Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem
Abstract
:1. Introduction
- What were the PM2.5 levels at the beginning of recent years, and what can explain them?
- What was the magnitude of the PM2.5 emissions?
- What are the magnitude and spatiotemporal configuration of PM2.5 emissions that can be used for forecasting purposes?
2. Methods
2.1. The Air Quality Network
2.2. Meteorological Data
2.3. Weather Modeling
2.4. PM2.5 Emission Modeling
2.5. PM2.5 Dispersion Modeling
2.6. Metrics for Modeling Performance
3. Results and Discussion
3.1. Meteorology
3.2. PM2.5 Emissions and Dispersion Modeling
- On 29 December, create the weather forecast for Quito using a one-way nesting approach for the three domains in Figure 1 (d01, master domain, 27 km; d02, first subdomain, 9 km; d03, second subdomain, 3 km). This step will be used to produce the IC (wrfinput_d01) files and boundary conditions (BC) (wrfbdy_d01) for 31 December and 1 January for the inner subdomain (d04), which covers the territory of Quito with a spatial resolution of 1 km. For this purpose, apply the results of the Global Forecast System (GFS), produced by the National Centers for Environmental Prediction [53].
- Prepare the hourly PM2.5 emissions files for 31 December (background emissions from on-road traffic for a holiday) and for 1 January (adding the emissions by combustion activities and fireworks).
- Simulate the dispersion of PM2.5 on 31 December and 1 January, selecting the GOCART simple aerosol scheme (CHEM_OPT = 300) as the chemistry option.
- Process the results to determine the dynamics of PM2.5 concentrations and levels over 24 h.
- Analyze and deliver the results.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hidalgo, A.E. Años viejos. Origen, transición y permanencia de una fiesta popular ecuatoriana. In Los años Viejos: Ensayos Contemporáneos; Vera, M.P., Ed.; Fondo de Salvamento del Patrimonio Cultural de Quito: Quito, Ecuador, 2007; ISBN 978-9978-92-523-2. [Google Scholar]
- Greven, F.E.; Vonk, J.M.; Fischer, P.; Duijm, F.; Vink, N.M.; Brunekreef, B. Air Pollution during New Year’s Fireworks and Daily Mortality in the Netherlands. Sci. Rep. 2019, 9, 5735. [Google Scholar] [CrossRef] [PubMed]
- Birds Flee En Mass from New Year’s Eve Fireworks, Behavioral Ecology, Oxford Academic. Available online: https://academic.oup.com/beheco/article/22/6/1173/218852 (accessed on 31 March 2025).
- Tanda, S.; Ličbinský, R.; Hegrová, J.; Goessler, W. Impact of New Year’s Eve Fireworks on the Size Resolved Element Distributions in Airborne Particles. Environ. Int. 2019, 128, 371–378. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Red Metropolitana de Monitoreo de la Calidad del Aire. Secretaría de Ambiente. Available online: https://ambiente.quito.gob.ec/red-metropolitana-de-monitoreo-de-la-calidad-del-aire/ (accessed on 25 July 2024).
- EMOV. Available online: https://caire.emov.gob.ec/ (accessed on 22 February 2025).
- Singh, A.; Pant, P.; Pope, F.D. Air Quality during and after Festivals: Aerosol Concentrations, Composition and Health Effects. Atmos. Res. 2019, 227, 220–232. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lai, Y. Effect of Fireworks, Chinese New Year and the COVID-19 Lockdown on Air Pollution and Public Attitudes. Aerosol Air Qual. Res. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Mousavi, A.; Yuan, Y.; Masri, S.; Barta, G.; Wu, J. Impact of 4th of July Fireworks on Spatiotemporal PM2.5 Concentrations in California Based on the PurpleAir Sensor Network: Implications for Policy and Environmental Justice. Int. J. Environ. Res. Public Health 2021, 18, 5735. [Google Scholar] [CrossRef] [PubMed]
- Saporito, A.F.; Gordon, T.; Kim, B.; Huynh, T.; Khan, R.; Raja, A.; Terez, K.; Camacho-Rivera, N.; Gordon, R.; Gardella, J.; et al. Skyrocketing Pollution: Assessing the Environmental Fate of July 4th Fireworks in New York City. J. Expo Sci. Environ. Epidemiol. 2024, 35, 214–222. [Google Scholar] [CrossRef]
- Hickey, C.; Gordon, C.; Galdanes, K.; Blaustein, M.; Horton, L.; Chillrud, S.; Ross, J.; Yinon, L.; Chen, L.C.; Gordon, T. Toxicity of Particles Emitted by Fireworks. Part Fibre Toxicol. 2020, 17, 28. [Google Scholar] [CrossRef]
- Wen, J.; Shi, G.; Tian, Y.; Chen, G.; Liu, J.; Huang-Fu, Y.; Ivey, C.E.; Feng, Y. Source Contributions to Water-Soluble Organic Carbon and Water-Insoluble Organic Carbon in PM2.5 during Spring Festival, Heating and Non-Heating Seasons. Ecotoxicol. Environ. Saf. 2018, 164, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Association, A.L. The Hidden Dangers of Fireworks. Available online: https://www.lung.org/blog/fireworks-hidden-dangers (accessed on 22 February 2025).
- Zhang, X.; Shen, H.; Li, T.; Zhang, L. The Effects of Fireworks Discharge on Atmospheric PM2.5 Concentration in the Chinese Lunar New Year. Int. J. Environ. Res. Public Health 2020, 17, 9333. [Google Scholar] [CrossRef]
- Manchanda, C.; Kumar, M.; Singh, V.; Hazarika, N.; Faisal, M.; Lalchandani, V.; Shukla, A.; Dave, J.; Rastogi, N.; Tripathi, S.N. Chemical Speciation and Source Apportionment of Ambient PM2.5 in New Delhi before, during, and after the Diwali Fireworks. Atmos. Pollut. Res. 2022, 13, 101428. [Google Scholar] [CrossRef]
- Homepage—IARC. Available online: https://www.iarc.who.int (accessed on 8 February 2025).
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. International Agency for Research on Cancer Monograph Working Group IARC. The Carcinogenicity of Outdoor Air Pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Air Quality Database 2022. Available online: https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2022 (accessed on 8 February 2025).
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in Air Quality Research—Current and Emerging Challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online Coupled Regional Meteorology Chemistry Models in Europe: Current Status and Prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef]
- Stull, R. Meteorology for Scientists and Engineers, 3rd ed.; University of British Columbia: Vancouver, BC, Canada, 2011; ISBN 978-0-88865-178-5. Available online: https://www.eoas.ubc.ca/books/Practical_Meteorology/mse3.html (accessed on 7 February 2025).
- Parra, R.; Saud, C.; Espinoza, C. Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities. Toxics 2022, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization (WMO). Global Air Quality Forecasting and Information System (GAFIS) Implementation Plan: 2022–2026. Available online: https://library.wmo.int/records/item/58216-global-air-quality-forecasting-and-information-system-gafis-implementation-plan-2022-2026#.Y7e_kXZBw2w (accessed on 5 March 2025).
- Baklanov, A.; Zhang, Y. Advances in Air Quality Modeling and Forecasting. Glob. Transit. 2020, 2, 261–270. [Google Scholar] [CrossRef]
- Kumar, R.; Peuch, V.-H.; Crawford, J.H.; Brasseur, G. Five Steps to Improve Air-Quality Forecasts. Nature 2018, 561, 27–29. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J.; Ma, X.; Lu, H. Air Pollution Forecasts: An Overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef]
- The 17 Goals. Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 4 May 2024).
- Parra, R.; Espinoza, C. Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador. Atmosphere 2020, 11, 998. [Google Scholar] [CrossRef]
- Impact of Cumulus Options from Weather Research and Forecasting with Chemistry in Atmospheric Modeling in the Andean Region of Southern Ecuador. Available online: https://www.mdpi.com/2073-4433/15/6/693 (accessed on 7 February 2025).
- WRF Model Users Site. Available online: https://www2.mmm.ucar.edu/wrf/users/ (accessed on 30 December 2022).
- CISL RDA: NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 30 December 2022).
- WRF Users’ Guide. Available online: https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.4/contents.html (accessed on 7 February 2025).
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Wea. Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies; NASA/TM-1999-104606/VOL15; 1999. Available online: https://ntrs.nasa.gov/citations/19990060930 (accessed on 30 December 2022).
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Mon. Weather Rev. 2001, 129, 587–604. [Google Scholar] [CrossRef]
- Home CIUQ. Available online: https://www.ciuq.ec/ (accessed on 7 February 2025).
- Vega, D.; Narváez, R.P. Caracterización de la intensidad media diaria y de los perfiles horarios del tráfico vehicular del Distrito Metropolitano de Quito. ACI Av. Cienc. Ing. 2014, 6, 40–45. [Google Scholar] [CrossRef]
- Vega, D.; Ocaña, L.; Narváez, R.P. Inventario de emisiones atmosféricas del tráfico vehicular en el Distrito Metropolitano de Quito. Año base 2012. ACI Av. Cienc. Ingenierías 2015, 7, 86–94. [Google Scholar] [CrossRef]
- The Application of Models Under the European Union’s Air Quality Directive: A Technical Reference Guide—European Environment Agency. Available online: https://www.eea.europa.eu/publications/fairmode (accessed on 30 December 2022).
- Parra, R.; Molina, C.; Caguana, C.; Heredia, E. Inventario de Emisiones Atmosféricas Del Cantón Cuenca 2021; 2023. Available online: https://www.researchgate.net/publication/373830159_Inventario_de_Emisiones_Atmosfericas_del_Canton_Cuenca_2021 (accessed on 22 April 2025).
- Parra, R.; Espinoza, C.; Caguana, C.; Heredia, E. Influence on Air Quality of Moving from Diesel to Electric Buses: The Case of the City of Cuenca, Ecuador; WIT Transactions on Ecology and the Environment: Seville, Spain, 2024; pp. 669–681. [Google Scholar] [CrossRef]
- Parrado, C. Segregación En Quito 2001-2010. Evolución de La Concentración de Los Grupos y Composición Social de Las Áreas Residenciales. Cuest. Urbanas 2018, 1, 61–88. [Google Scholar]
- Hoyos, C.D.; Herrera-Mejía, L.; Roldán-Henao, N.; Isaza, A. Effects of fireworks on particulate matter concentration in a narrow valley: The case of the Medellín metropolitan area. Environ. Monit. Assess. 2020, 192, 6. [Google Scholar] [CrossRef]
- Suasnabar, R.; Daniel, L. Evaluación del Impacto de las Celebraciones de Fin de Año Sobre la Calidad del Aire en Lima Metropolitana; 2023. Available online: https://hdl.handle.net/20.500.12996/5647 (accessed on 22 April 2025).
- Retama, A.; Neria-Hernández, A.; Jaimes-Palomera, M.; Rivera-Hernández, O.; Sánchez-Rodríguez, M.; López-Medina, A.; Velasco, E. Fireworks: A Major Source of Inorganic and Organic Aerosols during Christmas and New Year in Mexico City. Atmos. Environ. X 2019, 2, 100013. [Google Scholar] [CrossRef]
- Rodríguez-Trejo, A.; Böhnel, H.N.; Ibarra-Ortega, H.E.; Salcedo, D.; González-Guzmán, R.; Castañeda-Miranda, A.G.; Sánchez-Ramos, L.E.; Chaparro, M.A.E.; Chaparro, M.A.E. Air Quality Monitoring with Low-Cost Sensors: A Record of the Increase of PM2.5 during Christmas and New Year’s Eve Celebrations in the City of Queretaro, Mexico. Atmosphere 2024, 15, 879. [Google Scholar] [CrossRef]
- Seidel, D.J.; Birnbaum, A.N. Effects of Independence Day Fireworks on Atmospheric Concentrations of Fine Particulate Matter in the United States. Atmos. Environ. 2015, 115, 192–198. [Google Scholar] [CrossRef]
- Kong, S.F.; Li, L.; Li, X.X.; Yin, Y.; Chen, K.; Liu, D.T.; Yuan, L.; Zhang, Y.J.; Shan, Y.P.; Ji, Y.Q. The Impacts of Firework Burning at the Chinese Spring Festival on Air Quality: Insights of Tracers, Source Evolution and Aging Processes. Atmos. Chem. Phys. 2015, 15, 2167–2184. [Google Scholar] [CrossRef]
- Global Forecast System (GFS). National Centers for Environmental Information (NCEI). Available online: https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast (accessed on 4 March 2025).
Component (Nomenclature) | Option | Model and References |
---|---|---|
Microphysics (MP_PHYSICS) | 4 | WRF Single-Moment 5-Class [34] |
Longwave Radiation (RA_LW_PHYSICS) | 1 | RRTM [35] |
Shortwave Radiation (RA_SW_PHYSICS) | 2 | Goddard [36] |
Surface Layer (SF_SFCLAY_PHYSICS) | 1 | Revised MM5 [37] |
Planetary Boundary Layer (BL_PBL_PHYSICS) | 1 | Yonsei University [38] |
Land Surface (SF_SURFACE_PHYSICS) | 2 | Noah [39] |
Urban surface (SF_URBAN_PHYSICS) | 0 | No urban physics |
Cumulus Parameterization (CU_PHYSICS) | 0 | 0 No cumulus option |
Variable | Metric | Benchmark or Ideal Range | Desired Accuracy |
---|---|---|---|
Hourly surface temperature | GE | <2 °C | ±2 °C |
B | >−0.5, <0.5 °C | ||
IOA | ≥0.8 | ||
Hourly wind speed (10 masl) | RMSE | <2 m s−1 | ±1 m s−1 |
B | >−0.5, <0.5 m s−1 |
Period | Metric | Benchmark | Station | |||||
---|---|---|---|---|---|---|---|---|
Car | Cot | Bel | Cen | Gua | Tum | |||
GE | <2 °C | 0.8 | 0.9 | 0.7 | 0.9 | 0.8 | 0.7 | |
2019–2020 | B | >−0.5, <0.5 °C | 0.3 | 0.4 | 0.3 | −0.4 | 0.0 | −0.2 |
IOA | ≥0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | |
GE | <2 °C | 1.2 | 1.5 | 1.3 | 1.2 | 1.4 | 1.0 | |
2020–2021 | B | >−0.5, <0.5 °C | 0.1 | −0.1 | 0.1 | −0.5 | −0.4 | −0.2 |
IOA | ≥0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | |
GE | <2 °C | 1.6 | 1.6 | 1.4 | 1.9 | 1.6 | 1.7 | |
2021–2022 | B | >−0.5, <0.5 °C | −0.6 | −0.5 | −1.2 | −1.8 | −1.1 | −1.4 |
IOA | ≥0.8 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 | 0.9 | |
GE | <2 °C | 1.1 | 1.2 | 1.2 | 1.3 | 1.3 | 1.5 | |
2022–2023 | B | >−0.5, <0.5 °C | −0.3 | −0.5 | −0.4 | −1.0 | −0.6 | −1.0 |
IOA | ≥0.8 | 0.9 | 0.8 | 0.9 | 0.8 | 0.8 | 0.9 | |
GE | <2 °C | 1.0 | 1.0 | 1.1 | 1.3 | 1.3 | 1.3 | |
2023–2024 | B | >−0.5, <0.5 °C | −0.3 | −0.3 | 0.0 | −0.6 | 0.1 | −0.9 |
IOA | ≥0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 | |
GE | <2 °C | 1.1 | 1.1 | 1.1 | 1.1 | 0.8 | 1.3 | |
2024–2025 | B | >−0.5, <0.5 °C | 0.0 | 0.3 | 0.1 | −0.9 | −0.1 | −0.7 |
IOA | ≥0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Period | Records | Station | |||||
---|---|---|---|---|---|---|---|
Car | Cot | Bel | Cen | Gua | Tum | ||
2019–2020 | 48 | 89.6 | 91.7 | 93.8 | 95.8 | 93.8 | 97.9 |
2020–2021 | 48 | 85.4 | 81.3 | 81.3 | 83.3 | 72.9 | 83.3 |
2021–2022 | 48 | 68.8 | 68.8 | 66.7 | 60.4 | 70.8 | 62.5 |
2022–2023 | 48 | 87.5 | 85.4 | 81.3 | 83.3 | 70.8 | 72.9 |
2023–2024 | 48 | 89.6 | 83.3 | 83.3 | 70.8 | 83.3 | 81.3 |
2024–2025 | 48 | 87.5 | 85.4 | 81.3 | 91.7 | 89.6 | 83.3 |
Period | Metric | Benchmark | Station | |||||
---|---|---|---|---|---|---|---|---|
Car | Cot | Bel | Cen | Gua | Tum | |||
RMSE | <2 m s−1 | 1.9 | 1.6 | 1.4 | 1.3 | 1.2 | 2.5 | |
2019–2020 | MB | >−0.5, <0.5 m s−1 | 1.1 | 0.7 | 1.1 | 0.6 | 0.7 | 1.5 |
RMSE | <2 m s−1 | 1.4 | 1.6 | 1.3 | 0.9 | 1.8 | 2.5 | |
2020–2021 | MB | >−0.5, <0.5 m s−1 | 0.7 | 0.9 | 0.8 | 0.5 | 1.1 | 1.4 |
RMSE | <2 m s−1 | 1.4 | 1.4 | 1.4 | 0.9 | 1.4 | 2.7 | |
2021–2022 | MB | >−0.5, <0.5 m s−1 | 0.5 | 0.3 | 0.7 | 0.5 | 1.0 | 1.6 |
RMSE | <2 m s−1 | 1.7 | 1.5 | 1.4 | 1.0 | 1.5 | 2.9 | |
2022–2023 | MB | >−0.5, <0.5 m s−1 | 0.7 | 0.9 | 0.8 | 0.4 | 0.8 | 1.7 |
RMSE | <2 m s−1 | 1.5 | 1.4 | 1.3 | 1.4 | 1.6 | 2.9 | |
2023–2024 | MB | >−0.5, <0.5 m s−1 | 0.9 | 0.9 | 0.9 | 1.0 | 1.2 | 1.9 |
RMSE | <2 m s−1 | 1.8 | 1.6 | 1.3 | 1.4 | 1.5 | 2.8 | |
2024–2025 | MB | >−0.5, <0.5 m s−1 | 1.1 | 0.9 | 0.8 | 0.6 | 0.9 | 1.9 |
Period | Records | Station | |||||
---|---|---|---|---|---|---|---|
Car | Cot | Bel | Cen | Gua | Tum | ||
2019–2020 | 48 | 43.8 | 52.1 | 43.8 | 60.4 | 70.8 | 45.8 |
2020–2021 | 48 | 75.0 | 66.7 | 70.8 | 66.7 | 45.8 | 58.3 |
2021–2022 | 48 | 58.3 | 50.0 | 62.5 | 77.1 | 56.3 | 43.8 |
2022–2023 | 48 | 56.3 | 60.4 | 66.7 | 75.0 | 66.7 | 56.3 |
2023–2024 | 48 | 50.0 | 62.5 | 52.1 | 50.0 | 62.5 | 47.9 |
2024–2025 | 48 | 54.2 | 68.8 | 72.9 | 72.9 | 62.5 | 43.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, R. Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem. Atmosphere 2025, 16, 495. https://doi.org/10.3390/atmos16050495
Parra R. Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem. Atmosphere. 2025; 16(5):495. https://doi.org/10.3390/atmos16050495
Chicago/Turabian StyleParra, Rene. 2025. "Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem" Atmosphere 16, no. 5: 495. https://doi.org/10.3390/atmos16050495
APA StyleParra, R. (2025). Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem. Atmosphere, 16(5), 495. https://doi.org/10.3390/atmos16050495