Methods: Cancer patients with malnutrition or inadequate food intake received 8 weeks of FOHP-ONS (2 cans/day, providing 4.2 g/day of ω-3 fatty acids). Dietary intake, body weight, handgrip strength, serum biochemical markers, nutritional status (PG-SGA), fatigue (BFI-T), and quality of life (EORTC QLQ-C30) were assessed at baseline, week 4, and week 8. Results: Of the 33 enrolled patients, 30 completed the study. Energy and protein intake significantly increased (p < 0.05), and body BMI and handgrip strength showed significant improvements (p < 0.05), while muscle mass did not change significantly. Nutritional status, assessed by PG-SGA, improved, with the proportion of severely malnourished patients (Stage C) decreasing from 46.7% to 13.3%, and moderately malnourished patients (Stage B) improving to well-nourished status (Stage A) from 10.0% to 30.0% (p < 0.001). Serum albumin levels increased significantly (p < 0.05), while fasting blood glucose significantly decreased (p < 0.05). Additionally, triglyceride levels significantly decreased (p < 0.05), while total cholesterol and LDL-C showed a downward trend. Cancer-related fatigue scores improved across all domains (p < 0.05), and quality of life significantly increased, particularly in physical and role functioning (p < 0.05). Conclusions: FOHP-ONS supplementation improved nutritional intake, body composition, and muscle strength while alleviating CRF and enhancing quality of life in malnourished cancer patients. These findings support its potential role in nutritional intervention for malnourished cancer patients. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop