Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = fireworks emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2182 KB  
Article
Optimal Scheduling of Hydro–Thermal–Wind–Solar–Pumped Storage Multi-Energy Complementary Systems Under Carbon-Emission Constraints: A Coordinated Model and SVBABC Algorithm
by Youping Li, Xiaojun Hua, Lei Wang, Rui Lv, Changhao Ouyang, Fangqing Zhang and Fang Yuan
Electronics 2025, 14(24), 4896; https://doi.org/10.3390/electronics14244896 - 12 Dec 2025
Viewed by 268
Abstract
This paper focuses on power system scheduling problems, aiming to enhance energy utilization efficiency through multi-energy complementarity. To support the “dual-carbon” strategic goals, this paper proposes a coordinated dispatch model for hydro–thermal–wind–solar–pumped storage integrated energy systems, aiming to enhance energy utilization efficiency and [...] Read more.
This paper focuses on power system scheduling problems, aiming to enhance energy utilization efficiency through multi-energy complementarity. To support the “dual-carbon” strategic goals, this paper proposes a coordinated dispatch model for hydro–thermal–wind–solar–pumped storage integrated energy systems, aiming to enhance energy utilization efficiency and system flexibility while reducing carbon emissions. To address issues such as premature convergence and low computational efficiency in traditional optimization algorithms for multi-energy complementary dispatch, an improved Artificial Bee Colony algorithm named Super-quality Variation Burst Artificial Bee Colony (SVBABC) is developed, which incorporates elite solution guidance and an explosion variation mechanism. Simulation results based on a regional practical power system demonstrate that compared to classical methods (e.g., Artificial Bee Colony, Fireworks Algorithm, and Ant Lion Optimizer), SVBABC exhibits significant advantages in global optimization capability and convergence stability. This study provides an innovative solution for efficient dispatch of multi-energy complementary systems. Through synergistic regulation of pumped storage and thermal power, the accommodation capability of renewable energy is effectively enhanced, thereby providing critical technical support for the development of new power systems. Full article
Show Figures

Figure 1

22 pages, 8151 KB  
Article
Source Identification of PM2.5 and Organic Carbon During Various Haze Episodes in a Typical Industrial City by Integrating with High-Temporal-Resolution Online Measurements of Organic Molecular Tracers
by Nan Chen, Yufei Du, Yangjun Wang, Yanan Yi, Chaiwat Wilasang, Jialiang Feng, Kun Zhang, Kasemsan Manomaiphiboon, Ling Huang, Xudong Yang and Li Li
Sustainability 2025, 17(23), 10587; https://doi.org/10.3390/su172310587 - 26 Nov 2025
Viewed by 524
Abstract
Achieving sustainable air quality improvements in rapidly industrializing regions requires a clear understanding of the emission sources that drive the formation of PM2.5 pollution. This study identified the sources of PM2.5 and its organic carbon (OC) in Zibo, a typical industrial [...] Read more.
Achieving sustainable air quality improvements in rapidly industrializing regions requires a clear understanding of the emission sources that drive the formation of PM2.5 pollution. This study identified the sources of PM2.5 and its organic carbon (OC) in Zibo, a typical industrial city in Northern China Plain, using the Positive Matrix Factorization (PMF) model during five pollution episodes (P1–P5) from 26 November 2022 to 9 February 2023. A high-temporal-resolution online observation of 61 organic molecular tracers was conducted using an Aerodyne TAG stand-alone system combined with a gas chromatograph–mass spectrometer (TAG-GC/MS) system. The results indicate that during pollution episodes, PM2.5 was contributed by 32.4% from coal combustion and 27.1% from inorganic secondary sources. Moreover, fireworks contributed 13.1% of PM2.5, primarily due to the extensive fireworks during the Gregorian and Lunar New Year celebrations. Similarly, coal combustion was the largest contributor to OC, followed by mobile sources and secondary organic aerosol (SOA) sources, accounting for 16.2% and 15.3%, respectively. Although fireworks contributed significantly to PM2.5 concentrations (31.6% in P4 of 20–24 January 2023), their impact on OC was negligible. Overall, a combination of local and regional industrial combustion emissions, mobile sources, extensive residential heating during cold weather, and unfavorable meteorological conditions led to elevated secondary aerosol concentrations and the occurrence of this haze episode. The high-temporal-resolution measurements obtained using the TAG-GC/MS system, which provided more information on source-indicating organic molecules (tracers), significantly enhanced the source apportionment capability of PM2.5 and OC. The findings provide science-based evidence for designing more sustainable emission control strategies, highlighting that the coordinated management of coal combustion, mobile emissions, and wintertime heating is essential for long-term air quality and public health benefits. Full article
Show Figures

Figure 1

18 pages, 6043 KB  
Article
Increased PM2.5 Caused by Enhanced Fireworks Burning and Secondary Aerosols in a Forested City of North China During the 2023–2025 Spring Festivals
by Qingxia Ma, Guoqing Zhao, Kaixin Cheng, Yunfei Wu, Renjian Zhang, Lei Gu, Jing Xue, Wanfu Feng, Jiliang Zhou, Xinzhi Shen and Dexin Liu
Toxics 2025, 13(12), 1009; https://doi.org/10.3390/toxics13121009 - 21 Nov 2025
Viewed by 1622
Abstract
Fireworks burning (FB) constitutes a major but short-lived source of PM2.5 during the Chinese Spring Festival, significantly deteriorating air quality in certain regions. This study was conducted to evaluate its impact through real-time monitoring of PM2.5 chemical compositions in a forestry [...] Read more.
Fireworks burning (FB) constitutes a major but short-lived source of PM2.5 during the Chinese Spring Festival, significantly deteriorating air quality in certain regions. This study was conducted to evaluate its impact through real-time monitoring of PM2.5 chemical compositions in a forestry city (Xinyang) during the pre-fireworks and fireworks periods at the Spring Festival of 2023–2025. During the fireworks period, PM2.5 concentrations increased by 10.5–226.4% compared to pre-fireworks levels, of which the concentrations of secondary inorganic aerosols (SIA), K and Cl rose by 1.6–4.8, 1.9–14.7 and 1.5–8.1 times, and they accounted for 33.2–47.7%, 6.7–12.5% and 3.8–6.4% of PM2.5, respectively. Correspondingly, PM2.5/CO and SIA/CO ratios in 2023–2025 elevated by factors of 1.4–2.3 and 1.1–3.4, indicating distinct enhancements in secondary inorganic aerosols formation. Additionally, acidity of PM2.5, RH and Ox also increased during fireworks. Collectively, higher sulfur and nitrogen oxidation ratios (SOR and NOR) during the fireworks period under the combined effects of high RH, Ox and acidity conditions indicated a greater conversion of secondary inorganic aerosols. Positive Matrix Factorization (PMF) analysis confirmed that FB and secondary aerosols (SA) source levels during fireworks increased by 2.5–19.3 and 1.9–4.4 times compared to pre-fireworks values. This study underscores the need for implementing stringent management of fireworks and secondary formation mitigation to reduce PM2.5 concentrations during the Spring Festival. Full article
Show Figures

Figure 1

17 pages, 3579 KB  
Article
Source Apportionment of PM2.5 in a Chinese Megacity During Special Periods: Unveiling Impacts of COVID-19 and Spring Festival
by Kejin Tang, Xing Peng, Yuqi Liu, Sizhe Liu, Shihai Tang, Jiang Wu, Shaoxia Wang, Tingting Xie and Tingting Yao
Atmosphere 2025, 16(8), 908; https://doi.org/10.3390/atmos16080908 - 26 Jul 2025
Viewed by 1025
Abstract
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the [...] Read more.
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the long-term impact of coronavirus disease 2019 and the short-term impact of the Spring Festival on PM2.5 levels. The measured average PM2.5 concentration during the research period was 22.5 μg/m3, with organic matter (OM) being the dominant component. Vehicle emissions, secondary sulfate, secondary nitrate, and secondary organic aerosol were identified by receptor model as the primary sources of PM2.5 during the observational periods. The pandemic led to a decrease of between 30% and 50% in the contributions of most anthropogenic sources in 2022 compared to 2021, followed by a rebound. PM2.5 levels in January–March 2024 dropped by 1.4 μg/m3 compared to 2021, mainly due to reduced vehicle emissions, secondary sulfate, fugitive dust, biomass burning, and industrial emissions, reflecting Shenzhen’s and nearby cities’ effective control measures. However, secondary nitrate and fireworks-related emissions rose significantly. During the Spring Festival, PM2.5 concentrations were 23% lower than before the festival, but the contributions of fireworks burning exhibited a marked increase in both 2023 and 2024. Specifically, during intense peak events, fireworks burning triggered sharp, short-term spikes in characteristic metal concentrations, accounting for over 50% of PM2.5 on those peak days. In the future, strict control over vehicle emissions and enhanced management of fireworks burning during special periods like the Spring Festival are necessary to reduce PM2.5 concentration and improve air quality. Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Show Figures

Figure 1

24 pages, 26319 KB  
Article
Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem
by Rene Parra
Atmosphere 2025, 16(5), 495; https://doi.org/10.3390/atmos16050495 - 25 Apr 2025
Cited by 3 | Viewed by 2185
Abstract
PM2.5 levels increase in cities during the first hours of the year due to combustion activities and the use of fireworks. In Quito (2800 masl), the capital of Ecuador, air quality records at the beginning of 2020 to 2025 (6 years) ranged [...] Read more.
PM2.5 levels increase in cities during the first hours of the year due to combustion activities and the use of fireworks. In Quito (2800 masl), the capital of Ecuador, air quality records at the beginning of 2020 to 2025 (6 years) ranged between 13.4 and 217.8 µg m−3 (maximum mean levels for 24 h), most of them being higher than 15.0 µg m−3, the current recommended concentration by the World Health Organization (WHO), highlighting the need to decrease these emissions and promote actions to reduce the exposure to these extreme events. Air pollution forecasting as a preventive warning system could help achieve this objective. Therefore, the primary aim of this research was to analyze the variation in PM2.5 levels in this city during the initial hours of the year to define, through numerical experiments, the spatiotemporal configuration of PM2.5 emissions to reproduce the observed PM2.5 levels and obtain insights to build an emission-based forecasting tool. For this purpose, we modeled atmospheric variables and the PM2.5 levels using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Consistent with the behavior suggested by records of associated meteorological variables, the modeled planetary boundary layer height (PBLH) was generally lower in the city’s south compared with the center and the north. The records and modeled results indicated that in the south, the higher PM2.5 levels were produced by higher emissions and lower values of the PBLH compared with the center and north, highlighting the importance of reducing the PM2.5 emissions. The emission maps used for modeling the dispersion at the beginning of 2024 and 2025 are proposed as inputs for the future forecasting of the PM2.5 levels at the start of the year, as preventive information for the public, to discourage, in advance, both combustion activities and the use of fireworks and to take action to avoid exposure. Full article
Show Figures

Figure 1

23 pages, 7934 KB  
Article
Investigation of Airborne Particulate Matter from a Holiday Celebration in Central Oklahoma Using an Unmanned Aerial Vehicle (UAV)
by John-Thomas Murray, Mark Lohatepanont, Fernando Sisniega Serrano, Diego Perez Avendano and Wilson Merchan-Merchan
Appl. Sci. 2025, 15(6), 3151; https://doi.org/10.3390/app15063151 - 14 Mar 2025
Cited by 1 | Viewed by 1623
Abstract
Herein, a recently developed UAV/Drone approach as a new vector for the collection of airborne particulate matter is reported. In this study, airborne particle emissions from plumes generated in a holiday fireworks display were collected. A platform fabricated using a 3D printer was [...] Read more.
Herein, a recently developed UAV/Drone approach as a new vector for the collection of airborne particulate matter is reported. In this study, airborne particle emissions from plumes generated in a holiday fireworks display were collected. A platform fabricated using a 3D printer was mounted on the drone, which allowed for particulate capture using double-sided carbon tape attached to aluminum disks. The drone platform was used to trap airborne samples from two types of plumes: high-altitude sampling (HAS), which relates to professional fireworks, and low-altitude sampling (LAS), associated with personal fireworks. Collected samples were studied using a Scanning Electron Microscope alongside Electron Dispersal X-ray Spectroscopy (EDX) for elemental composition analysis. The overall findings regarding the physical morphology reveal several key observations. Firstly, particles from professional fireworks are significantly larger and more spheroidal than those from personal fireworks. Secondly, both types of fireworks show a consistent trend in which some of the larger particles have finer particulates deposited on their surfaces. Lastly, the plumes produced by both types contain spheres that are either solid, hollow or exhibit a core–shell structure. EDX analysis revealed the presence of various types of metals within the samples. EDX analysis shows that the samples collected from the HAS and LAS contain particulates with common elements. However, the samples from the plume of professional fireworks appear to have Ba, Mg, and Fe compared to the samples from personal fireworks. These elements are known to be used in powerful fireworks to create colored displays. A proposed mechanism for particulate growth in fireworks is proposed and discussed. Full article
(This article belongs to the Special Issue Air Quality Monitoring, Analysis and Modeling)
Show Figures

Figure 1

14 pages, 9736 KB  
Technical Note
The Impact of Firework Ban Relaxation on Variations in SO2 Emissions in China During the 2023 Chinese New Year
by Xinyu He, Yiwen Hu, Yi Li, Zengliang Zang, Wei You and Lang Liu
Remote Sens. 2024, 16(22), 4191; https://doi.org/10.3390/rs16224191 - 10 Nov 2024
Cited by 1 | Viewed by 2286
Abstract
During the 2023 Chinese New Year (CNY), many city governments temporarily relaxed firework restrictions, leading to increased sulfur dioxide (SO2) emissions from the combustion of sulfur-containing fireworks. This study employed the four-dimensional variational (4DVar) assimilation system to examine variations in SO [...] Read more.
During the 2023 Chinese New Year (CNY), many city governments temporarily relaxed firework restrictions, leading to increased sulfur dioxide (SO2) emissions from the combustion of sulfur-containing fireworks. This study employed the four-dimensional variational (4DVar) assimilation system to examine variations in SO2 emissions in China by assimilating hourly ground-based observations. Two experiments were conducted during CNY in 2022 and 2023 to quantify the variations in SO2 emissions. On CNY’s Eve in 2023, following the relaxation of the firework ban, SO2 emissions surged by 8.22 Gg nationwide compared to the previous day with significant increases in the Energy Golden Triangle (2.037 Gg), the North China Plain (1.709 Gg), and northeast China (0.945 Gg). Emissions peaked on CNY’s Eve and rapidly declined in the following two days but remained elevated compared to the pre-CNY period, indicating lingering effects of firework burning. Compared to the forecasts using the prior emissions, the optimized emissions markedly improved the model forecasts of SO2 during the 2023 CNY period, with an increase in the correlation coefficient (R) from 0.13 to 0.64 and a reduction in the root mean square error (RMSE) by 49.2%, demonstrating the effectiveness of the optimized emissions. These findings will be useful for local governments in formulating strategies for firework burning during CNY. Full article
Show Figures

Figure 1

18 pages, 4219 KB  
Article
VOCs Concentration, SOA Formation Contribution and Festival Effects during Heavy Haze Event: A Case Study in Zhengzhou, Central China
by Shijie Yu, Chaofang Xue, Fuwen Deng, Qixiang Xu and Bingnan Zhao
Atmosphere 2024, 15(8), 1009; https://doi.org/10.3390/atmos15081009 - 21 Aug 2024
Cited by 1 | Viewed by 1912
Abstract
In this study, online ambient volatile organic compounds (VOCs) were collected at an urban site of Zhengzhou in Central China during February 2018. The VOCs characteristics, source contributions and the Chinese New Year (CNY) effects have been investigated. During the sampling period, three [...] Read more.
In this study, online ambient volatile organic compounds (VOCs) were collected at an urban site of Zhengzhou in Central China during February 2018. The VOCs characteristics, source contributions and the Chinese New Year (CNY) effects have been investigated. During the sampling period, three haze periods have been identified, with the corresponding VOCs concentrations of (92 ± 45) ppbv, (62 ± 18) ppbv and (83 ± 34) ppbv; in contrast, the concentration during non-haze days was found to be (57 ± 27) ppbv. In addition, the festival effects of the CNY were investigated, and the concentration of particulate matter precursor decreased significantly. Meanwhile, firework-displaying events were identified, as the emission intensity had been greatly changed. Both potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) models results indicated that short-distance transportation was the main influencing factor of the local VOCs pollution, especially by transport from the northeast. Source contribution results by the positive matrix factorization (PMF) model showed that vehicle exhaust (24%), liquid petroleum gas and natural gas (LPG/NG, 23%), coal combustion (21%), industrial processes (16%) and solvent usages (16%) were the major sources of ambient VOCs. Although industry and solvents have low contribution to the total VOCs, their secondary organic aerosol (SOA) contribution were found to be relatively high, especially in haze-1 and haze-3 periods. The haze-2 period had the lowest secondary organic aerosol potential (SOAp) during the sampling period; this is mainly caused by the reduction of industrial and solvent emissions due to CNY. Full article
(This article belongs to the Special Issue Secondary Atmospheric Pollution Formations and Its Precursors)
Show Figures

Figure 1

18 pages, 1914 KB  
Article
Emissions and Fire Risk Assessment of Nitrocellulose as a Sustainable Alternative in Pyrotechnic Compositions
by David León, Isabel Amez, Miloš Radojević, Nebojša Manić, Dragoslava Stojiljković, Aleksandar Milivojević, Javier García-Torrent and Blanca Castells
Fire 2024, 7(8), 265; https://doi.org/10.3390/fire7080265 - 1 Aug 2024
Cited by 3 | Viewed by 5406
Abstract
The use of fireworks as a sign of celebration is a common practice in many countries. During the last few years, this sector has been subjected to various social criticisms that have even led to a ban on their use in different places. [...] Read more.
The use of fireworks as a sign of celebration is a common practice in many countries. During the last few years, this sector has been subjected to various social criticisms that have even led to a ban on their use in different places. One of the main causes is the environmental pollution they generate, due to emissions from combustion reactions associated with the use of pyrotechnic devices. Nitrate ester-based compounds as propellants are used in other solid rockets such as ammunition, but their use in pyrotechnics is currently limited to a small number of fireworks. This research analyses the substitution of black powder with nitrocellulose ([C6H7(NO2)3O5]n) as a propellant for aerial articles, as well as to the use of nitrocellulose as a perchlorate-free compound. In addition to achieving better clarity effects due to less smoke, the use of nitrocellulose reduces greenhouse gas emissions. However, this nitrogen-rich compound is more unstable, and the ignition sensitivity is higher. Therefore, the benefits and risks associated with this alternative compound need to be evaluated, but the evidence shown suggests a promising direction for the sustainable evolution of pyrotechnic compositions. Full article
Show Figures

Figure 1

18 pages, 8347 KB  
Article
New Year Fireworks Influence on Air Quality in Case of Stagnant Foggy Conditions
by Audrė Kalinauskaitė, Lina Davulienė, Julija Pauraite, Agnė Minderytė and Steigvilė Byčenkienė
Urban Sci. 2024, 8(2), 54; https://doi.org/10.3390/urbansci8020054 - 20 May 2024
Cited by 3 | Viewed by 4367
Abstract
Urban science plays a pivotal role in understanding the complex interactions between fireworks, air quality, and urban environments. Dense firework smoke worsens air quality and poses a health hazard to the public. In this study, we show a situation where extremely foggy meteorological [...] Read more.
Urban science plays a pivotal role in understanding the complex interactions between fireworks, air quality, and urban environments. Dense firework smoke worsens air quality and poses a health hazard to the public. In this study, we show a situation where extremely foggy meteorological conditions coincided with intense anthropogenic emissions, including fireworks, in an urban area. For the first time, the chemical composition and sources of non-refractory submicron aerosol (NR-PM1) in outdoor and indoor air were characterized in Vilnius (Lithuania) using an aerosol chemical speciation monitor (ACSM) and Positive Matrix Factorization for the period before the fireworks, on New Year’s Eve, and after the fireworks in 2020/2021; thus, typical changes were assessed. Due to stagnant weather conditions and increased traffic, the highest concentrations of black carbon (BC) (13.8 μg/m3) were observed before the fireworks display. The contribution of organic (Org) fraction to the total NR-PM1 mass concentration, in the comparison of the values of a typical night and New Year’s Eve (from 9 p.m. to 6 a.m.), increased from 43% to 70% and from 47% to 60% in outdoor and indoor air, respectively. Biomass-burning organic aerosol (BBOA, 48% (44%)) and hydrocarbon-like organic aerosol (HOA, 35% (21%)) dominated the organic fraction indoors and outdoors, respectively. HOA was likely linked to increased traffic during the event, while BBOA may have been related to domestic heating and fireworks. Full article
Show Figures

Figure 1

17 pages, 3125 KB  
Article
Impact of COVID-19 Lockdown on Inhaled Toxic Elements in PM2.5 in Beijing: Composition Characterization and Source-Specific Health Risks Assessment
by Mingsheng Zhao, Lihong Ren, Xiaoyang Yang, Yuanguan Gao, Gang Li and Yani Liu
Atmosphere 2024, 15(5), 563; https://doi.org/10.3390/atmos15050563 - 30 Apr 2024
Cited by 2 | Viewed by 1578
Abstract
In early 2020, China experienced a mass outbreak of a novel coronavirus disease (COVID-19). With an aim to evaluate the impact of emission variations on toxic element species in PM2.5 and the health risks associated with inhalation exposure during COVID-19, we collected [...] Read more.
In early 2020, China experienced a mass outbreak of a novel coronavirus disease (COVID-19). With an aim to evaluate the impact of emission variations on toxic element species in PM2.5 and the health risks associated with inhalation exposure during COVID-19, we collected PM2.5 filter samples in Beijing from January 1 to February 28, 2020. Positive matrix factorization (PMF) and a health risk (HR) assessment model were used to assess the health risks of the toxic elements and critical risk sources. The total concentration of eight toxic elements (Se, Cd, Pb, Zn, As, Cu, Ni, and Cr) in Beijing showed a trend of first increasing and then decreasing: full lockdown (322.9 ng m−3) > pre-lockdown (264.2 ng m−3) > partial lockdown (245.3 ng m−3). During the lockdown period, stringent control measures resulted in significant reductions (6−20%) in Zn, Pb, Cd, and Ni levels, while concentrations of Se, As, Cu, and Cr were unexpectedly elevated (14−348%). A total of five sources was identified: traffic emission, coal combustion, dust emission, industrial emission and mixed source of biomass burning and firework combustion. Total carcinogenic risk (TCR) of the selected toxic elements exceeded the US EPA limits for children and adults. As and Cr (IV) were the main contributors to non-carcinogenic and carcinogenic risks, respectively. For source-resolved risks, coal combustion was the main contributor to HI (43%), while industrial emissions were the main cause of TCR (45%). Additionally, increased contributions from coal combustion, biomass burning, and firework combustion during the full lockdown elevated the HI and TCR values. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

18 pages, 9752 KB  
Article
Vertical Profiles of Aerosols Induced by Dust, Smoke, and Fireworks in the Cold Region of Northeast China
by Lingjian Duanmu, Weiwei Chen, Li Guo, Yuan Yuan, Hongwu Yang, Jing Fu, Guoqing Song and Zixuan Xia
Remote Sens. 2024, 16(6), 1098; https://doi.org/10.3390/rs16061098 - 20 Mar 2024
Cited by 1 | Viewed by 2117
Abstract
Despite the long-term implementation of air pollution control policies in northeast China, severe haze pollution continues to occur frequently. With the adoption of a megacity (Changchun) in northeast China, we analysed the vertical characteristics of aerosols and the causes of aerosol pollution throughout [...] Read more.
Despite the long-term implementation of air pollution control policies in northeast China, severe haze pollution continues to occur frequently. With the adoption of a megacity (Changchun) in northeast China, we analysed the vertical characteristics of aerosols and the causes of aerosol pollution throughout the year using multisource data for providing recommendations for controlling pollution events (i.e., straw burning and fireworks). Based on a ground-based LiDAR, it was found that the extinction coefficient (EC) of aerosols at a height of 300 m in Changchun was highest in winter (0.44 km−1), followed by summer (0.28 km−1), with significant differences from those in warmer regions, such as the Yangtze River Delta. Therefore, it is recommended that air pollution control policies be differentiated between winter and summer. On Chinese New Year’s Eve in Changchun, the ignition of firecrackers during the day and night caused increases in the EC at a height of 500 m to 0.37 and 0.88 km−1, respectively. It is suggested that the regulation of firecracker ignition should be reduced during the day and strengthened at night. Based on the CALIPSO and backward trajectory analysis results, two events of dust–biomass-burning composite pollution were observed in March and April. In March, the primary aerosol component was dust from western Changchun, whereas in April, the main aerosol component was biomass-burning aerosols originating from northern and eastern Changchun. Hence, reducing the intensity of spring biomass burning can mitigate the occurrence of dust–biomass-burning composite pollution. These findings can provide emission policy suggestions for areas facing similar issues regarding biomass-burning transmission pollution and firework emissions. Full article
(This article belongs to the Special Issue Aerosol and Atmospheric Correction)
Show Figures

Figure 1

14 pages, 2891 KB  
Article
Size Distribution and Secondary Formation of Particulate Organic Nitrates in Winter in a Coastal Area
by Ayesha Shakoor, Xinfeng Wang, Jing Chen, Yiheng Liang, Sajid Kamal, Jawad Ali, Jabir Hussain Syed, Likun Xue and Wenxing Wang
Sustainability 2023, 15(24), 16776; https://doi.org/10.3390/su152416776 - 13 Dec 2023
Viewed by 2180
Abstract
Understanding the size distribution, variation patterns, and potential formation mechanisms of particulate organic nitrates (PONs) is crucial for assessing their influences on atmospheric chemistry, air quality, and the regional climate. This study investigates PONs in the coastal atmosphere of Qingdao, China by collecting [...] Read more.
Understanding the size distribution, variation patterns, and potential formation mechanisms of particulate organic nitrates (PONs) is crucial for assessing their influences on atmospheric chemistry, air quality, and the regional climate. This study investigates PONs in the coastal atmosphere of Qingdao, China by collecting size-resolved particulate matter samples and analyzing six types of organic nitrates, namely pinene keto nitrate (PKN229), monoterpene hydroxyl nitrate (MHN215), monoterpene dicarbonyl nitrate (MDCN247), oleic acid hydroxyl nitrate (OAHN361), oleic acid keto nitrate (OAKN359), and pinene sulfate organic nitrate (PSON295), using ultrahigh-performance liquid chromatography(mass spectrometry). The mean total concentration of organic nitrates in fine particles reaches 677 ng m−3. The predominant compound is MHN215, followed by PKN229 and MDCN247. All six organic nitrates exhibited distinct concentration peaks in the droplet mode, with MDCN247 and OAHN361 showing a minor peak in the condensation mode. In addition, an apparent concentration peak is observed in the coarse mode for OAKN359. Comparative analyses under various conditions highlight the significant influences of primary emissions and secondary formation processes on the abundance and size distribution of organic nitrates. For instance, both firework displays during festivals and high NOx emissions from fuel combustion significantly increase the concentrations of condensation-mode organic nitrates, whereas dust particles enhanced the heterogeneous formation of coarse-mode particles. Furthermore, the high humidity of the coastal area promotes aqueous formation in droplet-mode particles. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Graphical abstract

12 pages, 3175 KB  
Article
PM2.5-Related Health Risk during Chinese Spring Festival in Taizhou, Zhejiang: The Health Impacts of COVID-19 Lockdown
by Quanquan Wu, Xianglian Wang, Kai Ji, Haibing Qiu, Weiwei Feng, Shan Huang, Ting Huang, Jianlong Li and Daishe Wu
Atmosphere 2022, 13(12), 2099; https://doi.org/10.3390/atmos13122099 - 14 Dec 2022
Cited by 2 | Viewed by 2063
Abstract
Exposure to high concentrations of fine particles (PM2.5) with toxic metals can have significant health effects, especially during the Chinese spring festival (CSF), due to the large amount of fireworks’ emissions. Few studies have focused on the potential health impact of [...] Read more.
Exposure to high concentrations of fine particles (PM2.5) with toxic metals can have significant health effects, especially during the Chinese spring festival (CSF), due to the large amount of fireworks’ emissions. Few studies have focused on the potential health impact of PM2.5 pollution in small cities in China during the 2020 CSF, which coincided with the COVID-19 outbreak that posed a huge challenge to the environment and obvious health issues to countries around the world. We examined the characteristics of PM2.5, including carbonaceous matter and elements, for three intervals during the 2020 CSF in Taizhou, identified the sources and evaluated the health risks, and compared them with those of 2018. The results showed that PM2.5 increased by 13.20% during the 2020 CSF compared to those in the 2018 CSF, while carbonaceous matter (CM) and elements decreased by 39.41% and 53.84%, respectively. The synergistic effects of emissions, chemistry, and transport may lead to increased PM2.5 pollution, while the lockdown measures contributed to the decrease in CM and elements during the 2020 CSF. Fe, Mn, and Cu were the most abundant elements in PM2.5 in both years, and As and Cr(VI) should be of concern as their concentrations in both years exceeded the NAAQS guideline values. Industry, combustion, and mineral/road dust sources were identified by PCA in both years, with a 5.87% reduction in the contribution from industry in 2020 compared to 2018. The noncarcinogenic risk posed by As, Co, Mn, and Ti in 2018 and As and Mn in 2020 was significant. The carcinogenic risk posed by As, Cr(VI), and Pb exceeded the accepted precautionary limit (1 × 10−6) in both years. Mn was the dominant contributor to the total noncarcinogenic risks, while Cr(VI) showed the largest excessive cancer risks posed by metals in PM2.5, implying its associated source, industry, was the greatest risk to people in Taizhou after exposure to PM2.5. Despite the increase in PM2.5 mass concentration, the health impacts were reduced by the lockdown policy implemented in Taizhou during the 2020 CSF compared to 2018. Our study highlights the urgent need to consider the mitigation of emissions in Taizhou and regional joint management efforts based on health protection objectives despite the rough source apportionment by PCA. Full article
(This article belongs to the Special Issue Control and Purification of Particulate Matter)
Show Figures

Figure 1

17 pages, 2721 KB  
Article
Path Optimization of Low-Carbon Container Multimodal Transport under Uncertain Conditions
by Meiyan Li and Xiaoni Sun
Sustainability 2022, 14(21), 14098; https://doi.org/10.3390/su142114098 - 28 Oct 2022
Cited by 23 | Viewed by 3987
Abstract
The development of multimodal transport has had a significant impact on China’s transportation industry. Due to the variability of the market environment, in this study, based on the context of the official launch of the national carbon emission trading market, the uncertainty of [...] Read more.
The development of multimodal transport has had a significant impact on China’s transportation industry. Due to the variability of the market environment, in this study, based on the context of the official launch of the national carbon emission trading market, the uncertainty of the demand and the randomness of carbon trading prices were considered. Taking minimum total transportation cost as the objective function, a robust stochastic optimization model of container multimodal transport was constructed, and a hybrid fireworks algorithm with gravitational search operator (FAGSO) was designed to solve and verify the effectiveness of the algorithm. Using a 35-node multimodal transportation network as an example, the multimodal transportation costs and schemes under three different modes were compared and analyzed, and the influence of parameter uncertainty was determined. The results show that the randomness of carbon trading prices will lead to an increase or decrease in the total transport cost, while robust optimization with uncertain demand will be affected by the regret value constraint, resulting in an increase in the total transport cost. Multimodal carriers can reduce transportation costs, reduce carbon emissions, and improve the transportation efficiency of multimodal transportation by comprehensively weighing the randomness of carbon trading prices, the nondeterminism of demand, and the relationship between the selection of maximum regret values and transportation costs. Full article
(This article belongs to the Topic Sustainable Transportation)
Show Figures

Figure 1

Back to TopTop