Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = fire spreading characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2348 KiB  
Article
Study on Smoke Flow and Temperature Distribution Patterns in Fires at Deeply Buried Subway Stations
by Huailin Yan, Heng Liu, Yongchang Zhao and Zirui Bian
Fire 2025, 8(8), 296; https://doi.org/10.3390/fire8080296 - 28 Jul 2025
Viewed by 387
Abstract
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of [...] Read more.
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of different fire source powers and smoke extraction system states. Through the set up of multiple sets of comparative test conditions, the study focused on analyzing the influence mechanism of the operation (on/off) of the smoke extraction system on smoke spread characteristics and temperature field distribution. The results indicate that under the condition where the smoke extraction system is turned off, the smoke exhibits typical stratified spread characteristics driven by thermal buoyancy, with the temperature rising significantly as the vertical height increases. When the smoke extraction system is activated, the horizontal airflow generated by mechanical smoke extraction significantly alters the flame morphology (with an inclination angle exceeding 45°), effectively extracting and discharging the hot smoke and leading to a more uniform temperature distribution within the space. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

21 pages, 3293 KiB  
Article
A Fusion of Entropy-Enhanced Image Processing and Improved YOLOv8 for Smoke Recognition in Mine Fires
by Xiaowei Li and Yi Liu
Entropy 2025, 27(8), 791; https://doi.org/10.3390/e27080791 - 25 Jul 2025
Viewed by 218
Abstract
Smoke appears earlier than flames, so image-based fire monitoring techniques mainly focus on the detection of smoke, which is regarded as one of the effective strategies for preventing the spread of initial fires that eventually evolve into serious fires. Smoke monitoring in mine [...] Read more.
Smoke appears earlier than flames, so image-based fire monitoring techniques mainly focus on the detection of smoke, which is regarded as one of the effective strategies for preventing the spread of initial fires that eventually evolve into serious fires. Smoke monitoring in mine fires faces serious challenges: the underground environment is complex, with smoke and backgrounds being highly integrated and visual features being blurred, which makes it difficult for existing image-based monitoring techniques to meet the actual needs in terms of accuracy and robustness. The conventional ground-based methods are directly used in the underground with a high rate of missed detection and false detection. Aiming at the core problems of mixed target and background information and high boundary uncertainty in smoke images, this paper, inspired by the principle of information entropy, proposes a method for recognizing smoke from mine fires by integrating entropy-enhanced image processing and improved YOLOv8. Firstly, according to the entropy change characteristics of spatio-temporal information brought by smoke diffusion movement, based on spatio-temporal entropy separation, an equidistant frame image differential fusion method is proposed, which effectively suppresses the low entropy background noise, enhances the detail clarity of the high entropy smoke region, and significantly improves the image signal-to-noise ratio. Further, in order to cope with the variable scale and complex texture (high information entropy) of the smoke target, an improvement mechanism based on entropy-constrained feature focusing is introduced on the basis of the YOLOv8m model, so as to more effectively capture and distinguish the rich detailed features and uncertain information of the smoke region, realizing the balanced and accurate detection of large and small smoke targets. The experiments show that the comprehensive performance of the proposed method is significantly better than the baseline model and similar algorithms, and it can meet the demand of real-time detection. Compared with YOLOv9m, YOLOv10n, and YOLOv11n, although there is a decrease in inference speed, the accuracy, recall, average detection accuracy mAP (50), and mAP (50–95) performance metrics are all substantially improved. The precision and robustness of smoke recognition in complex mine scenarios are effectively improved. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

27 pages, 47905 KiB  
Article
FDS-Based Study on Fire Spread and Control in Modern Brick-Timber Architectural Heritage: A Case Study of Faculty House at a University in Changsha
by Simian Liu, Gaocheng Liang, Lei Shi, Ming Luo and Meizhen Long
Sustainability 2025, 17(15), 6773; https://doi.org/10.3390/su17156773 - 25 Jul 2025
Viewed by 396
Abstract
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at [...] Read more.
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at a university in China. The assessment is carried out by analyzing building materials, structural configuration, and fire load. By using FDS (Fire Dynamics Simulator (PyroSim version 2022)) and SketchUp software (version 2023) for architectural reconstruction and fire spread simulation, explores preventive measures to reduce fire risks. The result show that the total fire load of the building amounts to 1,976,246 MJ. After ignition, flashover occurs at 700 s, accompanied by a sharp increase in the heat release rate (HRR). The peak ceiling temperature reaches 750 °C. The roof trusses have critical structural weaknesses when approaching flashover conditions, indicating a high potential for collapse. Three targeted fire protection strategies are proposed in line with the heritage conservation principle of minimal visual and functional intervention: fire sprinkler systems, fire retardant coating, and fire barrier. Simulations of different strategies demonstrate their effectiveness in mitigating fire spread in elongated architectural heritages with enclosed ceiling-level ignition points. The efficacy hierarchy follows: fire sprinkler system > fire retardant coating > fire barrier. Additionally, because of chimney effect, for fire sources located above the ceiling and other hidden locations need to be warned in a timely manner to prevent the thermal plume from invading other sides of the ceiling through the access hole. This research can serve as a reference framework for other Modern Chinese Architectural Heritage to develop appropriate fire mitigation strategies and to provide a methodology for sustainable development of the Chinese architectural heritage. Full article
Show Figures

Figure 1

29 pages, 8327 KiB  
Article
Fire Hazard Risk Grading of Timber Architectural Complexes Based on Fire Spreading Characteristics
by Chong Wang, Zhigang Song, Jian Zhang, Lijiao Liu, Feiyang Zheng and Siqi Cao
Buildings 2025, 15(14), 2472; https://doi.org/10.3390/buildings15142472 - 14 Jul 2025
Viewed by 258
Abstract
Fire spread between buildings is the primary cause of extensive fire damage in traditional village timber structure clusters. Accurately assessing fire spread risk is crucial for the preservation of these architectural ensembles. During the development and conservation of traditional villages, fire risk dynamics [...] Read more.
Fire spread between buildings is the primary cause of extensive fire damage in traditional village timber structure clusters. Accurately assessing fire spread risk is crucial for the preservation of these architectural ensembles. During the development and conservation of traditional villages, fire risk dynamics may shift due to fire-resistant retrofits or layout modifications, necessitating repeated risk reevaluations. To address challenges such as the computational intensity of fire spread simulations, high costs, and data acquisition difficulties, this study proposes a directed graph-based method for fire spread risk analysis and risk level classification in timber structure clusters, accounting for their unique fire propagation characteristics. First, localized fire spread paths and propagation times between nodes (buildings) are determined through fire spread simulations, constructing an adjacency matrix for the directed graph of the building cluster. Path search algorithms then identify the spread range and velocity under specific fire scenarios. Subsequently, a zoned risk assessment model for individual buildings is developed based on critical fire spread loss and velocity, integrating each building’s fire resistance and its probability of exposure to different risk zones to determine the overall cluster’s fire spread risk level. The method is validated using a case study of a typical village in Yunnan Province. Results demonstrate that the approach efficiently computes fire spread characteristics across different scenarios and quantitatively evaluates risk levels, enabling targeted fire safety interventions based on village-specific spread patterns. Case analysis reveals significant variations in fire spread behavior: Village 1, Village 2, and Village 3 exhibit fire resistance indices of 0.59, 0.757, and 0.493, corresponding to high, moderate, and high fire spread risk levels, respectively. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 369
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

13 pages, 3785 KiB  
Article
Experimental Investigation of Flame Spread Characteristics in Cable Fires Within Covered Trays Under Different Tilt Angles
by Changkun Chen, Yipeng Bao, Boyuan Zuo, Jia Zhang and Yuhuai Wang
Fire 2025, 8(7), 272; https://doi.org/10.3390/fire8070272 - 11 Jul 2025
Viewed by 465
Abstract
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used [...] Read more.
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used as the test cables. The flame morphology, temperature distribution, and fire spread rate during the cable combustion process were analyzed for experimental scenarios for which the cable laying angles and the ignition positions changed. The results indicate that the inclination angle of the covered cable tray has a significant impact on flame propagation and temperature distribution. For the ignition located at the lowest part of the cable, the fire spread rate increases significantly with the tilt angle. In contrast, for the ignition located at the highest part of the cable, the fire spread rate initially decreases slightly and then increases, with a relatively smaller overall change in magnitude. Under both ignition positions, the flame spread rate significantly increases at 15–30°. Therefore, in actual cable installation processes, cables within covered troughs should avoid large-angle inclinations. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

24 pages, 4442 KiB  
Article
Time-Series Correlation Optimization for Forest Fire Tracking
by Dongmei Yang, Guohao Nie, Xiaoyuan Xu, Debin Zhang and Xingmei Wang
Forests 2025, 16(7), 1101; https://doi.org/10.3390/f16071101 - 3 Jul 2025
Viewed by 316
Abstract
Accurate real-time tracking of forest fires using UAV platforms is crucial for timely early warning, reliable spread prediction, and effective autonomous suppression. Existing detection-based multi-object tracking methods face challenges in accurately associating targets and maintaining smooth tracking trajectories in complex forest environments. These [...] Read more.
Accurate real-time tracking of forest fires using UAV platforms is crucial for timely early warning, reliable spread prediction, and effective autonomous suppression. Existing detection-based multi-object tracking methods face challenges in accurately associating targets and maintaining smooth tracking trajectories in complex forest environments. These difficulties stem from the highly nonlinear movement of flames relative to the observing UAV and the lack of robust fire-specific feature modeling. To address these challenges, we introduce AO-OCSORT, an association-optimized observation-centric tracking framework designed to enhance robustness in dynamic fire scenarios. AO-OCSORT builds on the YOLOX detector. To associate detection results across frames and form smooth trajectories, we propose a temporal–physical similarity metric that utilizes temporal information from the short-term motion of targets and incorporates physical flame characteristics derived from optical flow and contours. Subsequently, scene classification and low-score filtering are employed to develop a hierarchical association strategy, reducing the impact of false detections and interfering objects. Additionally, a virtual trajectory generation module is proposed, employing a kinematic model to maintain trajectory continuity during flame occlusion. Locally evaluated on the 1080P-resolution FireMOT UAV wildfire dataset, AO-OCSORT achieves a 5.4% improvement in MOTA over advanced baselines at 28.1 FPS, meeting real-time requirements. This improvement enhances the reliability of fire front localization, which is crucial for forest fire management. Furthermore, AO-OCSORT demonstrates strong generalization, achieving 41.4% MOTA on VisDrone, 80.9% on MOT17, and 92.2% MOTA on DanceTrack. Full article
(This article belongs to the Special Issue Advanced Technologies for Forest Fire Detection and Monitoring)
Show Figures

Figure 1

15 pages, 4884 KiB  
Article
Influence of Cable Spacing on Flame Interaction and Combustion Characteristics of Parallel Thermoplastic Cables
by Rongshui Qin, Xiangxiang Zhang, Yuyao Li, Jinchao Wei, Chao Ding and Yan Jiao
Fire 2025, 8(7), 258; https://doi.org/10.3390/fire8070258 - 30 Jun 2025
Viewed by 357
Abstract
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, [...] Read more.
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, including flame merging behavior, flame morphology, mass loss rate, flame spread rate, flame temperature, and radiant heat flux, were analyzed. The results revealed that cable spacing critically affects flame interaction, with three distinct flame merging modes—continuous merging, intermittent merging, and non-merging—identified as spacing increases. A critical spacing of 2.5 mm was found, at which the flame spread rate and mass loss rate reached their maximum, approximately 1.7 times higher than that of a single cable. At intermediate spacings (2.5–12.5 mm), enhanced flame interaction and radiative feedback significantly intensified combustion, leading to higher flame temperatures and radiant heat peaks. Conversely, insufficient oxygen supply at zero spacing and reduced flame interaction at large spacings (15 mm) resulted in diminished combustion efficiency. These findings highlight the importance of cable spacing as a key design parameter for mitigating fire hazards in electrical installations, providing valuable insights for fire safety engineering and risk assessment. Full article
(This article belongs to the Special Issue Cable and Wire Fires)
Show Figures

Figure 1

21 pages, 4924 KiB  
Article
Quantifying the Influence of Parameters on Heat Release Rate in Electrical Cabinet Fires
by Umang Selokar, Brian Y. Lattimer, Urvin Salvi, Elvan Sahin, Mohammad Amer Allaf and Juliana Pacheco Duarte
Fire 2025, 8(7), 256; https://doi.org/10.3390/fire8070256 - 30 Jun 2025
Viewed by 467
Abstract
Electrical cabinet fire scenarios constitute a significant risk within nuclear facilities, emphasizing the need to mitigate uncertainties in risk evaluations. Owing to the disparate nature of electrical cabinet parameters, only a few factors have been experimentally explored and statistically analyzed to assess their [...] Read more.
Electrical cabinet fire scenarios constitute a significant risk within nuclear facilities, emphasizing the need to mitigate uncertainties in risk evaluations. Owing to the disparate nature of electrical cabinet parameters, only a few factors have been experimentally explored and statistically analyzed to assess their impact on peak HRR. In this study, we conducted both a cabinet parameter study and a combustible configuration study to systematically evaluate their influence on peak HRR and time-to-peak HRR. A series of 51 simulation matrices were created using statistical experiment design (SED) and ANOVA to quantify the influence of cabinet volume, combustible surface area, vent area, ignition characteristics, and burning behavior (e.g., HRRPUA and duration). A computational fluid dynamics (CFD) model, specifically a Fire Dynamics Simulator (FDS), was used to model the ignition source and flame spread inside of the electrical cabinet that influence peak HRR. The most impactful parameters influencing peak HRR and time-to-peak HRR were identified. The findings revealed that the configuration of combustibles and the placement of the ignition source play a pivotal role in determining the peak HRR. A partition screening analysis was conducted to identify the conditions under which the ventilation area becomes a more significant parameter. Additionally, a comparison between experimental results and numerical simulations demonstrated good agreement, further validating the predictive capability of the model. Full article
Show Figures

Figure 1

17 pages, 1851 KiB  
Article
Fire Characteristics and Water Mist Cooling Measures in the Coal Transportation Process of a Heavy-Haul Railway Tunnel in Shanxi Province
by Wenjin He, Maohai Fu, Lv Xiong and Shiqi Zheng
Processes 2025, 13(6), 1789; https://doi.org/10.3390/pr13061789 - 5 Jun 2025
Viewed by 422
Abstract
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The [...] Read more.
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The research employs theoretical derivations and numerical simulations to achieve its objectives. It was discovered that, during a fire in a heavy-haul railway tunnel, the temperature inside the tunnel can exceed 500 °C. Furthermore, depending on the nature of the goods transported by the train and under specific wind speed conditions, the fire source has the potential to spread to other carriages, resulting in a multi-source fire. Using the numerical simulation software Pyrosim 2022, various wind speed conditions were simulated. The results revealed that at lower wind speeds, the smoke demonstrates a reverse flow phenomenon. Concurrently, when the adjacent carriage on the leeward side of the fire is ignited, the high-temperature reverse flow smoke, along with the thermal radiation from the flames, ignites combustible materials in the adjacent carriage on the windward side of the burning carriage. Through theoretical derivation and numerical simulation, the critical wind speed for the working conditions was determined to be 2.14 m/s. It was found that while a higher wind speed can lead to a decrease in temperature, it also increases the flame deflection angle. When the wind speed exceeds 2.4 m/s, although the temperature significantly drops in a short period, the proximity of combustible materials on the leeward side of the carriage becomes a concern. At this wind speed, the flame deflection angle causes heat radiation on the leeward side, specifically between 0.5 m and 3 m, to ignite the combustible materials on the carriage surface, resulting in fire spread and multiple fire incidents. The relationship between wind speed and the angle of deflection from the fire source was determined using relevant physics principles. Additionally, the relationship between wind speed and the trajectory of water mist spraying was established. It was proposed to optimize the position of the water mist based on its deviation, and the results indicated that under critical wind speed conditions, when the water mist spraying is offset approximately 5 m towards the upwind side of the fire source, it can act more directly on the surface of the fire source. Numerical simulation results show a significant reduction in the maximum temperature and effective control of fire spread. Under critical wind speed conditions, the localized average temperature of the fire decreased by approximately 140 °C when spraying was applied, compared to the conditions without spraying, and the peak temperature decreased by about 190 °C. This modification scheme can effectively suppress the threat of fire to personnel evacuation under simulated working conditions, reflecting effective control over fires. Additionally, it provides theoretical support for the study of fire patterns in tunnels and emergency response measures. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

20 pages, 3441 KiB  
Article
Land Cover and Wildfire Risk: A Multi-Buffer Spatial Analysis of the Relationship Between Housing Destruction and Land Cover in Chile’s Bío-Bío Region in 2023
by Benedikt Hora, Constanza González-Mathiesen, Natalia Aravena-Solís and Tomás Tapia
Sustainability 2025, 17(10), 4416; https://doi.org/10.3390/su17104416 - 13 May 2025
Viewed by 648
Abstract
Wildfires pose increasing risks to human settlements, particularly in the Wildland–Urban Interface (WUI). This study examines the relationship between land cover (LC) characteristics and housing destruction during the 2023 wildfires in Chile’s Bío-Bío region. Using high-resolution remote sensing data and GIS-based multi-buffer spatial [...] Read more.
Wildfires pose increasing risks to human settlements, particularly in the Wildland–Urban Interface (WUI). This study examines the relationship between land cover (LC) characteristics and housing destruction during the 2023 wildfires in Chile’s Bío-Bío region. Using high-resolution remote sensing data and GIS-based multi-buffer spatial analysis (30 m and 100 m), we assessed LC patterns around affected and unaffected rural houses. Results indicate that the proximity of forest plantations significantly increased housing loss, with a notably higher presence of plantations within 30 m of destroyed houses. In contrast, agricultural and pasture mosaics demonstrated a protective function by reducing fire spread. Shrublands also showed moderate protection, albeit with statistical uncertainty. The findings highlight the critical role of immediate LC in determining wildfire impact, emphasizing the need for integrating LC considerations into wildfire risk management, land-use planning, and policy interventions. Strategies such as creating defensible spaces, enforcing zoning regulations, and promoting fire-resistant landscapes can help mitigate future wildfire damage. This research provides spatially explicit insights that contribute to wildfire risk reduction theory and inform targeted prevention and resilience-building strategies in Chile and other fire-prone regions. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

22 pages, 10463 KiB  
Article
The Effect of Toxicity, Physical and Thermal Properties of Fire Blanket Made of Glass Fiber on Its Quality as Small Fire Suppression Tool
by Mohamed A. Hassan, Mohamed M. AlSofian, Ahmed Al Zharani, Mohammed R. AlOtaibi, Sami Al Saeed and Naif Al Anazi
Fire 2025, 8(5), 191; https://doi.org/10.3390/fire8050191 - 9 May 2025
Viewed by 542
Abstract
The use of fiberglass blankets as fire suppression blankets to extinguish accidental cooking fires has been regulated and widely used, especially in homes and small firms and laboratories. Understanding the properties, which have significant effect on their performance, is essential for ensuring effective [...] Read more.
The use of fiberglass blankets as fire suppression blankets to extinguish accidental cooking fires has been regulated and widely used, especially in homes and small firms and laboratories. Understanding the properties, which have significant effect on their performance, is essential for ensuring effective fire control and improving the quality of these blankets in fire suppression. This study examines key properties including toxicity, physical characteristics, thermal behavior, and fire suppression capabilities. Novel properties such as air permeability and spectroscopic structural analysis are explored, areas previously under-researched. The sample number S4 had Warp/weft count 21/12 with comparison to air permeability; it gave the lowest value among the selected samples. Thermal properties, including heat transfer and temperature dynamics, are also analyzed to understand how fire spreads through the material. The optimal performance of air permeability was observed to be below 650 L/m2/s. Blankets demonstrated over 45% heat blocking efficiency at low heat flux and more than 78% at high heat flux. Temperature rise within the first minute of fire exposure is a key determinant, with effective blankets maintaining temperatures below 300 °C after one minute and ensuring that the final temperature after three minutes does not exceed 390–400 °C. Additionally, a new classification system based on the toxicity of gases emitted during combustion was introduced, enhancing the safety profile of fiberglass blankets and improving their suitability for practical use. This research contributes valuable insights into both the performance and safety of fiberglass fire blankets Full article
Show Figures

Figure 1

23 pages, 6824 KiB  
Article
Study on the Influence of Expansion Ratio on the Effectiveness of Foam in Suppressing Forest Surface Fires
by Haiyan Wang, Junzhao Zhang, Hongbin Zhong and Lei Chen
Fire 2025, 8(5), 171; https://doi.org/10.3390/fire8050171 - 28 Apr 2025
Viewed by 667
Abstract
Firefighting foam is widely recognized for its excellent fire suppression performance. However, research on the effect of foam expansion ratio on the suppression efficiency of forest surface fires remains limited. In this study, the expansion ratio was adjusted by varying the air-to-liquid ratio [...] Read more.
Firefighting foam is widely recognized for its excellent fire suppression performance. However, research on the effect of foam expansion ratio on the suppression efficiency of forest surface fires remains limited. In this study, the expansion ratio was adjusted by varying the air-to-liquid ratio in a compressed air foam system, and laboratory-scale foam suppression experiments were conducted. Key performance indicators, including extinguishing coverage time, internal cooling rate, and resistance to reignition, were systematically measured. The effects of expansion ratio on the diffusion and penetration behavior of foam on the fuel bed surface were then investigated to understand how these characteristics influence suppression performance. The results indicate that both excessively low and high expansion ratios can weaken fire suppression effectiveness. Low-expansion foam, characterized by low viscosity and high water content, exhibits strong local penetration and cooling capabilities. However, it struggles to rapidly cover the fuel bed surface and isolate oxygen, thereby reducing the overall suppression efficiency. In contrast, high-expansion foam has greater viscosity, allowing it to spread across the fuel bed surface under pressure gradient forces and form a stable coverage layer, effectively limiting the oxygen supply required for combustion. However, its limited depth penetration and lower water content reduce internal cooling efficiency, increasing the risk of reignition. The optimal expansion ratio was determined to be 15.1. Additionally, increasing the liquid supply flow rate significantly improved suppression performance; however, this improvement plateaued when the flow rate exceeded 10 L/min. Full article
(This article belongs to the Special Issue Firefighting Approaches and Extreme Wildfires)
Show Figures

Figure 1

13 pages, 6291 KiB  
Article
Sensitivity to the Representation of Wind for Wildfire Rate of Spread: Case Studies with the Community Fire Behavior Model
by Masih Eghdami, Pedro A. Jiménez y Muñoz and Amy DeCastro
Fire 2025, 8(4), 135; https://doi.org/10.3390/fire8040135 - 31 Mar 2025
Viewed by 764
Abstract
Accurate wildfire spread modeling critically depends on the representation of wind dynamics, which vary with terrain, land cover characteristics, and height above ground. Many fire spread models are often coupled with coarse atmospheric grids that cannot explicitly resolve the vertical variation of wind [...] Read more.
Accurate wildfire spread modeling critically depends on the representation of wind dynamics, which vary with terrain, land cover characteristics, and height above ground. Many fire spread models are often coupled with coarse atmospheric grids that cannot explicitly resolve the vertical variation of wind near flame heights. Rothermel’s fire spread model, a widely used parameterization, relies on midflame wind speed to calculate the fire rate of spread. In coupled fire atmosphere models such as the Community Fire Behavior Model (CFBM), users are required to specify the midflame height before running a fire spread simulation. This study evaluates the use of logarithmic interpolation wind adjustment factors (WAF) for improving midflame wind speed estimates, which are critical for the Rothermel model. We compare the fixed wind height approach that is currently used in CFBM with WAF-derived winds for unsheltered and sheltered surface fire spread. For the first time in this context, these simulations are validated against satellite and ground-based observations of fire perimeters. The results show that WAF implementation improves fire perimeter predictions for both grass and canopy fires while reducing the overestimation of fire spread. Moreover, this approach solely depends on the fuel bed depth and estimation of canopy density, enhancing operational efficiency by eliminating the need for users to specify a wind height for simulations. Full article
Show Figures

Figure 1

20 pages, 11814 KiB  
Article
Self-Organizing Map-Based Classification for Fire Weather Index in the Beijing–Tianjin–Hebei Region and Their Potential Causes
by Maowei Wu, Chengpeng Zhang, Meijiao Li, Wupeng Du, Jianming Chen and Caishan Zhao
Atmosphere 2025, 16(4), 403; https://doi.org/10.3390/atmos16040403 - 30 Mar 2025
Viewed by 446
Abstract
Understanding the characteristics of wildfires in the Beijing–Tianjin–Hebei (BTH) region is crucial for improving the monitoring of local wildfire danger. Our investigation first establishes the spatial distributions of fire weather index (FWI) distributions and satellite-observed wildfire occurrences. The FWI provides a reasonably accurate [...] Read more.
Understanding the characteristics of wildfires in the Beijing–Tianjin–Hebei (BTH) region is crucial for improving the monitoring of local wildfire danger. Our investigation first establishes the spatial distributions of fire weather index (FWI) distributions and satellite-observed wildfire occurrences. The FWI provides a reasonably accurate representation of wildfire danger in the BTH region. Through Self-Organizing Maps (SOM) clustering analysis, we identify nine distinct spatial patterns in FWI composites. Notably, the annual frequency of SOM modes 2 and 7 has shown a significant increasing trend over the past 40 years. The spatial distribution of the highest FWI values in these two modes is in the southern and central BTH regions, respectively. Subsequently, we examine the relationship between FWI variations and atmospheric circulation patterns. A synoptic analysis indicates that the increased fuel availability index observed in SOM modes 2 and 7 can be primarily attributed to two key factors. One is a post-trough system, which is marked by a decrease in water vapor transport. The other is a high-pressure system, which is associated with higher temperatures and drought conditions. Finally, the relative contributions of the fuel available index and the wildfire spread rate index to the FWI are quantified using a partial differential approach. The variations in the fuel available index are the primary drivers of the high FWI values in these two SOM patterns. This study underscores the importance of analyzing the synergistic effects of multiple atmospheric circulation patterns on the fuel availability index, which is critical for improving wildfire danger prediction at different timescales in the BTH region. Full article
(This article belongs to the Special Issue Fire Weather and Drought: Recent Developments and Future Perspectives)
Show Figures

Figure 1

Back to TopTop