Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = fish carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 950 KB  
Review
Comparative Analysis of the Antioxidant and Anti-Inflammatory Effects of Krill and Fish Oil
by Esra Tansu Sarıyer, Murat Baş and Meral Yüksel
Int. J. Mol. Sci. 2025, 26(15), 7360; https://doi.org/10.3390/ijms26157360 - 30 Jul 2025
Viewed by 1307
Abstract
Krill oil (KO) and fish oil (FO) are rich sources of long-chain polyunsaturated fatty acids, with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) bound to distinct molecular carriers (phospholipids vs. triglycerides). These oils have been the subject of considerable research interest over the [...] Read more.
Krill oil (KO) and fish oil (FO) are rich sources of long-chain polyunsaturated fatty acids, with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) bound to distinct molecular carriers (phospholipids vs. triglycerides). These oils have been the subject of considerable research interest over the past few years owing to their roles extensively studied for their antioxidant and anti-inflammatory properties relevant to disease prevention and therapy in certain diseases. This review aimed to provide a comparative summary of the antioxidant and anti-inflammatory activities of KO and FO, based on their bioactive components, and highlight the similarities and differences in their prospective mechanisms of action. Both oils exert antioxidant and anti-inflammatory activities, aligning with the review focus. The bioactivities of both oils stem from their distinct molecular compositions: KO delivers EPA/DHA via phospholipids, alongside astaxanthin, while FO provides EPA/DHA bound to triglycerides. In some cases, they exhibit similar outcomes, whereas in others, one may be more effective than the other. Further comparative studies examining dose-dependent effects, bioavailability kinetics, and tissue-specific molecular pathways are warranted. Full article
Show Figures

Figure 1

13 pages, 3435 KB  
Article
Transcriptomic Analysis of Tambaqui (Colossoma macropomum) Exposed to Trichlorfon-Induced Toxicity
by Hallana Cristina Menezes da Silva, Igor Kelvyn Cavalcante Lobo, André Gentil da Silva, Ana Lúcia Silva Gomes, Wallice Paxiúba Duncan, Juliana Costa Silva, Fabrício M. Lopes, Roberto Ferreira Artoni and Daniele Aparecida Matoso
Animals 2025, 15(12), 1807; https://doi.org/10.3390/ani15121807 - 19 Jun 2025
Viewed by 426
Abstract
Trichlorfon is an antiparasitic agent widely used to control pests and parasites in farmed fish. Tambaqui (C. macropomum) is the most commercially important characid species farmed in the Amazon region. Trichlorfon exposure is known to cause physiological damage in fish due [...] Read more.
Trichlorfon is an antiparasitic agent widely used to control pests and parasites in farmed fish. Tambaqui (C. macropomum) is the most commercially important characid species farmed in the Amazon region. Trichlorfon exposure is known to cause physiological damage in fish due to its organophosphate nature. In this study, we used RNA-Seq to investigate the hepatic response of tambaqui following exposure to 0.435 mg/L of trichlorfon. The analysis revealed activation of several metabolic pathways, particularly those related to tumor processes, immune responses, and apoptosis. Additionally, we identified upregulation of solute carrier (SLC) genes, which may facilitate trichlorfon entry into hepatocytes. These findings enhance our understanding of fish responses to antiparasitic agents and support further research into the molecular impacts of organophosphate compounds in aquaculture species. Full article
(This article belongs to the Special Issue Ecotoxicology in Aquatic Animals: 2nd Edition)
Show Figures

Graphical abstract

12 pages, 813 KB  
Article
Telomere Length and Genetic Variations in Acquired Pediatric Aplastic Anemia: A Flow-FISH Study in Korean Patients
by Yuna Hong, Jong-Mi Lee, Chaeyeon Lee, Duyeon Na, Jin Jung, Ari Ahn, Jae Won Yoo, Jae Wook Lee, Nack-Gyun Chung, Myungshin Kim and Yonggoo Kim
Diagnostics 2025, 15(7), 931; https://doi.org/10.3390/diagnostics15070931 - 4 Apr 2025
Viewed by 747
Abstract
Background: Aplastic anemia (AA) is a rare bone marrow failure syndrome characterized by notably short telomere length, which is associated with treatment responses. In this study, we measured telomere lengths in Korean pediatric AA patients using flow-fluorescence in situ hybridization (Flow-FISH) and [...] Read more.
Background: Aplastic anemia (AA) is a rare bone marrow failure syndrome characterized by notably short telomere length, which is associated with treatment responses. In this study, we measured telomere lengths in Korean pediatric AA patients using flow-fluorescence in situ hybridization (Flow-FISH) and explored their shortening in relation to disease characteristics, genetic conditions and patient outcomes. Methods: We analyzed peripheral blood samples from 75 AA patients and 101 healthy controls. Telomere lengths were measured using Flow-FISH, and relative telomere length (RTL) and delta RTL assessments were conducted. Genetic evaluations included karyotyping, chromosome breakage tests and clinical exome sequencing (CES) to identify inherited bone marrow failure syndrome (IBMFS)-associated genetic variants. Results: Telomere lengths in AA patients were significantly lower than those of age-adjusted healthy controls. Patients receiving immunosuppressive therapy tended to have long telomeres, as indicated by high delta RTL values. Patients with genetic abnormalities, including karyotype abnormalities (n = 2) and genetic variants (n = 11) such as carrier genes of IBMFS or variants of unclear significance, showed significantly short telomere lengths. Conclusions: This study reinforces the importance of telomere length as a biomarker in acquired AA. Utilizing Flow-FISH, we were able to accurately measure telomere lengths and establish confidence in this method as an appropriate laboratory test. We found significant reduction in telomere lengths in AA patients, and importantly, longer telomeres were correlated with better outcomes in immunosuppressive therapy. Additionally, our genetic analysis underscored the relevance of variants in IBMFS-associated genes to the pathophysiology of short telomeres. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

22 pages, 32561 KB  
Article
Alkali-Induced Hydrolysis Facilitates the Encapsulation of Curcumin by Fish (Cyprinus carpio L.) Scale Gelatin
by Jia Liu, Wan Aida Wan Mustapha, Xiaoping Zhang and Haoxin Li
Foods 2025, 14(7), 1183; https://doi.org/10.3390/foods14071183 - 28 Mar 2025
Cited by 1 | Viewed by 493
Abstract
Curcumin-loaded alkali-induced fish scale gelatin (AFSG) was fabricated to evaluate its efficacy as a potential carrier for hydrophobic nutrients. In this study, the effect of the alkali hydrolysis period on the AFSG hydrolysate structure and corresponding curcumin loading efficiency have been elucidated. Results [...] Read more.
Curcumin-loaded alkali-induced fish scale gelatin (AFSG) was fabricated to evaluate its efficacy as a potential carrier for hydrophobic nutrients. In this study, the effect of the alkali hydrolysis period on the AFSG hydrolysate structure and corresponding curcumin loading efficiency have been elucidated. Results showed that alkali-induced degradation of gelatin yields different polymers with molecular weights (Mw) from 19319 to 3881 Da. Moderate alkali hydrolysis of fish scale gelatin exposes hydrophobic amino acids, enhancing hydrophobic interactions and increasing the proportion of these amino acids. This process also promotes a structural shift, favoring β-sheet formation while reducing α-helix content. Moreover, the curcumin loading efficiency of AFSG (2 h) (10.06 ± 0.27 μg/mL) was significantly higher than that of untreated gelatin (2.16 ± 0.39 μg/mL), while its excessive hydrolysis weakens hydrophobic interactions among hydrophobic amino acids, limiting their binding sites for curcumin. Fluorescence spectroscopy indicated that curcumin-induced fluorescence quenching in AFSG follows a static mechanism. Thus, the above results demonstrated AFSG’s potential as an effective carrier for lipophilic nutrients with high encapsulation efficiency. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

14 pages, 3711 KB  
Article
Carbon Nanotube-Based Drug Delivery System Increases Drug Content and Promotes Immune Response in Mandarin Fish
by Yijun Jia, Zhao Zhao, Leyang Chen, Yongqi Liu and Bin Zhu
Fishes 2025, 10(3), 92; https://doi.org/10.3390/fishes10030092 - 21 Feb 2025
Cited by 1 | Viewed by 620
Abstract
A number of viral diseases have significantly impeded the growth of the aquaculture industry. Antiviral drugs represent an effective means of controlling infection. However, the efficacy of the entire therapeutic process is contingent upon the availability of an efficient delivery system. This study [...] Read more.
A number of viral diseases have significantly impeded the growth of the aquaculture industry. Antiviral drugs represent an effective means of controlling infection. However, the efficacy of the entire therapeutic process is contingent upon the availability of an efficient delivery system. This study selected three common antiviral drugs and constructed corresponding drug delivery systems utilising single-walled carbon nanotubes (SWCNTs) as carriers. The reliability of carbon nanotubes as delivery carriers was evaluated by detecting the therapeutic effect on infectious splenic and renal necrosis virus (ISKNV). The findings demonstrated that SWCNTs can effectively enhance the absorption of the three drugs into the body, prolong their metabolic half-life, and improve the survival rate of fish infected with ISKNV. The Ribavirin-SWCNTs (RBV-SWCNTs) group exhibited the most pronounced protective effect, with a mortality rate of less than 25%. It was observed that SWCNTs facilitated the rapid transportation of ribavirin, with the drug content in the RBV-SWCNTs group being approximately double that of the free ribavirin group. Furthermore, this system markedly diminished the viral load, augmented enzyme activities, and elevated antiviral gene expression. This study indicated that carbon nanotubes are optimal carriers for antiviral drugs, which have considerable potential as a delivery vehicle for antiviral drugs to prevent viral infections in aquaculture. Full article
Show Figures

Figure 1

18 pages, 4799 KB  
Article
Transgenic Schizochytrium as a Promising Oral Vaccine Carrier: Potential Application in the Aquaculture Industry
by Ke Ma, Lei Deng, Yuanjie Wu, Yuan Gao, Jianhua Fan and Haizhen Wu
Mar. Drugs 2024, 22(12), 555; https://doi.org/10.3390/md22120555 - 12 Dec 2024
Cited by 2 | Viewed by 1689
Abstract
Schizochytrium limacinum SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) [...] Read more.
Schizochytrium limacinum SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) of Edwardsiella tarda is a valuable broad-spectrum antigen against various pathogens in aquaculture (e.g., Aeromonas hydrophila, Vibro anguillarum, Vibro harveyi, Vibro alginolyticus). We pioneered the development of stable S. limacinum SR21 transformants expressing the antigen protein FBA, exploring their potential as a novel oral vaccine for the aquaculture industry. The model animal zebrafish (Danio rerio) and ornamental fish koi carp (Cyprinus carpio koi) were harnessed to assess the immunoprotective effect, respectively. According to the quantitative expression analysis, zebrafish fed with recombinant Schizochytrium expressing FBA exhibited specific immune responses in the intestine. The expression levels of MHC-I and MHC-II, involved in cell-mediated adaptive immune responses, were significantly upregulated on the 14th and 28th days post-immunization. Additionally, the expression of highly specialized antibody genes IgZ1 and IgZ2 in mucosal immunity were significantly triggered on the 14th day post-immunization. Feeding koi carp with recombinant S. limacinum SR21-FBA increased the production of myeloperoxidase and FBA-specific antibodies in the sera. Furthermore, the sera of koi fed with recombinant S. limacinum SR21-FBA exhibited significant bactericidal activities against pathogen E. tarda. Thus, S. limacinum SR21 is a natural and highly promising oral vaccine carrier that not only provides essential nutrients as a functional feed ingredient but also offers specific immune protection to aquatic animals. This dual application is vital for promoting the sustainable development of the aquaculture industry. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

16 pages, 3208 KB  
Article
OCTN1 (SLC22A4) as a Target of Heavy Metals: Its Possible Role in Microplastic Threats
by Luana S. Brunetti, Mariafrancesca Scalise, Raffaella Scanga, Lara Console, Michele Galluccio, Mauro F. La Russa, Lorena Pochini and Cesare Indiveri
Int. J. Mol. Sci. 2024, 25(23), 13218; https://doi.org/10.3390/ijms252313218 - 9 Dec 2024
Cited by 1 | Viewed by 1561
Abstract
Microplastics represent a threat due to their ability to enter the food chain, with harmful consequences for living organisms. The riskiness of these particles is also linked to the release of other contaminants, such as heavy metals. Solute Carriers (SLCs) represent eminent examples [...] Read more.
Microplastics represent a threat due to their ability to enter the food chain, with harmful consequences for living organisms. The riskiness of these particles is also linked to the release of other contaminants, such as heavy metals. Solute Carriers (SLCs) represent eminent examples of first-level targets of heavy metals due to their localization on the cell surface. Putative targets of heavy metals are the organic cation transporters that form a sub-clade of the SLC22 family. Besides the physiological role in the absorption/release of endogenous organic cations, these transporters are crucial in drug disposition and their interaction with xenobiotics. In this work, the human SLC22A4, commonly known as OCTN1, was used as a benchmark to test interactions with heavy metals released by microplastics, exploiting the proteoliposome tool. The potency of metals to interfere with the OCTN1 function has been evaluated by measuring IC50 values calculated in the micromolar range. The molecular mechanism of interaction has been defined using site-directed mutagenesis and computational analyses. Finally, some chemical and physiological thiol-reacting compounds show the capacity to rescue the metal-inhibited OCTN1 function. The conclusions drawn on OCTN1 can be extended to other members of the SLC22 family and orthologous transporters in fish. Full article
(This article belongs to the Special Issue Transport of Nutrients and Ions Relevant to Human Pathophysiology)
Show Figures

Figure 1

12 pages, 2210 KB  
Article
Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications
by Daniela Koeller R. Vieira, Ingrid Bendas Feres Lima, Carla Rosenberg, Carlos Roberto da Fonseca, Leonardo Henrique Ferreira Gomes, Letícia da Cunha Guida, Patrícia Camacho Mazzonetto, Juan Llerena and Elenice Ferreira Bastos
Genes 2024, 15(12), 1546; https://doi.org/10.3390/genes15121546 - 29 Nov 2024
Viewed by 1787
Abstract
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births. While most carriers are phenotypically normal, they are at risk of generating unbalanced gametes during meiosis, leading to genetic anomalies such as aneuploidies, deletions, duplications, and gene disruptions. These anomalies [...] Read more.
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births. While most carriers are phenotypically normal, they are at risk of generating unbalanced gametes during meiosis, leading to genetic anomalies such as aneuploidies, deletions, duplications, and gene disruptions. These anomalies can result in spontaneous abortions or congenital anomalies, including neurodevelopmental disorders. Complex chromosomal rearrangements (CCRs) involving more than two chromosomes are rare but further increase the probability of producing unbalanced gametes. Neurodevelopmental disorders such as Angelman syndrome (AS) and duplication 15q11q13 syndrome (Dup15q) are associated with such chromosomal abnormalities. Methods: This study describes a family with a de novo maternal balanced double translocation involving chromosomes 13, 19, and 15, resulting in two offspring with unbalanced chromosomal abnormalities. Cytogenetic evaluations were performed using GTG banding, fluorescence in situ hybridization (FISH), and low-pass whole-genome sequencing (LP-WGS). Methylation analysis was conducted using methylation-sensitive high-resolution melting (MS-HRM) to diagnose Angelman syndrome. Results: The cytogenetic and molecular analyses identified an 8.9 Mb duplication in 15q11.2q13.3 in one child, and an 8.9 Mb deletion in the same region in the second child. Both abnormalities affected critical neurodevelopmental genes, such as SNRPN. FISH and MS-HRM confirmed the chromosomal imbalances and the diagnosis of Angelman syndrome in the second child. The maternal balanced translocation was found to be cryptic, contributing to the complex inheritance pattern. Conclusion: This case highlights the importance of using multiple genetic platforms to uncover complex chromosomal rearrangements and their impact on neurodevelopmental disorders. The findings underscore the need for thorough genetic counseling, especially in families with such rare chromosomal alterations, to manage reproductive outcomes and neurodevelopmental risks. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

9 pages, 1312 KB  
Case Report
Inherited Unbalanced Reciprocal Translocation with 18p11.32p11.21 Tetrasomy and 9q34.3 Trisomy in a Fetus Revealed by Cell-Free Fetal DNA (cffDNA) Testing: Cytogenetic and Cytogenomic Characterization in Prenatal Diagnosis
by Carmela Ardisia, Luigia De Falco, Giovanni Savarese, Raffaella Ruggiero, Teresa Suero, Nadia Petrillo, Monica Ianniello, Roberto Sirica, Alessio Mori, Davide Cino, Maria Barbato, Giuseppina Vitiello and Antonio Fico
Genes 2024, 15(11), 1464; https://doi.org/10.3390/genes15111464 - 13 Nov 2024
Viewed by 1587
Abstract
Background/Objective: Balanced reciprocal translocations are structural chromosomal anomalies that involve a mutual exchange of segments between two non-homologous chromosomes with a consequent 50–80% risk of conceiving fetuses with unbalanced chromosomal anomalies. This study describes a 37-year-old woman, at 13 + 5 weeks of [...] Read more.
Background/Objective: Balanced reciprocal translocations are structural chromosomal anomalies that involve a mutual exchange of segments between two non-homologous chromosomes with a consequent 50–80% risk of conceiving fetuses with unbalanced chromosomal anomalies. This study describes a 37-year-old woman, at 13 + 5 weeks of gestation, who is a balanced reciprocal translocation 46,XX,t(9;18)(q34;q11.2) carrier, with a high-risk non-invasive prenatal screening test, NIPT, for chromosome 18 aneuploidy. Methods: The highlighted aneuploidy was characterized with cytogenetic, FISH and SNP-array techniques. Results: Cytogenetic analysis, performed on flask-cultured amniocytes, indicated a 48,XX,+2mar karyotype on 50 metaphases. SNP array analysis showed a 15.3 Mb duplication of chromosome 18p (arr[hg19]18p11.32-p11.21(12,842-15,303,932)x4), consistent with a partial tetrasomy 18p, and a 926 kbp duplication of chromosome 9q (arr[GRCh37]9q34.3(140,118,286-141,044,489)x3), consistent with partial trisomy 9q. FISH analysis with a 9q34.3 probe was performed on flask-cultured amniocytes’ metaphases, highlighting the presence of a third signal on one of the two marker chromosomes (18p11.32-p11.21). Conclusions: The evidence of such partial aneuploidies suggests that different mutational events may be possible at meiotic segregation or probably post-meiotic segregation. The results obtained highlight the high sensitivity of the screening test, NIPT, with massive parallel sequencing, and the usefulness of cytogenetics, cytogenomics and molecular biology techniques, in synergy, to characterize and confirm positive NIPT results. Full article
(This article belongs to the Section Technologies and Resources for Genetics)
Show Figures

Figure 1

17 pages, 653 KB  
Article
Investigation of Carriers of Salmonella and Other Hydrogen Sulphide-Positive Bacteria in the Digestive Content of Fish from the Atlantic Area of Macaronesia: A Comparative Study of Identification by API Gallery and MALDI-TOF MS
by Inmaculada Rosario Medina, Marco Antonio Suárez Benítez, María del Mar Ojeda-Vargas, Kiara Gallo, Daniel Padilla Castillo, Miguel Batista-Arteaga, Soraya Déniz Suárez, Esther Licia Díaz Rodríguez and Begoña Acosta-Hernández
Animals 2024, 14(22), 3247; https://doi.org/10.3390/ani14223247 - 12 Nov 2024
Viewed by 1774
Abstract
Salmonella spp. are known pathogens in fish, with their presence potentially resulting from the contamination of the aquatic environment or improper handling. Accurate bacterial identification is crucial across various fields, including medicine, microbiology, and the food industry, and thus a range of techniques [...] Read more.
Salmonella spp. are known pathogens in fish, with their presence potentially resulting from the contamination of the aquatic environment or improper handling. Accurate bacterial identification is crucial across various fields, including medicine, microbiology, and the food industry, and thus a range of techniques are available for this purpose. In this study, Salmonella spp. and other hydrogen sulphide-positive bacteria were investigated in the digestive contents of fish destined for consumption from the Atlantic area of Macaronesia. Two identification techniques were compared: the traditional API method and the MALDI-TOF MS technique. For the identification of Salmonella spp. carriers, 59 samples were processed following ISO 6579–1:2017. A total of 47 strains of Gram-negative bacilli were obtained. No Salmonella spp. isolates were detected. The most frequent genus was Enterobacter (76.50%), followed by Shewanella (10.63%). The MALDI-TOF MS technique showed a high concordance with the API technique, with 72.34% concordance at the species level. Both techniques demonstrated a high degree of concordance in the identification of Enterobacter cloacae, with 87.23% genus-level concordance and 12.76% non-concordant identifications. This study highlights the limitations of the API technique and the speed and precision of MALDI-TOF MS. The identified bacteria could pose a health risk to humans. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 3100 KB  
Article
Environmental Drivers of the Divergence of Harveyi Clade Pathogens with Distinctive Virulence Gene Profiles
by Andrei L. Barkovskii and Cameron Brown
Microorganisms 2024, 12(11), 2234; https://doi.org/10.3390/microorganisms12112234 - 5 Nov 2024
Cited by 1 | Viewed by 1117
Abstract
Fish and shellfish pathogens of the Harveyi clade of the Vibrio genus cause significant losses to aquaculture yields and profits, with some of them also causing infections in humans. The present study aimed to evaluate the presence of Harveyi clade fish and shellfish [...] Read more.
Fish and shellfish pathogens of the Harveyi clade of the Vibrio genus cause significant losses to aquaculture yields and profits, with some of them also causing infections in humans. The present study aimed to evaluate the presence of Harveyi clade fish and shellfish pathogens and their possible diversification in response to environmental drivers in southeastern USA waters. The presence and abundance of potential pathogens were evaluated via the detection and quantitation of six Harveyi-clade-specific virulence genes (toxR, luxR, srp, vhha, vhh, and vhp; VGs) in environmental DNA with clade-specific primers. The environmental DNA was obtained from water and sediments collected from three Georgia (USA) cultured clam and wild oyster grounds. In sediments, the VG concentrations were, on average, three orders of magnitude higher than those in water. The most and least frequently detected VGs were vhp and toxR, respectively. In water, the VGs split into two groups based on their seasonal trends. The first group, composed of luxR, vhp, vhha, and vhh, peaked in August and remained at lower concentrations throughout the duration of the study. The second group, composed of toxR and srp, peaked in June and disappeared between July and December. The first group revealed a high adaptation of their carriers to an increase in temperature, tolerance to a wide range of pH, and a positive correlation with salinity up to 25 ppt. The second group of VGs demonstrated a lower adaptation of their carriers to temperature and negative correlations with pH, salinity, potential water density, conductivity, and dissolved solids but a positive correlation with turbidity. No such trends were observed in sediments. These data reveal the role of VGs in the adaptability of the Harveyi clade pathogens to environmental parameters, causing their diversification and possibly their stratification into different ecological niches due to changes in water temperature, acidity, salinity, and turbidity. This diversification and stratification may lead to further speciation and the emergence of new pathogens of this clade. Our data urge further monitoring of the presence and diversification of Harveyi clade pathogens in a global warming scenario. Full article
Show Figures

Figure 1

15 pages, 4012 KB  
Article
Exploring the Safety of the Sustainable Toxicity Testing in Zebrafish and Brine Shrimp Using Nanoemulsions Formulated from Fish Byproducts and Lemon Oil
by Amira Ayman Hendawy, Amal A. M. Elgharbawy, Najihah Mohd Noor, Nurhidayu Al-Saari, Nor Azrini Nadiha Azmi and Hamzah Mohd Salleh
Colloids Interfaces 2024, 8(6), 59; https://doi.org/10.3390/colloids8060059 - 29 Oct 2024
Viewed by 2335
Abstract
Nanoemulsions, characterized by their nanosized particles ranging from 20 to 200 nm, are effective carriers for drug molecules. Our novel oil-in-water nanoemulsion, NE-FLO™, formulated from lemon and fish byproduct oils, demonstrates promising antioxidant and anti-inflammatory activities, with initial studies indicating nontoxicity to normal [...] Read more.
Nanoemulsions, characterized by their nanosized particles ranging from 20 to 200 nm, are effective carriers for drug molecules. Our novel oil-in-water nanoemulsion, NE-FLO™, formulated from lemon and fish byproduct oils, demonstrates promising antioxidant and anti-inflammatory activities, with initial studies indicating nontoxicity to normal skin cells. This study investigated the safety of NE-FLO™ using brine shrimp (Artemia salina) and zebrafish (Danio rerio) models, focusing on concentration-dependent effects and LC50 values. At lower concentrations (0.1 mg·L−1, 0.01 mg·L−1, and 0.001 mg·L−1), NE-FLO™ showed minimal toxicity without adverse effects. However, at 1 mg·L−1, reduced survival rates indicate potential toxicity. Specifically, this concentration also induces altered swimming behaviors in zebrafish. LC50 values are 8.7474 mg·L−1 for brine shrimp and 0.316 mg·L−1 for adult zebrafish. These results underscore the necessity for further detailed investigations into NE-FLO™, balancing its therapeutic benefits with potential toxicity risks. This study emphasizes the importance of optimizing nanoemulsion formulations from fish oil and conducting comprehensive safety assessments to meet regulatory standards. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

15 pages, 7085 KB  
Article
The GSTP1 rs1695 Polymorphism Is Associated with Mercury Levels and Neurodevelopmental Delay in Indigenous Munduruku Children from the Brazilian Amazon
by Mayara Calixto da Silva, Paulo Cesar Basta, Cristina Barroso Hofer, Mirian Akiko Furutani de Oliveira, Joeseph William Kempton, Rogério Adas Ayres de Oliveira, Ana Claudia Santiago de Vasconcellos and Jamila Alessandra Perini
Toxics 2024, 12(6), 441; https://doi.org/10.3390/toxics12060441 - 19 Jun 2024
Cited by 3 | Viewed by 1991
Abstract
Genetic polymorphisms may influence mercury (Hg) toxicity. The aims of this study were to evaluate individual factors, such as the presence of the GSTP1 rs1695 polymorphism, associated with internal Hg dose and child neurodevelopment in indigenous people from the Brazilian Amazon chronically exposed [...] Read more.
Genetic polymorphisms may influence mercury (Hg) toxicity. The aims of this study were to evaluate individual factors, such as the presence of the GSTP1 rs1695 polymorphism, associated with internal Hg dose and child neurodevelopment in indigenous people from the Brazilian Amazon chronically exposed to Hg. Eighty-two indigenous children were clinically evaluated, hair Hg was measured, and the GSTP1 rs1695 polymorphism was genotyped. The mean age was 4.8 years, the median Hg was 5.5 µg/g, and 93.8% of children exceeded the safe limit (2.0 µg/g). Fish consumption was associated with Hg levels (p = 0.03). The GSTP1 rs1695 A>G polymorphism was in the Hardy–Weinberg equilibrium and the highest prevalence of the GSTP1 AA genotype (80%) was found in Sawré Aboy, which had the highest Hg levels (10 µg/g) among the studied villages. The Hg levels tended to increase over the years in males and in carriers of the GSTP1 AA genotype (0.69 µg/g and 0.86 µg/g, respectively). Nine children failed the neurodevelopmental test, all of whom had Hg > 2.0 µg/g, and 88.9% carried the GSTP1 AA or AG genotypes, previously associated with the highest internal Hg doses and neurocognitive disorders. The genetic counseling of this population is important to identify the individuals at greater risk for neurodevelopmental disorders resulting from chronic Hg exposure. Full article
Show Figures

Figure 1

15 pages, 4505 KB  
Article
Using Magnetic Molecularly Imprinted Polymer Technology for Determination of Fish Serum Glucose Levels
by Boxuan Yao, Long Gu, Li Huang, Ruichun Li, Ze Fan, Zhongxiang Chen, Dongli Qin and Lei Gao
Polymers 2024, 16(11), 1538; https://doi.org/10.3390/polym16111538 - 29 May 2024
Cited by 5 | Viewed by 1397
Abstract
In this study, a highly efficient magnetic molecularly imprinted polymer nanocomposite material was prepared using multi-walled carbon nanotubes as carriers. The characterization of the obtained nanocomposite material was conducted using Fourier transform infrared spectroscopy, a vibrating sample magnetometer, a thermogravimetric analyzer, a scanning [...] Read more.
In this study, a highly efficient magnetic molecularly imprinted polymer nanocomposite material was prepared using multi-walled carbon nanotubes as carriers. The characterization of the obtained nanocomposite material was conducted using Fourier transform infrared spectroscopy, a vibrating sample magnetometer, a thermogravimetric analyzer, a scanning electron microscope, and a transmission electron microscope. The adsorption properties of the nanocomposite material were evaluated through adsorption experiments, including static adsorption, dynamic adsorption, and selective recognition studies. The prepared nanocomposite material, serving as a selective adsorbent, was applied in magnetic solid-phase extraction. Subsequently, the derivatized samples were analyzed for glucose in fish serum using liquid chromatography–tandem mass spectrometry. Under optimal conditions, the detection limit was 0.30 ng/mL, the quantitation limit was 0.99 ng/mL, satisfactory spiked recovery rates were obtained, and the relative standard deviation was less than 1.1%. Using 2-deoxy-D-ribose as the template molecule and a structural analog of glucose allowed us to eliminate the potential template leakage in qualitative and quantitative analyses, effectively avoiding the issues of false positives and potential quantitative errors, compared to traditional methods. A method for detecting glucose levels in fish serum based on molecularly imprinted polymer technology has been successfully developed to determine the stress and health levels of fish. Full article
(This article belongs to the Special Issue Advance in Molecularly Imprinted Polymers II)
Show Figures

Figure 1

28 pages, 7486 KB  
Review
Nylons with Applications in Energy Generators, 3D Printing and Biomedicine
by Matteo Arioli, Jordi Puiggalí and Lourdes Franco
Molecules 2024, 29(11), 2443; https://doi.org/10.3390/molecules29112443 - 22 May 2024
Cited by 7 | Viewed by 3609
Abstract
Linear polyamides, known as nylons, are a class of synthetic polymers with a wide range of applications due to their outstanding properties, such as chemical and thermal resistance or mechanical strength. These polymers have been used in various fields: from common and domestic [...] Read more.
Linear polyamides, known as nylons, are a class of synthetic polymers with a wide range of applications due to their outstanding properties, such as chemical and thermal resistance or mechanical strength. These polymers have been used in various fields: from common and domestic applications, such as socks and fishing nets, to industrial gears or water purification membranes. By their durability, flexibility and wear resistance, nylons are now being used in addictive manufacturing technology as a good material choice to produce sophisticated devices with precise and complex geometric shapes. Furthermore, the emergence of triboelectric nanogenerators and the development of biomaterials have highlighted the versatility and utility of these materials. Due to their ability to enhance triboelectric performance and the range of applications, nylons show a potential use as tribo-positive materials. Because of the easy control of their shape, they can be subsequently integrated into nanogenerators. The use of nylons has also extended into the field of biomaterials, where their biocompatibility, mechanical strength and versatility have paved the way for groundbreaking advances in medical devices as dental implants, catheters and non-absorbable surgical sutures. By means of 3D bioprinting, nylons have been used to develop scaffolds, joint implants and drug carriers with tailored properties for various biomedical applications. The present paper aims to collect evidence of these recently specific applications of nylons by reviewing the literature produced in recent decades, with a special focus on the newer technologies in the field of energy harvesting and biomedicine. Full article
Show Figures

Graphical abstract

Back to TopTop