Using Magnetic Molecularly Imprinted Polymer Technology for Determination of Fish Serum Glucose Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Standard Solutions
2.3. Preparation of Adsorbent Material
2.4. Characterization of Adsorbent Materials
2.5. Derivatization and Instrument Method Development
2.6. Experimental Binding Assays
2.7. Application of Fish Serum Samples
3. Results and Discussion
3.1. Mechanism of Polymerization Reaction
3.2. Characterization of Adsorption Materials
3.3. Adsorption Performance of Adsorption Materials
3.3.1. Adsorption Isotherms
3.3.2. Adsorption Kinetics
3.3.3. Adsorption Selectivity
3.4. Sample Pretreatment Condition Optimization
3.4.1. Adsorbent Mass
3.4.2. Oscillation Time
3.4.3. Oscillation Rate
3.4.4. Elution Solvent
3.4.5. Reusability
3.5. Method Validation
3.6. Method Comparison
3.7. Application on Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John, S.A.; Ottolia, M.; Weiss, J.N.; Ribalet, B. Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. Pflug. Arch.-Eur. J. Physiol. 2008, 456, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Carballo, M.; Jiménez, J.A.; de la Torre, A.; Roset, J.; Muñoz, M.J. A survey of potential stressor-induced physiological changes in carp (Cyprinus carpio) and barbel (Barbus bocagei) along the Tajo River. Environ. Toxicol. 2005, 20, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Soyseven, M.; Sezgin, B.; Arli, G. A novel, rapid and robust HPLC-ELSD method for simultaneous determination of fructose, glucose and sucrose in various food samples: Method development and validation. J. Food Compos. Anal. 2022, 107, 104400. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Z.; Chen, C.; Zhang, L.; Zhu, S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Estevinho, B.N.; Ferraz, A.; Rocha, F.; Alves, A.; Santos, L. Interference of chitosan in glucose analysis by high-performance liquid chromatography with evaporative light scattering detection. Anal. Bioanal. Chem. 2008, 391, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh Zare, S.; Farhadi, K.; Amiri, S. Rapid detection of apple juice concentrate adulteration with date concentrate, fructose and glucose syrup using HPLC-RID incorporated with chemometric tools. Food Chem. 2022, 370, 131015. [Google Scholar] [CrossRef]
- Bilskey, S.R.; Olendorff, S.A.; Chmielewska, K.; Tucker, K.R. A comparative analysis of methods for quantitation of sugars during the corn-to-ethanol fermentation process. SLAS Technol. 2020, 25, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Choung, M.-G. Determination of soluble carbohydrates in soybean seeds. Korean J. Crop Sci. 2005, 50, 319–324. [Google Scholar]
- Makaras, T.; Razumienė, J.; Gurevičienė, V.; Šakinytė, I.; Stankevičiūtė, M.; Kazlauskienė, N. A new approach of stress evaluation in fish using β-d-Glucose measurement in fish holding-water. Ecol. Indic. 2020, 109, 105829. [Google Scholar] [CrossRef]
- Ma, S.; Yuan, X.; Yin, X.; Yang, Y.; Ren, L. A silver nanowire aerogel for non-enzymatic glucose detection. Microchem. J. 2023, 195, 109324. [Google Scholar] [CrossRef]
- Wu, C.; Kersten, B.; Chen, Q.; Li, J.; Jagasia, P. QC test for noninvasive glucose monitoring system. Electroanalysis 2001, 13, 117–122. [Google Scholar] [CrossRef]
- Qu, M.; Ma, S.; Huang, Y.; Yuan, H.; Zhang, S.; Ouyang, G.; Zhao, Y. LC-MS/MS-based non-isotopically paired labeling (NIPL) strategy for the qualification and quantification of monosaccharides. Talanta 2021, 231, 122336. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Li, H.; Zhao, L.; Ma, Y.; Zhang, Y.; Liu, J.; Wei, Y. Rigorous recognition mode analysis of molecularly imprinted polymers—Rational design, challenges, and opportunities. Prog. Polym. Sci. 2024, 150, 101790. [Google Scholar] [CrossRef]
- Sobiech, M.; Luliński, P. Molecularly imprinted solid phase extraction—Recent strategies, future prospects and forthcoming challenges in complex sample pretreatment process. TrAC Trends Anal. Chem. 2024, 174, 117695. [Google Scholar] [CrossRef]
- Mabrouk, M.; Hammad, S.F.; Abdella, A.A.; Mansour, F.R. Tips and tricks for successful preparation of molecularly imprinted polymers for analytical applications: A critical review. Microchem. J. 2023, 193, 109152. [Google Scholar] [CrossRef]
- Basak, S.; Venkatram, R.; Singhal, R.S. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022, 139, 109074. [Google Scholar] [CrossRef]
- Hu, T.L.; Chen, R.; Wang, Q.; He, C.Y.; Liu, S.R. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis. J. Sep. Sci. 2021, 44, 274–309. [Google Scholar] [CrossRef]
- Zhi, K.K.; Zhang, M.; Yang, X.; Zhao, H.T.; Dong, A.J.; Zhang, H.; Wang, J. Preparation and adsorption properties of glucose molecularly imprinted polymers in hydrous solution for effective determination of glucose in fruits by MISPE-HPLC. J. Iran. Chem. Soc. 2017, 14, 2087–2096. [Google Scholar] [CrossRef]
- Patila, M.; Chalmpes, N.; Dounousi, E.; Stamatis, H.; Gournis, D. Use of functionalized carbon nanotubes for the development of robust nanobiocatalysts. Methods Enzymol. 2020, 630, 263–301. [Google Scholar]
- Lin, X.P.; Wang, X.Q.; Wang, J.; Yuan, Y.W.; Di, S.S.; Wang, Z.W.; Xu, H.; Zhao, H.Y.; Zhao, C.S.; Ding, W.; et al. Magnetic covalent organic framework as a solid-phase extraction absorbent for sensitive determination of trace organophosphorus pesticides in fatty milk. J. Chromatogr. A 2020, 1627, 461387. [Google Scholar] [CrossRef]
- Yang, J.Y.; Wang, Y.B.; Pan, M.F.; Xie, X.Q.; Liu, K.X.; Hong, L.P.; Wang, S. Synthesis of magnetic metal-organic frame material and it`s application in food sample preparation. Foods 2020, 9, 1610. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gao, J.; Li, X.X.; Li, Y.J.; He, X.W.; Chen, L.X.; Zhang, Y.K. Preparation of magnetic molecularly imprinted polymers functionalized carbon nanotubes for highly selective removal of aristolochic acid. J. Chromatogr. A 2019, 1602, 168–177. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Chen, F.; Zheng, F. Comparison of determination of sugar-PMP derivatives by two different stationary phases and two HPLC detectors: C18 vs. amide columns and DAD vs. ELSD. J. Food Compos. Anal. 2021, 96, 103715. [Google Scholar] [CrossRef]
- Serafim, J.A.; Silveira, R.F.; Vicente, E.F. Fast determination of short-chain fatty acids and glucose simultaneously by ultraviolet/visible and refraction index detectors via high-performance liquid chromatography. Food Anal. Methods 2021, 14, 1387–1393. [Google Scholar] [CrossRef]
- Deng, J.; Wen, X.; Wang, Q. Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity. Mater. Res. Bull. 2012, 47, 3369–3376. [Google Scholar] [CrossRef]
- Hwang, C.C.; Lee, W.C. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods. J. Chromatogr. A 2002, 962, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Zhang, Z.H.; Xiao, H.M.; Chen, S.; Fu, J.L. An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of p-nitroaniline. RSC Adv. 2019, 9, 41383–41391. [Google Scholar] [CrossRef]
- Dowlut, M.; Hall, D.G. An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc. 2006, 128, 4226–4227. [Google Scholar] [CrossRef]
- Liu, H.C.; Chen, W. Magnetic mesoporous imprinted adsorbent based on Fe3O4 modified sepiolite for organic micropollutant removal from aqueous solution. RSC Adv. 2015, 5, 27034–27042. [Google Scholar] [CrossRef]
- Zhi, K.K.; Dong, A.J.; Yang, X.; Zhao, Q.Y.; Zhao, H.T.; Zhang, H.; Wang, J.; Xu, P.F. Preparation and adsorption properties study of glucose magnetic molecularly imprinted polymers with dual functional monomers. Acta Chim. Sin. 2016, 74, 199–207. [Google Scholar] [CrossRef]
- Tang, Y.; Meng, H.; Wang, W.; Song, Y.; Wang, S.; Li, Z.; Wang, X.; Hu, X. Off-line magnetic Fe3O4@SiO2@MIPs-based solid phase dispersion extraction coupling with HPLC for the simultaneous determination of olaquindox and its metabolite in fish muscle and milk samples. Food Chem. X 2023, 17, 100611. [Google Scholar] [CrossRef]
- Ni, R.; Wang, Y.Z.; Wei, X.X.; Chen, J.; Meng, J.J.; Xu, F.T.; Liu, Z.W.; Zhou, Y.G. Magnetic carbon nanotube modified with polymeric deep eutectic solvent for the solid phase extraction of bovine serum albumin. Talanta 2020, 206, 120215. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, X.; Zhao, H.; Dong, A.; Wang, J.; Zhang, M.; Huang, W. Water-compatible surface imprinting of ‘Saccharin sodium’ on silica surface for selective recognition and detection in aqueous solution. Talanta 2015, 144, 717–725. [Google Scholar] [CrossRef]
- Gao, L.; Qin, D.L.; Chen, Z.X.; Bai, S.Y.; Du, N.N.; Li, C.H.; Hao, Q.R.; Wang, P. Selective magnetic solid-phase extraction of amide herbicides from fish samples coupled with ultra-high-performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2022, 45, 896–907. [Google Scholar] [CrossRef]
- Qin, D.; Wang, J.; Ge, C.; Lian, Z. Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles. Microchim. Acta 2019, 186, 428. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, J.; Liu, H.; Kuang, L.; Xu, G. Synthesis and characterization of magnetic molecularly imprinted polymers for effective extraction and determination of kaempferol from apple samples. J. Chromatogr. A 2020, 1630, 461531. [Google Scholar] [CrossRef]
- Zeng, S.L.; Li, C.H.; Huang, L.; Chen, Z.X.; Wang, P.; Qin, D.L.; Gao, L. Carbon nanotube-supported dummy template molecularly imprinted polymers for selective adsorption of amide herbicides in aquatic products. Nanomaterials 2023, 13, 1521. [Google Scholar] [CrossRef]
- Woźnica, M.; Sobiech, M.; Luliński, P. A fusion of molecular imprinting technology and siloxane chemistry: A way to advanced hybrid nanomaterials. Nanomaterials 2023, 13, 248. [Google Scholar] [CrossRef]
- Li, W.X.; Chen, N.; Zhu, Y.; Shou, D.; Zhi, M.Y.; Zeng, X.Q. A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs. Microchim. Acta 2019, 186, 76. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S. Experimental and theoretical study of a new plant derived surfactant adsorption on quartz surface: Kinetic and isotherm methods. J. Dispers. Sci. Technol. 2015, 36, 441–452. [Google Scholar] [CrossRef]
- Durán-Alvarez, J.C.; Rodríguez-Varela, M.; Verdeja-Muñoz, E.J.; Córdova-Aguilar, M.S. Determination of the monosaccharide composition in mucilage of Opuntia ficus indica by HPLC-ESI-MS-validation of the sample preparation and the analytical method. J. Food Meas. Charact. 2021, 15, 4233–4244. [Google Scholar] [CrossRef]
- He, J.; Xiao, G.; Chen, X.D.; Qiao, Y.; Xu, D.; Lu, Z.S. A thermoresponsive microfluidic system integrating a shape memory polymer-modified textile and a paper-based colorimetric sensor for the detection of glucose in human sweat. RSC Adv. 2019, 9, 23957–23963. [Google Scholar] [CrossRef]
- Li, L.Z.; Huang, T.Z.; He, S.J.; Liu, X.; Chen, Q.; Chen, J.; Cao, H.M. Waste eggshell membrane-templated synthesis of functional Cu2+-Cu+/biochar for an ultrasensitive electrochemical enzyme-free glucose sensor. RSC Adv. 2021, 11, 18994–18999. [Google Scholar] [CrossRef]
- Gupta, J.; Arya, S.; Verma, S.; Singh, A.; Sharma, A.; Singh, B.; Prerna; Sharma, R. Performance of template-assisted electrodeposited copper/cobalt bilayered nanowires as an efficient glucose and uric acid senor. Mater. Chem. Phys. 2019, 238, 121969. [Google Scholar] [CrossRef]
- Romeo, A.; Moya, A.; Leung, T.S.; Gabriel, G.; Villa, R.; Sánchez, S. Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis. Appl. Mater. Today 2018, 10, 133–141. [Google Scholar] [CrossRef]
- GB5009. 8−2023; Determination of Fructose, Glucose, Sucrose, Maltose and Lactose in Food of National Standard for Food Safety. National Health Commission of the People’s Republic of China, State Administration for Market Regulation: Beijing, China, 2023.
Concentration of Samples (μg/mL) | Spiked Concentration (μg/mL) | Detection of Average Results ± SD (μg/mL) | RSD (%) | Recovery (%) |
---|---|---|---|---|
750.00 | 10 | 757.76 ± 8.20 | 1.1 | 99.70 |
100 | 870.51 ± 8.86 | 1.0 | 102.41 | |
1000 | 1629.16 ± 8.19 | 0.5 | 93.09 |
Matrix | Method of Purification | Determination | LOD | LOQ | Recovery (%) | RSD (%) | References |
---|---|---|---|---|---|---|---|
Mucilage of Opuntia ficus indica cladodes | Filtration–Purification | HPLC-MS/MS | 500 ng/mL | 5000 ng/mL | 96.30–118.10 | 4.66 | [41] |
Various fruit | Glu–MIPs | MISPE-HPLC | 2.0 × 106 ng/g | 6.6 × 106 ng/g | 93.95–109.12 | 0.89–4.80 | [18] |
Fruit, honey and jam | Filtration–Purification | HPLC-ELSD | 160 ng/mL | 490 ng/mL | 102.28 | 0.27 | [3] |
Jujube | Filtration–Purification–Derivatization | HPLC-DAD | 2 × 107 ng/g | 4 × 107 ng/g | 105.07 | 3.35 | [23] |
Human sweat | Dilution | colorimetric sensor (paper-based) | 2428 ng/mL | - | 76.72–108.87 | 0.7–3.4 | [42] |
Human serum | Dilution | glucose sensor (electrochemical enzyme-free) | 187.2 ng/mL | - | 99.38–102.16 | 0.78–1.77 | [43] |
Sugarcane juice | Dilution | glucose sensor (Copper/Cobalt bilayered nanowires) | 9.8 ng/mL | 29.6 ng/mL | - | less than 3.3 | [44] |
Tear fluid | Filtration–Purification | glucose sensor (inkjet-printed flexible non-enzymatic) | 538.2 ng/mL | - | 92.8 | 5.9–9.8 | [45] |
Serum of fish | MMIPs | HPLC-MS/MS | 0.30 ng/mL | 0.99 ng/mL | 93.09–102.41 | 0.5–1.1 | This method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, B.; Gu, L.; Huang, L.; Li, R.; Fan, Z.; Chen, Z.; Qin, D.; Gao, L. Using Magnetic Molecularly Imprinted Polymer Technology for Determination of Fish Serum Glucose Levels. Polymers 2024, 16, 1538. https://doi.org/10.3390/polym16111538
Yao B, Gu L, Huang L, Li R, Fan Z, Chen Z, Qin D, Gao L. Using Magnetic Molecularly Imprinted Polymer Technology for Determination of Fish Serum Glucose Levels. Polymers. 2024; 16(11):1538. https://doi.org/10.3390/polym16111538
Chicago/Turabian StyleYao, Boxuan, Long Gu, Li Huang, Ruichun Li, Ze Fan, Zhongxiang Chen, Dongli Qin, and Lei Gao. 2024. "Using Magnetic Molecularly Imprinted Polymer Technology for Determination of Fish Serum Glucose Levels" Polymers 16, no. 11: 1538. https://doi.org/10.3390/polym16111538
APA StyleYao, B., Gu, L., Huang, L., Li, R., Fan, Z., Chen, Z., Qin, D., & Gao, L. (2024). Using Magnetic Molecularly Imprinted Polymer Technology for Determination of Fish Serum Glucose Levels. Polymers, 16(11), 1538. https://doi.org/10.3390/polym16111538