Effect of Organic Plant Ingredients on the Growth Performance of European Sea Bass (Dicentrarchus labrax): Nutritional Efficiency, Fillet Nutritional Indexes, Purchase Intention, and Economic Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Production System
2.2. Fish and Experimental Conditions
2.3. Experimental Feed
2.4. Proximate Composition and Amino Acid Analysis
2.5. Determination of Fatty Acid
2.6. Growth and Nutrient Efficiency Indices
2.7. Biometric Indices
2.8. Retention Efficiency
2.9. Free Fillet Amino Acids
2.10. Nutritional Quality Indexes of the Fillet
2.10.1. Determination of Fatty Acid in Fillet
2.10.2. The Lipid Quality Indexes
2.11. Fish Purchase Intention
2.12. Economic Analysis
2.13. Statistical Analysis
2.14. Ethical Aspects
3. Results
3.1. Growth and Nutritional Parameters
3.2. Biometric Parameters of Sea Bass Fed Experimental Diets
3.3. Body Composition and Nutrient Retention Efficiency
3.4. Amino Acid Retention Efficiency
3.5. Proximal Composition of Fillets, Fatty Acid, and Free Amino Acid Profile
3.6. Nutritional Quality Indexes of the Fillet
3.7. Purchase Intention
3.8. Economic Analysis
4. Discussion
4.1. Fish Performance
4.2. Final Biometric Parameters
4.3. Body Composition and Retention Nutrient Efficiency
4.4. Retention Amino Acid Efficiency
4.5. Proximal Composition of Fillets, Fatty Acid, and Free Amino Acid Profile
4.6. Nutritional Quality Indexes of the Fillet
4.7. Purchase Intention
4.8. Economic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- APROMAR. Guía Sobre el Bienestar de los Peces en la Acuicultura Española: Bienestar de las Lubinas; Asociación Empresarial de Acuicultura de España: Cádiz, Spain, 2024; Volume 2, p. 49. [Google Scholar]
- APROMAR. La Acuicultura en España. 2024. Available online: https://apromar.es/wp-content/uploads/2025/03/Informe2024_v1.4.pdf (accessed on 1 May 2025).
- European Commission: Scientific, Technical and Economic Committee for Fisheries; Nielsen, R.; Llorente, I.; Guillen, J.; Virtanen, J. The 2024 Aquaculture Economic Report (STECF 24–14); Nielsen, R., Llorente, I., Guillen, J., Virtanen, J., Eds.; Publications Office of the European Union: Luxembourg, 2025; Available online: https://op.europa.eu/publication-detail/-/publication/0c13327d-fd6a-11ef-b7db-01aa75ed71a1 (accessed on 1 May 2025).
- FAO. The State of World Fisheries and Aquaculture 2022; Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Zoli, M.; Rossi, L.; Fronte, B.; Aubin, J.; Jaeger, C.; Wilfart, A.; Bacenetti, J. Environmental impact of different Mediterranean technological systems for European sea bass (Dicentrarchus labrax) and Gilthead Sea bream (Sparus aurata) farming. Aquac. Eng. 2024, 107, 102457. [Google Scholar] [CrossRef]
- Rosati, S.; Maiuro, L.; Lombardi, S.J.; Iaffaldano, N.; Di Iorio, M.; Cariglia, M.; Sorrentino, E. Integrated Biotechnological Strategies for the Sustainability and Quality of Mediterranean Sea Bass (Dicentrarchus labrax) and Sea Bream (Sparus aurata). Foods 2025, 14, 1020. [Google Scholar] [CrossRef]
- Kyrana, V.R.; Lougovois, V.P. Sensory, chemical and microbiological assessment of farm-raised European sea bass (Dicentrarchus labrax) stored in melting ice. Int. J. Food Sci. Technol. 2002, 37, 319–328. [Google Scholar] [CrossRef]
- Zoli, M.; Rossi, L.; Costantini, M.; Bibbiani, C.; Fronte, B.; Brambilla, F.; Bacenetti, J. Quantification and characterization of the environmental impact of sea bream and sea bass production in Italy. Clean. Environ. Syst. 2023, 9, 100118. [Google Scholar] [CrossRef]
- Chen, J.M.; Chen, J.C. Study on the free amino acid levels in the hemolymph, gill, hepatopancreas and muscle of Penaeus monodon exposed to elevated ambient ammonia. Aquat. Toxicol. 2020, 50, 27–37. [Google Scholar] [CrossRef]
- Cortés-Sánchez, A.D.J.; Diaz-Ramírez, M.; Torres-Ochoa, E.; Espinosa-Chaurand, L.D.; Rayas-Amor, A.A.; Cruz-Monterrosa, R.G.; Salgado-Cruz, M.D.L.P. Processing, quality and elemental safety of fish. Appl. Sci. 2024, 14, 2903. [Google Scholar] [CrossRef]
- Tarricone, S.; Ragni, M.; Carbonara, C.; Giannico, F.; Bozzo, F.; Petrontino, A.; Colonna, M.A. Growth Performance and Flesh Quality of Sea Bass (Dicentrarchus labrax) Fed with Diets Containing Olive Oil in Partial Replacement of Fish Oil—With or Without Supplementation with Rosmarinus officinalis L. Essential Oil. Animals 2024, 14, 3237. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Pereira, J.; Lemoine, A.; Neubauer, P.; Junne, S. Perspectives for improving circular economy in brackish shrimp aquaculture. Aquac. Res. 2022, 53, 1169–1180. [Google Scholar] [CrossRef]
- Le Féon, S.; Dubois, T.; Jaeger, C.; Wilfart, A.; Akkal-Corfini, N.; Bacenetti, J.; Aubin, J. DEXiAqua, a model to assess the sustainability of aquaculture systems: Methodological development and application to a French Salmon Farm. Sustainability 2021, 13, 7779. [Google Scholar] [CrossRef]
- Morris, J.P.; Backeljau, T.; Chapelle, G. Shells from aquaculture: A valuable biomaterial, not a nuisance waste product. Rev. Aquac. 2019, 11, 42–57. [Google Scholar] [CrossRef]
- Chary, K.; van Riel, A.J.; Muscat, A.; Wilfart, A.; Harchaoui, S.; Verdegem, M.; Wiegertjes, G.F. Transforming sustainable aquaculture by applying circularity principles. Rev. Aquac. 2024, 16, 656–673. [Google Scholar] [CrossRef]
- Tefal, E.; Jauralde, I.; Martínez-Llorens, S.; Tomás-Vidal, A.; Milián-Sorribes, M.C.; Moyano, F.J.; Jover-Cerdá, M. Organic ingredients as alternative protein sources in the diet of juvenile organic seabass (Dicentrarchus labrax). Animals 2023, 13, 3816. [Google Scholar] [CrossRef]
- Hodar, A.R.; Vasava, R.J.; Mahavadiya, D.R.; Joshi, N.H. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India 2020, 23, 13–21. [Google Scholar]
- Milián-Sorribes, M.C.; Martínez-Llorens, S.; Cruz-Castellón, C.; Jover-Cerdá, M.; Tomás-Vidal, A. Effect of fish oil replacement and probiotic addition on growth, body composition and histological parameters of yellowtail (Seriola dumerili). Aquac. Nutr. 2021, 27, 3–16. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Preliminary nutritional evaluation of Mucuna seed meal (Mucuna pruriens var. utilis) in common carp (Cyprinus carpio L.): An assessment by growth performance and feed utilisation. Aquaculture 2001, 196, 105–123. [Google Scholar] [CrossRef]
- Reigh, R.C. Underutilized and Unconventional Plant Protein Supplements. In Alternatives Protein Sources in Aquaculture Diets; Lim, C., Webster, C.D., Lee, C.-S., Eds.; The Howarth Press: New York, NY, USA, 2008; pp. 433–447. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Sæther, B.S.; Albrektsen, S.; Noble, C. Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: A practical guide for optimizing feed formulation and farming protocols. Aquac. Nutr. 2015, 21, 129–151. [Google Scholar] [CrossRef]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishmeal alternative protein sources for aquaculture feeds. Feed. Aquac. Sect. Curr. Situat. Altern. Sources 2018, 1–28. [Google Scholar] [CrossRef]
- Storebakken, T.; Refstie, S.; Ruyter, B. Soy Products as Fat and Protein Sources in Fish Feeds for Intensive Aquaculture. In Soy in Animal Nutrition; Drackley, J.K., Ed.; Federation of Animal Science Societies: Savoy, IL, USA, 2000; pp. 127–170. [Google Scholar]
- Randazzo, B.; Di Marco, P.; Zarantoniello, M.; Daniso, E.; Cerri, R.; Finoia, M.G.; Cardinaletti, G. Effects of supplementing a plant protein-rich diet with insect, crayfish or microalgae meals on gilthead sea bream (Sparus aurata) and European seabass (Dicentrarchus labrax) growth, physiological status and gut health. Aquaculture 2023, 575, 739811. [Google Scholar] [CrossRef]
- Tibaldi, E.; Hakim, Y.; Uni, Z.; Tulli, F.; de Francesco, M.; Luzzana, U.; Harpaz, S. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture 2006, 261, 182–193. [Google Scholar] [CrossRef]
- Li, Y.; Ai, Q.; Mai, K.; Xu, W.; Cheng, Z. Effects of the partial substitution of dietary fish meal by two types of soybean meals on the growth performance of juvenile Japanese seabass, Lateolabrax japonicus (Cuvier 1828). Aquac. Res. 2012, 43, 458–466. [Google Scholar] [CrossRef]
- Deng, J.; Mai, K.; Ai, Q.; Zhang, W.; Wang, X.; Xu, W.; Liufu, Z. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 2006, 258, 503–513. [Google Scholar] [CrossRef]
- Chen, W.; Ai, Q.; Mai, K.; Xu, W.; Liufu, Z.; Zhang, W.; Cai, Y. Effects of dietary soybean saponins on feed intake, growth performance, digestibility and intestinal structure in juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture 2011, 318, 95–100. [Google Scholar] [CrossRef]
- Zubiaurre, C. The Current Status and Future Perspectives of European Organic Aquaculture. Aquac. Eur. Eur. Aquac. Soc. 2013, 38, 14–21. [Google Scholar]
- EUMOFA—European Market Observatory for Fisheries and Aquaculture. Organic Aquaculture in the Eu. In Current Situation, Drivers, Barriers, Potential for Growth; EUMOFA: Brussels, Belgium, 2022; ISBN 9789276476221. [Google Scholar]
- Willer, H.; Trávníček, J.; Claudia, M.; Schlatter, B. (Eds.) The World of Organic Agriculture-Statistics & Emerging Trends; IFOAM: Bonn, Germany, 2021; ISBN 9783037363935. [Google Scholar]
- Castellini, A.; Mauracher, C.; Procidano, I.; Sacchi, G. Italian market of organic wine: A survey on production system characteristics and marketing strategies. Wine Econ. Policy 2014, 3, 71–80. [Google Scholar] [CrossRef]
- Mauracher, C.; Tempesta, T.; Vecchiato, D. Consumer preferences regarding the introduction of new organic products. The case of the Mediterranean Sea bass (Dicentrarchus labrax) in Italy. Appetite 2013, 63, 84–91. [Google Scholar] [CrossRef]
- Gould, D.; Compagnoni, A.; Lembo, G. Organic aquaculture: Principles, standards and certification. In Organic Aquaculture: Impacts and Future Developments; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–22. [Google Scholar]
- Tefal, E.; Jauralde, I.; Tomás-Vidal, A.; Martínez-Llorens, S.; Peñaranda, D.S.; Jover-Cerdá, M. New organic raw materials for gilthead seabream (Sparus aurata) feeding and the effects on growth, nutritive parameters, digestibility, and histology. Fishes 2023, 8, 330. [Google Scholar] [CrossRef]
- Tefal, E.; Tomás-Vidal, A.; Martínez-Llorens, S.; Jauralde, I.; Sánchez-Peñaranda, D.; Jover-Cerdá, M. Effects of Eco-Organic Feed on Growth Performance, Biometric Indices, and Nutrient Retention of Gilthead Seabream (Sparus aurata). Sustainability 2023, 15, 10750. [Google Scholar] [CrossRef]
- Tefal, E.; Peñaranda, D.S.; Martínez-Llorens, S.; Tomás-Vidal, A.; Jauralde, I.; Lagos, L.; Jover-Cerdá, M. Feeding of rainbow trout (Oncorhynchus mykiss) with organic ingredients replacing fish meal. Aquaculture 2024, 592, 741257. [Google Scholar] [CrossRef]
- Cottee, S.Y.; Petersan, P. Animal welfare and organic aquaculture in open systems. J. Agric. Environ. Ethics 2009, 22, 437–461. [Google Scholar] [CrossRef]
- Lembo, G.; Mente, E. Organic Aquaculture; Springer International Publishing: Cham, Suiza, 2019; ISBN 978-3-030-05603-2. [Google Scholar]
- Mente, E.; Karalazos, V.; Karapanagiotidis, I.T.; Pita, C. Nutrition in organic aquaculture: An investigation and a discourse: Nutrition in organic aquaculture. Aquac. Nutr. 2011, 17, 798–817. [Google Scholar] [CrossRef]
- Mente, E.; Stratakos, A.; Boziaris, I.S.; Kormas, K.A.; Karalazos, V.; Karapanagiotidis, I.T.; Leondiadis, L. The effect of organic and conventional production methods on sea bream growth, health and body composition: A field experiment. Sci. Mar. 2012, 76, 549–560. [Google Scholar] [CrossRef]
- Angel, D.; Jokumsen, A.; Lembo, G. Aquaculture Production Systems and Environmental Interactions. In Organic Aquaculture: Impacts and Future Developments; Lembo, G., Mente, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 103–118. ISBN 978-3-030-05603-2. [Google Scholar] [CrossRef]
- Beg, M.M.; Roy, S.M.; Moulick, S.; Mandal, B.; Kim, T.; Mal, B.C. Economic feasibility study of organic and conventional fish farming systems of Indian major carps. Sci. Rep. 2024, 14, 7001. [Google Scholar] [CrossRef]
- Council Regulation (EC) No. 834/2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No. 2092/91. Off. J. Eur. Union 2007, 189, 1–23.
- Commission Regulation (EC) No 710/2009 Amending Regulation (EC) No 889/2008 Laying Down Detailed Rules for the Application of Regulation (EC) No 834/2007 as Regards the Laying Down of Detailed Rules for the Organic Production of Aquaculture Animals and Seaweed 2009. Available online: http://data.europa.eu/eli/reg/2009/710/oj (accessed on 2 May 2025).
- EU Regulation. Regulation (EU) 2018/848 of the European Parliament and of the Council. Official Journal of the European Union, 150/92. B Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R0848 (accessed on 2 May 2025).
- Lunger, A.N.; Craig, S.; McLean, E. Replacement of fish meal in cobia (Rachycentron canadum) diets using an organically certified protein. Aquaculture 2006, 257, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Trocino, A.; Xiccato, G.; Majolini, D.; Tazzoli, M.; Bertotto, D.; Pascoli, F.; Palazzi, R. Assessing the quality of organic and conventionally-farmed European sea bass (Dicentrarchus labrax). Food Chem. 2012, 131, 427–433. [Google Scholar] [CrossRef]
- Berge, G.M.; Jokumsen, A.; Lembo, G.; Spedicato, M.T. Challenges in Sourcing of Feed Ingredients for Organic Production of Carnivorous Fish. In Proceedings of the Aquaculture Europe, Rotterdam, The Netherlands, 20–23 October 2015. [Google Scholar]
- Di Marco, P.; Petochi, T.; Marino, G.; Priori, A.; Finoia, M.G.; Tomassetti, P.; Poli, B.M. Insights into organic farming of European sea bass Dicentrarchus labrax and gilthead sea bream Sparus aurata through the assessment of environmental impact, growth performance, fish welfare and product quality. Aquaculture 2017, 471, 92–105. [Google Scholar] [CrossRef]
- Pascoli, F.; Negrato, E.; De Lazzaro, P.; Poltronieri, C.; Radaelli, G.; Bertotto, D. Organic versus Conventional Sea Bass Aquaculture: Results from a Monitoring Study on Fish Welfare. In Proceedings of the EAS-WAS Conference-Aqua, Prague, Czech Republic, 1–5 September 2012; p. 855. [Google Scholar]
- Tacon, A.G.J.; Jackson, A.J.; Cowey, C.B.; Mackie, A.M.; Bell, J.G. Nutrition and Feeding in Fish; Academic Press: London, UK, 1985; pp. 119–145. [Google Scholar]
- Adelizi, P.D.; Rosati, R.R.; Warner, K.; Wu, Y.V.; Muench, T.R.; White, M.R.; Brown, P.B. Evaluation of fish-meal free diets for rainbow trout, Oncorhynchus mykiss. Aquac. Nutr. 1998, 4, 255–262. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Wurtele, E. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Slawski, H.; Adem, H.; Tressel, R.P.; Wysujack, K.; Koops, U.; Kotzamanis, Y.; Schulz, C. Total fish meal replacement with rapeseed protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss Walbaum). Aquac. Int. 2012, 20, 443–453. [Google Scholar] [CrossRef]
- Tusche, K.; Wuertz, S.; Susenbeth, A.; Schulz, C. Feeding fish according to organic aquaculture guidelines EC 710/2009: Influence of potato protein concentrates containing various glycoalkaloid levels on health status and growth performance of rainbow trout (Oncorhynchus mykiss). Aquaculture 2011, 319, 122–131. [Google Scholar] [CrossRef]
- Ballestrazzi, R.; Lanari, D.; D’Agaro, E.; Mion, A. The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion of growing sea bass (Dicentrarchus labrax). Aquaculture 1994, 127, 197–206. [Google Scholar] [CrossRef]
- Tulli, F.; Tibaldi, E. Apparent nutrient digestibility of different protein sources for sea bass (Dicentrarchus labrax). In Proceedings of the 14th National People’s Congress, ASPA, Firenze, Italy, 12–15 June 2001; pp. 697–699. [Google Scholar]
- Altan, Ö.; Korkut, A.Y. Appearent digestibility of plant protein-based diets by European sea bass Dicentrarchus labrax L. 1758. Turk. J. Fish. Aquat. Sci. 2011, 11, 87–92. [Google Scholar] [CrossRef]
- Azeredo, R.; Machado, M.; Kreuz, E.; Wuertz, S.; Oliva-Teles, A.; Enes, P.; Costas, B. The European seabass (Dicentrarchus labrax) innate immunity and gut health are modulated by dietary plant-protein inclusion and prebiotic supplementation. Fish Shellfish. Immunol. 2017, 60, 78–87. [Google Scholar] [CrossRef]
- Bonvini, E.; Parma, L.; Badiani, A.; Fontanillas, R.; Gatta, P.P.; Sirri, F.; Nannoni, E.; Bonaldo, A. Integrated study on production performance and quality traits of European sea bass (Dicentrarchus labrax) fed high plant protein diets. Aquaculture 2018, 484, 126–132. [Google Scholar] [CrossRef]
- Estruch, G.; Collado, M.C.; Monge-Ortiz, R.; Tomás-Vidal, A.; Jover-Cerdá, M.; Peñaranda, D.S.; Martínez-Llorens, S. Long-term feeding with high plant protein-based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Vet. Res. 2018, 14, 302. [Google Scholar] [CrossRef] [PubMed]
- Estruch, G.; Martínez-Llorens, S.; Tomás-Vidal, A.; Monge-Ortiz, R.; Jover-Cerdá, M.; Brown, P.B.; Peñaranda, D.S. Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). J. Proteom. 2020, 216, 103672. [Google Scholar] [CrossRef]
- Pérez-Pascual, D.; Estellé, J.; Dutto, G.; Rodde, C.; Bernardet, J.F.; Marchand, Y.; Ghigo, J.M. Growth performance and adaptability of European sea bass (Dicentrarchus labrax) gut microbiota to alternative diets free of fish products. Microorganisms 2020, 8, 1346. [Google Scholar] [CrossRef]
- Kotzamanis, Y.; Tsironi, T.; Brezas, A.; Grigorakis, K.; Ilia, V.; Vatsos, I.; Romano, N.; van Eys, J.; Kumar, V. High taurine supplementation in plant protein-based diets improves growth and organoleptic characteristics of European seabass (Dicentrarchus labrax). Sci. Rep. 2020, 10, 12294. [Google Scholar] [CrossRef]
- Mastoraki, M.; Panteli, N.; Kotzamanis, Y.P.; Gasco, L.; Antonopoulou, E.; Chatzifotis, S. Nutrient digestibility of diets containing five different insect meals in gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Anim. Feed. Sci. Technol. 2022, 292, 115425. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analiytical Chemistry. In Official method of Analysis, 16th ed.; Hoorwitz, N., Chialo, P., Reynold, H., Eds.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Bosch, L.; Alegría, A.; Farré, R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J. Chromatogr. 2006, 831, 176–183. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Bidlingmeyer, B.A.; Cohen, S.A.; Tarvin, T.L.; Frost, B. A new, rapid, high sensitivity analysis of amino acids in food type samples. J. AOAC 1987, 70, 241–247. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Telahigue, K.; Hajji, T.; Rabeh, I.; El Cafsi, M. The changes of fatty acid composition in sun dried, oven dried and frozen hake (Merluccius merluccius) and sardinella (Sardinella aurita). Afr. J. Biochem. Res 2013, 7, 158–164. Available online: https://academicjournals.org/journal/ajbr/article-full-text-pdf/4ef736a11679 (accessed on 2 May 2025).
- Łuczyńska, J.; Paszczyk, B.; Nowosad, J.; Łuczyński, M.J. Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the polish market. Risk assessment of fish consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B. Health risk assessment of heavy metals and lipid quality indexes in freshwater fish from lakes of Warmia and Mazury region, Poland. Int. J. Environ. Res. Public Health 2019, 16, 3780. [Google Scholar] [CrossRef]
- Tarricone, S.; Caputi Jambrenghi, A.; Cagnetta, P.; Ragni, M. Wild and farmed sea bass (Dicentrarchus labrax): Comparison of biometry traits, chemical and fatty acid composition of fillets. Fishes 2022, 7, 45. [Google Scholar] [CrossRef]
- Marques, A.; Canada, P.; Costa, C.; Basto, A.; Piloto, F.; Salgado, M.A.; Valente, L.M. Replacement of fish oil by alternative n-3 LC-PUFA rich lipid sources in diets for European sea bass (Dicentrarchus labrax). Front. Mar. Sci. 2023, 10, 1189319. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mugnai, C.; Roscini, V.; Castellini, C. Fillet fatty acid composition, estimated indexes of lipid metabolism and oxidative status of wild and farmed brown trout (Salmo trutta L.). Ital. J. Food Sci. 2013, 25, 83–89. [Google Scholar]
- Fernandes, C.E.; da Silva Vasconcelos, M.A.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; de Melo Filho, A.B. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Tonial, I.B.; Oliveira, D.D.; Coelho, A.R.; Matsushita, M.; Coró, F.A.G.; Souza, N.D.; Visentainer, J.V. Quantification of essential fatty acids and assessment of the nutritional quality indexes of lipids in tilapia alevins and juvenile tilapia fish (Oreochromis niloticus). J. Food Res. 2014, 3, 105–114. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.Á.; González-Barriga, V.; Romero, J.; Rojas, R.; López-Arana, S. Quantification and distribution of omega-3 fatty acids in South Pacific fish and shellfish species. Foods 2020, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Krajnović-Ozretic, M.; Najdek, M.; Ozretić, B. Fatty acids in liver and muscle of farmed and wild sea bass (Dicentrarchus labrax L.). Comp. Biochem. Physiol. Part A Physiol. 1994, 109, 611–617. [Google Scholar] [CrossRef]
- Senso, L.; Suárez, M.D.; Ruiz-Cara, T.; García-Gallego, M. On the possible effects of harvesting season and chilled storage on the fatty acid profile of the fillet of farmed gilthead sea bream (Sparus aurata). Food Chem. 2007, 101, 298–307. [Google Scholar] [CrossRef]
- Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. Healthc. Nutr. Technol. 2006, 1, 420–439. [Google Scholar] [CrossRef]
- Calanche Morales, J.B.; Tomás-Vidal, A.; Cusiyunca Phoco, E.R.; Martínez-Llorens, S.; Marquina, P.L.; Jover-Cerdá, M.; Beltrán, J.A. An Approach to the Spanish Consumer’s Perception of the Sensory Quality of Environmentally Friendly Seabass. Foods 2021, 10, 2694. [Google Scholar] [CrossRef]
- Martínez-Llorens, S.; Moñino, A.V.; Tomás Vidal, A.; Salvador, V.J.M.; Pla Torres, M.; Jover Cerdá, M. Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: Effects on growth and nutrient utilization. Aquac. Res. 2007, 38, 82–90. [Google Scholar] [CrossRef]
- Jauralde, I.; Martínez-Llorens, S.; Tomás, A.; Ballestrazzi, R.; Jover, M. A proposal for modelling the thermal-unit growth coefficient and feed conversion ratio as functions of feeding rate for gilthead sea bream (Sparus aurata, L.) in summer conditions. Aquac. Res. 2013, 44, 242–253. [Google Scholar] [CrossRef]
- Tarricone, S.; Iaffaldano, N.; Colonna, M.A.; Giannico, F.; Selvaggi, M.; Caputi Jambrenghi, A.; Ragni, M. Effects of dietary red grape extract on the quality traits in juvenile European sea bass (Dicentrarchus labrax L.). Animals 2023, 13, 254. [Google Scholar] [CrossRef]
- Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L.M. A blend of land animal fats can replace up to 75% fish oil without affecting growth and nutrient utilization of European seabass. Aquaculture 2018, 487, 22–31. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F.J.L.P.S. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Candela, C.G.; López, L.B.; Kohen, V.L. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329. Available online: https://www.redalyc.org/pdf/3092/309226770013.pdf (accessed on 2 May 2025).
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Chang, N.W.; Huang, P.C. Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids 1998, 33, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Majdoub-Mathlouthi, L.; Saïd, B.; Kraiem, K. Carcass traits and meat fatty acid composition of Barbarine lambs reared on rangelands or indoors on hay and concentrate. Animal 2015, 9, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.J.; Coves, D.; Dutto, G.; Blanc, D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 2004, 230, 391–404. [Google Scholar] [CrossRef]
- Adamidou, S.; Nengas, I.; Alexis, M.; Foundoulaki, E.; Nikolopoulou, D.; Campbell, P.; Jauncey, K. Apparent nutrient digestibility and gastrointestinal evacuation time in European seabass (Dicentrarchus labrax) fed diets containing different levels of legumes. Aquaculture 2009, 289, 106–112. [Google Scholar] [CrossRef]
- Lund, I.; Dalsgaard, J.; Rasmussen, H.T.; Holm, J.; Jokumsen, A. Replacement of fish meal with a matrix of organic plant proteins in organic trout (Oncorhynchus mykiss) feed, and the effects on nutrient utilization and fish performance. Aquaculture 2011, 321, 259–266. [Google Scholar] [CrossRef]
- Estévez, A.; Vasilaki, P. Organic production of gilthead sea bream (Sparus aurata) using organic certified green pea protein and seaweed. Effects on growth, feed conversion and final product quality. Aquaculture 2023, 571, 739490. [Google Scholar] [CrossRef]
- Gaylord, T.G.; Barrows, F.T.; Teague, A.M.; Johansen, K.A.; Overturf, K.E.; Shepherd, B. Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 2007, 269, 514–524. [Google Scholar] [CrossRef]
- Cooney, R.; de Sousa, D.B.; Fernández-Ríos, A.; Mellett, S.; Rowan, N.; Morse, A.P.; Hayes, M.; Laso, J.; Regueiro, L.; Wan, A.H.; et al. A circular economy framework for seafood waste valorisation to meet challenges and opportunities for intensive production and sustainability. J. Clean. Prod. 2023, 392, 136283. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Psofakis, P.; Mente, E.; Malandrakis, E.; Golomazou, E. Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquac. Nutr. 2019, 25, 3–14. [Google Scholar] [CrossRef]
- Sabbagh, M.; Schiavone, R.; Brizzi, G.; Sicuro, B.; Zilli, L.; Vilella, S. Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture 2019, 511, 734220. [Google Scholar] [CrossRef]
- Dias, J.; Alvarez, M.J.; Arzel, J.; Corraze, G.; Diez, A.; Bautista, J.M.; Kaushik, S.J. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 142, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Piccolo, G.; Tulli, F.; Messina, C.M.; Cardinaletti, G.; Tibaldi, E. Lipid composition and metabolism of European sea bass (Dicentrarchus labrax L.) fed diets containing wheat gluten and legume meals as substitutes for fish meal. Aquaculture 2013, 376, 6–14. [Google Scholar] [CrossRef]
- Calanche, J.; Tomas, A.; Martinez, S.; Jover, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Relation of quality and sensory perception with changes in free amino acids of thawed seabream (Sparus aurata). Food Res. Int. 2019, 119, 126–134. [Google Scholar] [CrossRef]
- Mourente, G.; Bell, J.G. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 145, 389–399. [Google Scholar] [CrossRef]
- Rodríguez, C.; Acosta, C.; Badía, P.; Cejas, J.R.; Santamaría, F.J.; Lorenzo, A. Assessment of lipid and essential fatty acids requirements of black seabream (Spondyliosoma cantharus) by comparison of lipid composition in muscle and liver of wild and captive adult fish. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 139, 619–629. [Google Scholar] [CrossRef]
- Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 1999, 177, 191–199. [Google Scholar] [CrossRef]
- Zheng, X.; Seiliez, I.; Hastings, N.; Tocher, D.R.; Panserat, S.; Dickson, C.A.; Bergot, P.; Teale, A.J. Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 139, 269–279. [Google Scholar] [CrossRef]
- Testi, S.; Bonaldo, A.; Gatta, P.P.; Badiani, A. Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem. 2006, 98, 104–111. [Google Scholar] [CrossRef]
- Baki, B.; Gönener, S.; Kaya, D. Comparison of food, amino acid and fatty acid compositions of wild and cultivated sea bass (Dicentrarchus labrax L. 1758). Turk. J. Fish. Aquat. Sci. 2015, 15, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Carvalho, M.; Terova, G.; Fontanillas, R.; Serradell, A.; Ginés, R.; Torrecillas, S. Nutritional innovations in superior European sea bass (Dicentrarchus labrax) genotypes: Implications on fish performance and feed utilization. Aquaculture 2023, 572, 739486. [Google Scholar] [CrossRef]
- Kabeya, N.; Fonseca, M.M.; Ferrier, D.E.; Navarro, J.C.; Bay, L.K.; Francis, D.S.; Monroig, Ó. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 2018, 4, eaar6849. [Google Scholar] [CrossRef] [PubMed]
- Monroig, Ó.; Lopes-Marques, M.; Navarro, J.C.; Hontoria, F.; Ruivo, R.; Santos, M.M.; Castro, L.F.C. Evolutionary functional elaboration of the Elovl2/5 gene family in chordates. Sci. Rep. 2016, 6, 20510. [Google Scholar] [CrossRef] [PubMed]
- Glencross, B.D.; Bachis, E.; Betancor, M.B.; Calder, P.; Liland, N.; Newton, R.; Ruyter, B. Omega-3 futures in aquaculture: Exploring the supply and demands for long-chain omega-3 essential fatty acids by aquaculture species. Rev. Fish. Sci. Aquac. 2025, 33, 167–216. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef]
- Lee, S.M. Review of the lipid and essential fatty acid requirements of rockfish (Sebastes schlegeli). Aquac. Res. 2001, 32, 8–17. [Google Scholar] [CrossRef]
- Monge-Ortiz, R.; Tomás-Vidal, A.; Rodriguez-Barreto, D.; Martínez-Llorens, S.; Pérez, J.A.; Jover-Cerdá, M.; Lorenzo, A. Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquac. Nutr. 2018, 24, 605–615. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Moral, A. Changes in free amino acids during chilled storage of hake (Merluccius merluccius L.) in controlled atmospheres and their use as a quality control index. Eur. Food Res. Technol. 2001, 212, 302–307. [Google Scholar] [CrossRef]
- De Francesco, M.; Parisi, G.; Pérez-Sanchez, J.; Gomez-Réqueni, P.; Médale, F.; Kaushik, S.J.; Poli, B.M. Effect of high-level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality traits. Aquac. Nutr. 2007, 13, 361–372. [Google Scholar] [CrossRef]
- Rabie, M.; Simon-Sarkadi, L.; Siliha, H.; El-seedy, S.; El Badawy, A.A. Changes in free amino acids and biogenic amines of Egyptian salted-fermented fish (Feseekh) during ripening and storage. Food Chem. 2009, 115, 635–638. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, M.; Jin, Y.; Deng, S.; Tao, N.; Qiu, W. Simultaneous detection and analysis of free amino acids and glutathione in different shrimp. Foods 2022, 11, 2599. [Google Scholar] [CrossRef]
- Jiang, W.D.; Wu, P.; Tang, R.J.; Liu, Y.; Kuang, S.Y.; Jiang, J.; Feng, L. Nutritive values, flavor amino acids, healthcare fatty acids and flesh quality improved by manganese referring to up-regulating the antioxidant capacity and signaling molecules TOR and Nrf2 in the muscle of fish. Food Res. Int. 2016, 89, 670–678. [Google Scholar] [CrossRef]
- Risso, S.J.; Carelli, A.A. Nutrient composition of raw and cooked meat of male southern king crab (Lithodes santolla Molina, 1782). J. Aquat. Food Prod. Technol. 2012, 21, 433–444. [Google Scholar] [CrossRef]
- Ahmed, J.; Habeebullah, S.F.K.; Alagarsamy, S.; Mulla, M.Z.; Thomas, L. Impact of high-pressure treatment on amino acid profile, fatty acid compositions, and texture of yellowfin seabream (Acanthopagrus arabicus) filets. Front. Sustain. Food Syst. 2022, 6, 857072. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Chung, W.H.; Howieson, J.; Fotedar, R. A combination of Hermetia illucens reared on fish waste and poultry by-product meal improves sensory and physicochemical quality of farmed Barramundi filets. Front. Nutr. 2022, 8, 788064. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, A.L.; Xian, J.A. Variation of free amino acid and carbohydrate concentrations in white shrimp, Litopenaeus vannamei: Effects of continuous cold stress. Aquaculture 2011, 317, 182–186. [Google Scholar] [CrossRef]
- Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
- Montero, D.; Robaina, L.; Caballero, M.J.; Ginés, R.; Izquierdo, M.S. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture 2005, 248, 121–134. [Google Scholar] [CrossRef]
- Nasopoulou, C.; Nomikos, T.; Demopoulos, C.A.; Zabetakis, I. Comparison of antiatherogenic properties of lipids obtained from wild and cultured sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). Food Chem. 2007, 100, 560–567. [Google Scholar] [CrossRef]
- Poli, B.M.; Parisi, G.; Zampacavallo, G.; Mecatti, M.; Lupi, P.; Gualtieri, M.; Franci, O. Quality outline of European sea bass (Dicentrarchus labrax) reared in Italy: Shelf life, edible yield, nutritional and dietetic traits. Aquaculture 2001, 202, 303–315. [Google Scholar] [CrossRef]
- Siddiqua, K.S.; Khan, M.A. Replacement of fish oil with groundnut oil for developing sustainable feeds for Labeo rohita fingerling. Front. Sustain. Food Syst. 2022, 6, 862054. [Google Scholar] [CrossRef]
- Pérez, J.A.; Rodríguez, C.; Bolaños, A.; Cejas, J.R.; Lorenzo, A. Beef tallow as an alternative to fish oil in diets for gilthead sea bream (Sparus aurata) juveniles: Effects on fish performance, tissue fatty acid composition, health and flesh nutritional value. Eur. J. Lipid Sci. Technol. 2014, 116, 571–583. [Google Scholar] [CrossRef]
Diets: | 25 ECO | 30 ECO | 35 ECO | 30 CO |
---|---|---|---|---|
Ingredients (g kg−1) | ||||
Fishmeal | 250 | 300 | 350 | 300 |
Wheat | - | 22 | 47 | 179 |
Wheat gluten | - | - | - | 122 |
Spelt bran | - | 10 | 20 | - |
Corn | - | 8 | 15 | - |
Soya meal | 586 | 504 | 420 | 218 |
Soybean oil | 55 | 59 | 62 | 72 |
Fish oil | 72 | 67 | 63 | 71 |
Calcium Phosphate | 27 | 20 | 13 | 20 |
Taurine | - | - | - | 5 |
Methionine | - | - | - | 3 |
Vitamins 1 | 10 | 10 | 10 | 10 |
Nutritional composition (% dry matter) | ||||
Dry matter | 92 | 92 | 92 | 92 |
Crude protein | 46.1 | 46.7 | 47.1 | 47.2 |
Crude fat | 17.1 | 17.1 | 16.8 | 15.4 |
Ash | 9.3 | 9.2 | 9.2 | 8.1 |
Gross energy (MJ) | 24.2 | 24.0 | 24.1 | 24.3 |
DIETS | ||||
---|---|---|---|---|
AA | 25 ECO | 30 ECO | 35 ECO | 30 CO |
Essential amino acids (g 100 g−1 wet weight) | ||||
Arginine | 2.74 | 2.57 | 2.7 | 2.58 |
Histidine | 0.90 | 0.94 | 1.00 | 0.74 |
Isoleucine | 1.72 | 1.71 | 1.69 | 1.58 |
Leucine | 2.96 | 2.94 | 2.93 | 2.82 |
Lysine | 2.54 | 2.41 | 2.55 | 2.00 |
Methionine | 0.70 | 0.77 | 0.88 | 1.25 |
Phenylalanine | 1.77 | 1.79 | 1.82 | 1.76 |
Threonine | 1.54 | 1.44 | 1.44 | 1.34 |
Valine | 1.97 | 1.97 | 1.99 | 1.83 |
Non-essential amino acids (g 100 g−1 wet weight) | ||||
Alanine | 1.85 | 1.90 | 1.90 | 1.62 |
Aspartic acid | 4.04 | 3.69 | 3.70 | 2.87 |
Cysteine | 0.41 | 0.38 | 0.51 | 0.36 |
Glutamic acid | 6.22 | 6.13 | 6.06 | 7.86 |
Glycine | 1.90 | 1.91 | 2.10 | 1.79 |
Proline | 1.52 | 1.50 | 1.62 | 2.11 |
Serine | 1.59 | 2.26 | 1.80 | 1.71 |
Tyrosine | 1.19 | 1.30 | 1.29 | 1.18 |
EAAs/NEAAs | 0.90 | 0.87 | 0.90 | 0.83 |
DIETS | ||||
---|---|---|---|---|
FA | 25 ECO | 30 ECO | 35 ECO | 30 CO |
C 12:0 | 0.004 | 0.006 | 0.004 | 0.004 |
C 13:0 | 0.349 | 0.349 | 0.344 | 0.325 |
C 14:0 | 0.244 | 0.245 | 0.249 | 0.239 |
C 15:0 | 0.046 | 0.043 | 0.044 | 0.041 |
C 16:0 | 2.457 | 2.372 | 2.364 | 2.019 |
C 17:0 | 0.068 | 0.066 | 0.067 | 0.063 |
C 18:0 | 0.823 | 0.786 | 0.763 | 0.619 |
C 20:0 | 0.052 | 0.050 | 0.049 | 0.0385 |
C 22:0 | 0.056 | 0.050 | 0.049 | 0.035 |
C 24:0 | 0.031 | 0.032 | 0.032 | 0.023 |
∑ saturated | 4.131 | 4.001 | 3.967 | 3.408 |
C 14:1 | 0.004 | 0.002 | 0.002 | 0.002 |
C 16:1 | 0.281 | 0.280 | 0.286 | 0.277 |
C 17:1 | 0.035 | 0.030 | 0.035 | 0.035 |
C 18:1n-7 | 0.542 | 0.529 | 0.537 | 0.463 |
C 18:1n-9t | 0.018 | 0.017 | 0.017 | 0.016 |
C 18:1n-9c | 3.231 | 3.159 | 3.029 | 2.652 |
C 20:1 | 0.187 | 0.179 | 0.178 | 0.188 |
C 22:1n-9 | 0.038 | 0.034 | 0.037 | 0.036 |
C 24:1 | 0.063 | 0.057 | 0.068 | 0.063 |
∑ monounsaturated | 4.398 | 4.285 | 4.188 | 3.732 |
C 18:2n-6c | 5.425 | 5.359 | 5.034 | 4.212 |
C 18:3n-6 | 0.017 | 0.015 | 0.016 | 0.025 |
C 18:3n-3 | 0.949 | 0.932 | 0.862 | 0.646 |
C 20:2 | 0.114 | 0.112 | 0.118 | 0.112 |
C 20:3n-6 | 0.009 | 0.008 | 0.009 | 0.009 |
C 20:3n-3 | 0.023 | 0.022 | 0.022 | 0.020 |
C 20:4n-6 | 0.087 | 0.085 | 0.087 | 0.086 |
C 22:2 | 0.042 | 0.043 | 0.043 | 0.042 |
C 20:5n-3 EPA | 0.382 | 0.397 | 0.421 | 0.403 |
C 22:4n-6 | 0.063 | 0.060 | 0.070 | 0.064 |
C 22:5n-3 | 0.117 | 0.119 | 0.120 | 0.119 |
C 22:6n-3 DHA | 1.280 | 1.355 | 1.394 | 1.344 |
∑ polyunsaturated | 8.508 | 8.507 | 8.195 | 7.081 |
∑ n-6 | 5.601 | 5.527 | 5.216 | 4.395 |
∑ n-3 | 2.752 | 2.826 | 2.819 | 2.533 |
n-3 HUFAS | 1.779 | 1.871 | 1.936 | 1.867 |
n-3/n-6 | 0.491 | 0.511 | 0.541 | 0.576 |
EPA/DHA | 0.299 | 0.293 | 0.302 | 0.300 |
1. Indicate which of the samples you tasted you would be willing to buy | |||
2. Do you know what an organic food is? | |||
Yes ( ) No ( ) | |||
3. If you answered yes to the previous question, do you believe that organic food is: (check all that apply): | |||
Healthier | ( ) | Higher quality | ( ) |
More nutritious | ( ) | Better texture | ( ) |
Safer | ( ) | More environmentally friendly | ( ) |
Fresher | ( ) | Improves animal welfare | ( ) |
Better taste | ( ) | Better availability | ( ) |
Better price | ( ) | Free of antibiotics | ( ) |
4. If you knew that the samples were organic sea bass, would you be willing to pay more? | |||
yes | ( ) | No | ( ) |
How much more? _______ euros/kg |
25 ECO | 30 ECO | 35 ECO | 30CO | SEM | |
---|---|---|---|---|---|
Initial weight (g) | 40.4 | 38.6 | 40.4 | 40.4 | 0.5 |
Final weight (g) | 306.5 b | 332.8 ab | 318.1 ab | 340.4 a | 7.4 |
Mortality (%) | 3.3 | 3.6 | 3.3 | 3.3 | 1.16 |
SGR (% day−1) 1 | 1.04 b | 1.08 a | 1.05 ab | 1.09 a | 0.01 |
FI (g 100g−1 fish day−1) 2 | 1.35 b | 1.27 a | 1.25 a | 1.19 a | 0.02 |
FCR3 | 1.73 b | 1.59 a | 1.58 a | 1.47 a | 0.03 |
25 ECO | 30 ECO | 35 ECO | 30 CO | SEM | |
---|---|---|---|---|---|
CF (g cm−3) 1 | 1.54 c | 1.44 b | 1.59 c | 1.33 a | 0.03 |
VSI (%) 2 | 13.83 b | 13.33 b | 13.80 b | 11.82 a | 0.44 |
HSI (%) 3 | 1.60 b | 1.56 b | 1.81 b | 2.16 a | 0.09 |
MF (%) 4 | 6.86 b | 6.27 ab | 7.62 b | 5.26 a | 0.45 |
INITIAL | 25 ECO | 30ECO | 35 ECO | 30 CO | SEM | |
---|---|---|---|---|---|---|
MS % | 26.12 | 37.36 | 36.37 | 37.97 | 36.91 | 0.50 |
PB% | 16.12 | 17.29 | 17.23 | 16.99 | 17.45 | 0.24 |
GB% | 4.66 | 16.65 | 15.59 | 17.74 | 15.86 | 0.58 |
CE % | 5.48 | 3.50 | 3.62 | 3.58 | 3.72 | 0.32 |
Energy (kj g−1) | 19.47 | 27.38 | 26.83 | 28.10 | 26.73 | 0.39 |
PPV (%) 1 | 21.89 | 23.42 ab | 22.97 b | 25.34 a | 0.70 | |
PFV (%) 2 | 62.60 b | 63.17 b | 74.23 a | 76.34 a | 3.24 | |
PEV (%) 3 | 26.27 b | 27.23 ab | 30.17 a | 29.24 ab | 1.06 |
25 ECO | 35 ECO | 30 ECO | 30 CO | SEM | |
---|---|---|---|---|---|
EAA (g kg−1 wet weight) | |||||
Arginine | 30.24 | 34.33 | 32.14 | 31.40 | 2.25 |
Histidine | 20.30 | 18.28 | 20.03 | 23.16 | 2.15 |
Isoleucine | 26.79 | 27.34 | 26.57 | 27.93 | 2.42 |
Leucine | 21.86 | 23.19 | 19.98 | 22.31 | 1.82 |
Lysine | 28.82 | 30.13 | 30.31 | 32.78 | 3.80 |
Methionine | 33.18 a | 25.92 b | 25.92 b | 18.20 c | 1.10 |
Phenylalanine | 19.66 | 20.12 | 18.33 | 18.38 | 1.80 |
Threonine | 24.73 | 28.20 | 27.20 | 28.66 | 2.01 |
Valine | 24.63 | 25.06 | 22.10 | 25.02 | 1.83 |
NEAA (g kg−1 wet weight) | |||||
Alanine | 32.37 | 34.62 | 29.04 | 35.67 | 1.78 |
Aspartate | 25.57 | 27.68 | 25.75 | 31.57 | 2.53 |
Cystine | 16.42 | 13.31 | 15.42 | 20.37 | 2.21 |
Glutamine | 25.31 a | 26.34 a | 22.13 ab | 18.76 b | 1.63 |
Glycine | 44.53 | 48.22 | 40.51 | 43.44 | 3.12 |
Proline | 29.16 ab | 31.75 a | 30.20 ab | 21.15 b | 2.78 |
Serine | 26.69 a | 23.99 a | 18.82 b | 22.89 ab | 1.34 |
Tyrosine | 22.10 | 20.56 | 22.48 | 20.98 | 2.68 |
DIETS | 25 ECO | 30 ECO | 35 ECO | 30 CO | SEM |
---|---|---|---|---|---|
Dry matter (%) | 28.2 | 28.11 | 30.68 | 28.88 | 0.93 |
Ash (%) | 6.35 a | 6.07 a | 4.53 b | 5.68 a | 0.36 |
Crude protein (%) | 67.35 | 71.4 | 65.36 | 69.99 | 2.44 |
Ether extract (%) | 27.75 | 24.13 | 32.8 | 27.17 | 2.53 |
DIETS | |||||
---|---|---|---|---|---|
AG | 25 ECO | 30 ECO | 35 ECO | 30 CO | SEM |
C 12:0 | 0.005 | 0.004 | 0.005 | 0.005 | 0.001 |
C 13:0 | 0.804 ab | 0.648 b | 0.877 a | 0.733 ab | 0.062 |
C 14:0 | 0.451 | 0.373 | 0.469 | 0.444 | 0.035 |
C 16:0 | 4.464 ab | 3.642 b | 4.753 a | 4.608 ab | 0.377 |
C 18:0 | 1.357 | 1.124 | 1.395 | 1.349 | 0.106 |
C 20:0 | 0.061 ab | 0.050 b | 0.066 a | 0.060 ab | 0.004 |
C 22:0 | 0.047 a | 0.039 ab | 0.046 a | 0.037 b | 0.003 |
C 24:0 | 0.027 b | 0.025 b | 0.034 a | 0.030 ab | 0.002 |
∑ saturated | 7.401 | 6.051 | 7.831 | 7.433 | 0.602 |
C 14:1 | 0.005 ab | 0.004 b | 0.005 ab | 0.006 a | 0.001 |
C 16:1 | 0.665 ab | 0.514 b | 0.658 ab | 0.690 a | 0.057 |
C 17:1 | 0.084 a | 0.065 b | 0.079 ab | 0.077 ab | 0.006 |
C 18:1n-7 | 1.120 | 0.920 | 1.089 | 0.983 | 0.084 |
C 18:1n-9c | 6.946 ab | 5.547 b | 7.199 a | 6.328 ab | 0.552 |
C 18:1n-9t | 0.062 a | 0.038 b | 0.058 a | 0.041 b | 0.004 |
C 20:1 | 0.582 a | 0.411 b | 0.498 ab | 0.450 ab | 0.053 |
C 24:1 | 0.116 a | 0.097 b | 0.117 a | 1.101 ab | 0.006 |
∑ monounsaturated | 9.673 | 7.674 | 9.788 | 9.749 | 0.768 |
C 18:2n-6c LA | 9.153 a | 7.434 ab | 8.909 a | 6.733 b | 0.620 |
C 18:3n-3 ALA | 1.406 a | 1.125 ab | 1.302 a | 0.914 b | 0.107 |
C 18:3n-6 | 0.082 | 0.065 | 0.076 | 0.08022 | 0.007 |
C 20:2 | 0.422 a | 0.328 b | 0.371 ab | 0.319 b | 0.031 |
C 20:3n-3 | 0.044 | 0.037 | 0.040 | 0.035 | 0.003 |
C 20:3n-6 | 0.019 | 0.018 | 0.020 | 0.018 | 0.002 |
C 20:4n-6 AA | 0.187 a | 0.158 b | 0.189 a | 0.178 ab | 0.009 |
C 20:5n-3 EPA | 0.675 | 0.547 | 0.694 | 0.632 | 0.006 |
C 22:2 | 0.091 | 0.073 | 0.088 | 0.080 | 0.007 |
C 22:4n-6 | 0.106 ab | 0.089 b | 0.115 ab | 0.117 a | 0.009 |
C 22:5n-3 | 0.243 | 0.189 | 0.236 | 0.213 | 0.019 |
C 22:6n-3 DHA | 2.786 | 2.270 | 2.863 | 2.612 | 0.211 |
∑ polyunsaturated | 15.214 | 12.330 | 14.903 | 11.929 | 1.031 |
∑ n-6 | 9.546 | 7.763 | 9.309 | 7.125 | 0.647 |
∑ n-3 | 5.154 | 4.167 | 5.135 | 4.405 | 0.346 |
n-3 HUFAS | 3.704 | 3.006 | 3.793 | 3.457 | 0.235 |
n-3/n-6 | 0.540 | 0.537 | 0.552 | 0.618 | 0.535 |
EPA/DHA | 0.242 | 0.241 | 0.242 | 0.242 | 0.026 |
DIETS | ||||||
---|---|---|---|---|---|---|
Free AA | 25 ECO | 30 ECO | 35 ECO | 30 CO | SEM | |
TAU | Taurine | 338.438 ab | 312.774 b | 370.601 a | 365.088 ab | 17.635 |
GLY | Glycine | 50.661 | 56.558 | 52.336 | 55.888 | 4.568 |
LYS | Lysine | 62.734 ab | 42.609 bc | 67.352 a | 22.186 c | 7.117 |
HIS | Histidine | 20.404 c | 37.763 ab | 24.746 bc | 51.614 a | 4.674 |
ALA | Alanine | 25.704 | 27.038 | 29.008 | 24.753 | 1.739 |
GLU | Glutamic acid | 23.199 | 28.501 | 24.560 | 26.771 | 1.812 |
CYS | Cysteine | 14.869 a | 10.496 b | 10.447 b | 11.893 b | 0.677 |
GLN | Glutamine | 9.141 b | 8.559 b | 19.4 a | 6.841 b | 2.331 |
ORN | Ornithine | 7.207 | 8.251 | 7.813 | 6.561 | 1.301 |
SER | Serine | 7.62 a | 7.505 a | 8.299 a | 5.806 b | 0.565 |
THR | Threonine | 5.39 bc | 7.06 ab | 4.639 c | 7.763 a | 0.657 |
ARG | Arginine | 6.079 b | 6.579 ab | 9.16 a | 3.141 c | 0.914 |
LEU | Leucine | 4.007 ab | 3.089 bc | 4.387 a | 2.692 c | 0.428 |
HXP | Hydroxyproline | 2.512 b | 4.594 a | 3.772 ab | 4.34 a | 0.528 |
PRO | Proline | 2.829 b | 2.579 b | 2.334 b | 6.663 a | 0.694 |
VAL | Valine | 2.769 ab | 2.505 b | 3.298 a | 2.282 b | 0.248 |
ILE | Isoleucine | 2.081 | 2.529 | 2.564 | 3.469 | 0.636 |
MET | Methionine | 2.313 a | 2.03 ab | 2.291 ab | 1.818 b | 0.170 |
CIT | Citrulline | 1.453 | 2.544 | 3.343 | 1.823 | 0.670 |
PHE | Phenylalanine | 2.007 ab | 1.871 b | 2.589 a | 1.551 b | 0.241 |
TYR | Tyrosine | 1.981 ab | 1.904 ab | 2.349 a | 1.781 b | 0.192 |
ASP | Aspartic acid | 0.544 b | 0.871 ab | 0.972 a | 0.759 ab | 0.118 |
TRP | Tryptophan | 0.633 a | 0.263 b | 0.332 ab | 0.152 b | 0.107 |
BAL | β-Alanine | 0.398 a | 0.289 ab | 0.259 b | 0.326 ab | 0.044 |
ANS | Anserine | 0.886 a | 0.218 b | 0.200 b | 0.084 b | 0.120 |
ASP | Asparagine | 0.197 | 0.143 | 0.164 | 0.140 | 0.067 |
INDEX | 25 ECO | 30 ECO | 35 ECO | 30 CO | Reference Level | REFERENCE |
---|---|---|---|---|---|---|
Nutritional Indexes | ||||||
AI | 0.18 | 0.19 | 0.20 | 0.22 | <1 | [11,72,76,89] |
TI | 0.00024 | 0.00029 | 0.00026 | 0.00038 | <1 | [11,72,76,89,90] |
h/H | 4.55 | 4.50 | 4.27 | 3.40 | >1 | [91] |
FLQ | 8.63 | 8.71 | 8.81 | 8.97 | >1 | [92] |
Quality Indexes | ||||||
ω6/ω3 | 1.85 | 1.86 | 1.81 | 1.62 | ≤2 | [92,93] |
PUFA/SFA | 2.06 | 2.04 | 1.90 | 1.60 | >0.4 | [93] |
MUFA/SFA | 1.31 | 1.27 | 1.25 | 1.31 | >0.4 | [93] |
PUFA/MUFA | 1.57 | 1.61 | 1.52 | 1.22 | >0.67 | [94] |
(PUFA + MUFA)/SFA | 3.36 | 3.31 | 3.15 | 2.92 | >0.4 | [93] |
LA/ALA | 6.51 | 6.61 | 6.84 | 7.37 | >6.78–10.05 | [95] |
Sample | Frequency | Sum of Ranges | Ranges Rverage | Groups | |
---|---|---|---|---|---|
25 ECO | 100 | 18,440.500 | 184.405 | A | |
30 CO | 99 | 18,892.500 | 190.833 | A | B |
35 ECO | 100 | 20,635.000 | 206.350 | A | B |
30 ECO | 100 | 21,832.000 | 218.320 | B |
25 ECO | 30 ECO | 35 ECO | 30CO | SEM | |
---|---|---|---|---|---|
Diet Price (EUR kg−1) | 1.69 | 1.66 | 1.62 | 1.29 | |
E.C.R. (EUR kg−1) 1 | 2.94 c | 2.59 b | 2.58 b | 1.91 a | 0.07 |
E.P.I. (EUR kg−1) 2 | 8.05 b | 8.41 a | 8.42 a | 3.58 c | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusiyunca-Phoco, E.R.; Saiz-García, M.; Calanche-Morales, J.B.; Tomás-Vidal, A.; Martínez-Llorens, S.; Jover-Cerdá, M. Effect of Organic Plant Ingredients on the Growth Performance of European Sea Bass (Dicentrarchus labrax): Nutritional Efficiency, Fillet Nutritional Indexes, Purchase Intention, and Economic Analysis. Animals 2025, 15, 2339. https://doi.org/10.3390/ani15162339
Cusiyunca-Phoco ER, Saiz-García M, Calanche-Morales JB, Tomás-Vidal A, Martínez-Llorens S, Jover-Cerdá M. Effect of Organic Plant Ingredients on the Growth Performance of European Sea Bass (Dicentrarchus labrax): Nutritional Efficiency, Fillet Nutritional Indexes, Purchase Intention, and Economic Analysis. Animals. 2025; 15(16):2339. https://doi.org/10.3390/ani15162339
Chicago/Turabian StyleCusiyunca-Phoco, Edilson Ronny, Manuel Saiz-García, Juan Benito Calanche-Morales, Ana Tomás-Vidal, Silvia Martínez-Llorens, and Miguel Jover-Cerdá. 2025. "Effect of Organic Plant Ingredients on the Growth Performance of European Sea Bass (Dicentrarchus labrax): Nutritional Efficiency, Fillet Nutritional Indexes, Purchase Intention, and Economic Analysis" Animals 15, no. 16: 2339. https://doi.org/10.3390/ani15162339
APA StyleCusiyunca-Phoco, E. R., Saiz-García, M., Calanche-Morales, J. B., Tomás-Vidal, A., Martínez-Llorens, S., & Jover-Cerdá, M. (2025). Effect of Organic Plant Ingredients on the Growth Performance of European Sea Bass (Dicentrarchus labrax): Nutritional Efficiency, Fillet Nutritional Indexes, Purchase Intention, and Economic Analysis. Animals, 15(16), 2339. https://doi.org/10.3390/ani15162339