Alkali-Induced Hydrolysis Facilitates the Encapsulation of Curcumin by Fish (Cyprinus carpio L.) Scale Gelatin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Alkali-Induced Fish Scale Gelatin (AFSG) and Curcumin-Loaded Nanoparticles (CL-AFSG)
2.3. Determination of Mw Among AFSGs
2.4. Amino Acids Analysis of AFSGs
2.5. Circular Dichroism Spectroscopy (CD) Analysis
2.6. Surface Hydrophobicity (H0)
2.7. Measurement of the Intermolecular Interactions
2.8. AFM Determination
2.9. Characterization of AFSG with or Without the Loading of Curcumin
2.9.1. Fourier Transform Infrared Spectroscopy (FT-IR)
2.9.2. X-Ray Diffraction
2.9.3. TEM Observation
2.9.4. Particle Size, ζ-Potential, and Polydispersity Index (PDI) Measurements
2.10. Fluorescence Spectroscopy
2.11. Confocal Laser Scanning Microscopy (CLSM)
2.12. Statistical Analysis
3. Results
3.1. Effect of Molecular Weight (Mw) and Degree of Alkali Hydrolysis on the CLE (Curcumin Loading Efficiency, µg/mL) of AFSG
3.2. Effect of Alkali Hydrolysis on Amino Acid Content of AFSG
3.3. Effect of Alkali Hydrolysis on Surface Hydrophobicity and Secondary Structure Composition of AFSG
3.4. Effect of Alkali Hydrolysis on Intermolecular Interaction of AFSG
3.5. AFM Observation
3.6. SEC Profiles
3.7. Self-Assembly Behavior of FSG and AFSG with or Without Loading Curcumin
3.8. Interaction Between Curcumin and AFSG
3.8.1. FTIR Analysis
3.8.2. XRD Analysis
3.8.3. Fluorescence Spectrum Analysis
3.8.4. CLSM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Mol. Targets Ther. Uses Curcumin Health Dis. 2007, 595, 1–75. [Google Scholar]
- Jibrin, A.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E.; Umar, A.B. In-silico profiling, design, molecular docking computation, and drug kinetic model evaluation of novel curcumin derivatives as potential anticancer agents. J. Indian Chem. Soc. 2023, 100, 100979. [Google Scholar]
- Munawaroh, H.S.H.; Pratiwi, R.N.; Gumilar, G.G.; Aisyah, S.; Rohilah, S.; Nurjanah, A.; Show, P.L. Nanoemulsion curcumin injection showed significant anti-inflammatory activities on carrageenan-induced paw edema in Sprague-Dawley rats. Heliyon 2023, 9, 15457. [Google Scholar]
- Ji, F.; Xu, J.; Liu, H.; Shao, D.; Wang, C.; Zhao, Y.; Zheng, Z. Improved water solubility, antioxidant, and sustained-release properties of curcumin through the complexation with soy protein fibrils. LWT Food Sci. Technol. 2023, 180, 114723. [Google Scholar]
- Sahu, A.; Kasoju, N.; Goswami, P.; Bora, U. Encapsulation of Curcumin in Pluronic Block Copolymer Micelles for Drug Delivery Applications. J. Biomater. Appl. 2010, 25, 619–639. [Google Scholar]
- Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, 15, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, X.; Tang, W.; Wan, C.; Lu, Y.; Dong, N.; Chen, Z.; Lei, Z.; Ren, T.; Wang, Z.; et al. Characterization of food gels prepared from the water extract of fish (Cyprinus carpio L.) scales: From molecular components to sensory attributes. Food Hydrocoll. 2021, 112, 106263. [Google Scholar] [CrossRef]
- Yuan, D.; Zhou, F.; Shen, P.; Zhang, Y.; Lin, L.; Zhao, M. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-Driven Encapsulation and Delivery of Hydrophobic Cargo Curcumin. Food Hydrocoll. 2021, 120, 106759. [Google Scholar]
- Prathyusha, E.; Prabakaran, A.; Ahmed, H.; Dethe, M.R.; Agrawal, M.; Gangipangi, V.; Alexander, A. Investigation of ROS generating capacity of curcumin-loaded liposomes and its in vitro cytotoxicity on MCF-7 cell lines using photodynamic therapy. Photodiagn. Photodyn. Ther. 2022, 40, 103091. [Google Scholar]
- Liang, S.; Du, J.; Hong, Y.; Cheng, L.; Gu, Z.; Li, Z.; Li, C. Octenyl succinate anhydride debranched starch-based nanocarriers for curcumin with improved stability and antioxidant activity. Food Hydrocoll. 2023, 135, 108118. [Google Scholar]
- Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int. J. Pharm. 2002, 244, 127–135. [Google Scholar] [PubMed]
- Huang, T.; Tu, Z.C.; Shangguan, X.; Wang, H.; Sha, X.; Bansal, N. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chem. 2018, 246, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar]
- Yu, X.; Li, H.; Wan, A.W.M.; Ren, T.; Lei, Z.; Liu, J. Curcumin-Loaded Self-Assembly Constructed by Octenylsuccinate Fish (Cyprinus carpio L.) Scale Gelatin: Preparation and Characterization. Foods 2022, 11, 2911. [Google Scholar] [CrossRef]
- Gomes, S.R.; Rodrigues, G.; Martins, G.G.; Henriques, C.M.R.; Silva, J.C. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Mater. Sci. Eng. C 2013, 33, 1219–1227. [Google Scholar]
- Munawaroh, H.S.H.; Pratiwi, R.N.; Gumilar, G.G.; Aisyah, S.; Rohilah, S.; Nurjanah, A.; Ningrum, A.; Susanto, E.; Pratiwi, A.; Arindita, N.P.Y.; et al. Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. Int. J. Biol. Macromol. 2023, 231, 123248. [Google Scholar]
- Hu, Z.Z.; Sha, X.M.; Huang, T.; Zhang, L.; Wang, G.Y.; Tu, Z.C. Microbial transglutaminase (MTGase) modified fish gelatin-γ-polyglutamic acid (γ-PGA): Rheological behavior, gelling properties, and structure. Food Chem. 2021, 348, 129093. [Google Scholar]
- Chen, H.; Wu, D.; Ma, W.; Wu, C.; Liu, J.; Du, M. Strong fish gelatin hydrogels double crosslinked by transglutaminase and carrageenan. Food Chem. 2022, 376, 131873. [Google Scholar]
- Sow, L.C.; Nicole Chong, J.M.; Liao, Q.X.; Yang, H. Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. J. Food Eng. 2018, 239, 92–103. [Google Scholar]
- Lin, D.; Xiao, L.; Qin, W.; Loy, D.A.; Wu, Z.; Chen, H.; Zhang, Q. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 2022, 281, 119080. [Google Scholar]
- Liu, J.; Li, J.; Ma, Y.; Chen, F.; Zhao, G. Synthesis, Characterization, and Aqueous Self-Assembly of Octenylsuccinate Oat β-Glucan. J. Agric. Food Chem. 2013, 61, 12683–12691. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, A.; Biliaderis, C.G.; Izydorczyk, M.S. Molecular size effects on rheological properties of oat β-glucans in solution and gels. Food Hydrocoll. 2003, 17, 693–712. [Google Scholar]
- Gómez-Guillén, M.C.; Borderías, A.J.; Montero, P. Chemical Interactions of Nonmuscle Proteins in the Network of Sardine (Sardina pilchardus) Muscle Gels. LWT Food Sci. Technol. 1997, 30, 602–608. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Regenstein, J.M.; Rouse, D.B. Nanostructural characterization of catfish skin gelatin using atomic force microscopy. J. Food Sci. 2007, 72, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Sun, C.; Li, R.; Mao, L.; Liu, F.; Gao, Y. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 2017, 237, 1163–1171. [Google Scholar] [CrossRef]
- Poungchawanwong, S.; Klaypradit, W.; Li, Q.; Wang, J.; Hou, H. Interaction effect of phenolic compounds on Alaska Pollock skin gelatin and associated changes. LWT Food Sci. Technol. 2020, 133, 110018. [Google Scholar]
- Lakowicz, J.R.; Masters, B.R. Principles of Fluorescence Spectroscopy, Third Edition. J. Biomed. Opt. 2008, 13, 029901. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Weber, G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 1973, 12, 4171–4179. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.-c.; Shangguan, X.; Sha, X.; Wang, H.; Zhang, L.; Bansal, N. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 260–269. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 2017, 217, 678–686. [Google Scholar] [CrossRef]
- Yang, J.; Shen, M.; Luo, Y.; Wu, T.; Wen, H.; Xie, J. Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree. Carbohydr. Polym. 2021, 257, 117608. [Google Scholar] [CrossRef] [PubMed]
- Pelton, J.T.; McLean, L.R. Spectroscopic Methods for Analysis of Protein Secondary Structure. Anal. Biochem. 2000, 277, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Gopal, R.; Park, J.S.; Seo, C.H.; Park, Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int. J. Mol. Sci. 2012, 13, 3229–3244. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, Z.-P.; Yang, Y.-H.; Yang, R.; Yang, T.-D.; Lai, P.-L.; Chen, T.-L.; Qiu, S.-L.; Wang, S.-Y.; Liao, L. Improved stabilization of coix seed oil in a nanocage-coating framework based on gliadin-carboxymethyl chitosan-Ca2+. Carbohydr. Polym. 2021, 257, 117557. [Google Scholar] [PubMed]
- Liu, H.; Zhang, H.; Liu, Q.; Chen, Q.; Kong, B. Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound. Ultrason. Sonochem. 2020, 67, 105160. [Google Scholar]
- Lin, S.; Cai, X.; Chen, H.; Xu, Y.; Wu, J.; Wang, S. Development of fish gelatin-chitooligosaccharide conjugates through the Maillard reaction for the encapsulation of curcumin. Curr. Res. Food Sci. 2022, 5, 1625–1639. [Google Scholar]
- Zhang, R.; Li, L.; Ma, C.; Ettoumi, F.-E.; Javed, M.; Lin, X.; Shao, X.; Xiao, G.; Luo, Z. Shape-controlled fabrication of zein and peach gum polysaccharide based complex nanoparticles by anti-solvent precipitation for curcumin-loaded Pickering emulsion stabilization. Sustain. Chem. Pharm. 2022, 25, 100565. [Google Scholar]
- Feng, X.; Dai, H.; Yu, Y.; Wei, Y.; Tan, H.; Tang, M.; Ma, L.; Zhang, Y. Adjusting the interfacial property and emulsifying property of cellulose nanofibrils by ultrasonic treatment combined with gelatin addition. Food Hydrocoll. 2022, 133, 107905. [Google Scholar]
- Yang, J.; Lin, J.; Chen, X.; Rong, L.; Shen, M.; Wang, Y.; Xie, J. Mesona chinensis polysaccharide/zein nanoparticles to improve the bioaccesibility and in vitro bioactivities of curcumin. Carbohydr. Polym. 2022, 295, 119875. [Google Scholar]
- Uriarte-Montoya, M.H.; Santacruz-Ortega, H.; Cinco-Moroyoqui, F.J.; Rouzaud-Sández, O.; Plascencia-Jatomea, M.; Ezquerra-Brauer, J.M. Giant squid skin gelatin: Chemical composition and biophysical characterization. Food Res. Int. 2011, 44, 3243–3249. [Google Scholar]
- Liu, J.; Li, H.; Wan Mustapha, W.A.; Zhang, X. Ultrasound-assisted alkaline hydrolysis of fish (Cyprinus carpio L.) scale gelatin: A possible curcumin delivery system with increased water solubility and sustained release. LWT-Food Sci. Technol. 2024, 191, 115589. [Google Scholar]
- Li, H.; Mustapha, W.A.W.; Liu, J.; Zhang, X. Self-assembled nanoparticles of acid-induced fish (Cyprinus carpio L.) scale gelatin: Structure, physicochemical properties, and application for loading curcumin. Food Chem. X 2024, 21, 101230. [Google Scholar] [PubMed]
- Liang, H.; Zhou, B.; He, L.; An, Y.; Lin, L.; Li, Y.; Liu, S.; Chen, Y.; Li, B. Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Adv. 2015, 5, 13891–13900. [Google Scholar]
- Acharya, D.P.; Sanguansri, L.; Augustin, M.A. Binding of resveratrol with sodium caseinate in aqueous solutions. Food Chem 2013, 141, 1050–1054. [Google Scholar]
- Ehteshami, M.; Rasoulzadeh, F.; Mahboob, S.; Rashidi, M.-R. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin. J. Lumin. 2013, 135, 164–169. [Google Scholar]
- Kühn, J.; Zhu, X.Q.; Considine, T.; Singh, H. Binding of 2-nonanone and milk proteins in aqueous model systems. J. Agric. Food Chem. 2007, 55, 3599–3604. [Google Scholar]
Amino Acids | Content/(mg/g) | ||
---|---|---|---|
FSG | AFSG2h | AFSG8h | |
Aspartic acid (Asp) | 45.55 ± 0.13 b | 37.24 ± 0.05 a | 35.44 ± 0.07 a |
Threonine (Thr) | 21.91 ± 0.07 b | 18.38 ± 0.04 a | 17.06 ± 0.06 a |
Serine (Ser) | 28.22 ± 0.05 b | 23.49 ± 0.12 a | 26.19 ± 0.24 a b |
Glutamic acid (Glu) | 61.06 ± 0.24 c | 49.72 ± 0.23 a | 53.62 ± 0.46 b |
Glycine (Gly) | 84.91 ± 0.32 b | 74.29 ± 0.17 a | 72.54 ± 0.22 a |
Alanine (Ala) | 54.97 ± 0.09 b | 56.83 ± 0.07 a | 55.93 ± 0.19 a |
Cystine (Cys) | 2.16 ± 0.01 b | 2.62 ± 0.12 b | 1.59 ± 0.45 a |
Valine (Val) | 15.62 ± 0.06 b | 16.63 ± 0.25 a | 16.25 ± 0.13 a |
Methionine (Met) | 20.16 ± 0.05 a | 21.19 ± 0.12 a | 20.38 ± 0.37 a |
Isoleucine (Ile) | 24.64 ± 0.03 a | 26.39 ± 0.13 a | 25.85 ± 0.27 a |
leucine (Leu) | 33.75 ± 0.16 a | 33.98 ± 0.24 a | 32.64 ± 0.13 a |
Tyrosine (Tyr) | 6.54 ± 0.07 a | 6.31 ± 0.14 a | 6.09 ± 0.21 a |
Phenylalanine (Phe) | 15.44 ± 0.03 a | 16.98 ± 0.26 a | 17.26 ± 0.53 a |
Histidine (His) | 7.99 ± 0.09 a | 7.43 ± 0.14 a | 7.13 ± 0.23 a |
Lysine (Lys) | 28.89 ± 0.14 c | 26.83 ± 0.25 b | 23.53 ± 0.39 a |
Arginine (Arg) | 43.26 ± 0.23 c | 36.68 ± 0.15 a | 39.93 ± 0.36 b |
Proline (Pro) | 29.15 ± 0.74 a | 34.02 ± 0.67 c | 32.12 ± 0.38 b |
total hydrophobic amino acids (HAA) * | 215.63 ± 2.16 c | 206.03 ± 2.33 b | 200.43 ± 2.12 a |
total amino acids (AA) | 524.21 ± 2.39 c | 489.02 ± 1.83 b | 483.55 ± 2.46 a |
ratio of HAA to AA% | 41.13 ± 1.84 a | 42.13 ± 2.43 b | 41.45 ± 1.95 a |
Sample | KSV × 105 (L·mol−1) | kq × 1013 (L·mol−1·s−1) | Ka (L·mol−1) | n |
---|---|---|---|---|
FSG | 6.49 | 6.49 | 104 | 0.83 |
AFSG2h | 8.14 | 8.14 | 107 | 1.21 |
AFSG8h | 6.65 | 6.65 | 105 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Mustapha, W.A.W.; Zhang, X.; Li, H. Alkali-Induced Hydrolysis Facilitates the Encapsulation of Curcumin by Fish (Cyprinus carpio L.) Scale Gelatin. Foods 2025, 14, 1183. https://doi.org/10.3390/foods14071183
Liu J, Mustapha WAW, Zhang X, Li H. Alkali-Induced Hydrolysis Facilitates the Encapsulation of Curcumin by Fish (Cyprinus carpio L.) Scale Gelatin. Foods. 2025; 14(7):1183. https://doi.org/10.3390/foods14071183
Chicago/Turabian StyleLiu, Jia, Wan Aida Wan Mustapha, Xiaoping Zhang, and Haoxin Li. 2025. "Alkali-Induced Hydrolysis Facilitates the Encapsulation of Curcumin by Fish (Cyprinus carpio L.) Scale Gelatin" Foods 14, no. 7: 1183. https://doi.org/10.3390/foods14071183
APA StyleLiu, J., Mustapha, W. A. W., Zhang, X., & Li, H. (2025). Alkali-Induced Hydrolysis Facilitates the Encapsulation of Curcumin by Fish (Cyprinus carpio L.) Scale Gelatin. Foods, 14(7), 1183. https://doi.org/10.3390/foods14071183