Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = fine-scale land use optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 12803 KiB  
Article
Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers
by Runping Ma, Maofa Wang, Chengcheng Wang, Yibo Zhang, Xiang Zhou and Li Jiang
Sustainability 2025, 17(13), 5840; https://doi.org/10.3390/su17135840 - 25 Jun 2025
Viewed by 325
Abstract
Understanding the spatiotemporal dynamics of vegetation net primary productivity (NPP) and its drivers is critical to sustainable land -carbon management, carbon-neutral development, and ecological restoration in fragile karst landscapes. This study proposes a Pearson Correlation—Deep Transformer (PCADT) model that integrates attention mechanisms and [...] Read more.
Understanding the spatiotemporal dynamics of vegetation net primary productivity (NPP) and its drivers is critical to sustainable land -carbon management, carbon-neutral development, and ecological restoration in fragile karst landscapes. This study proposes a Pearson Correlation—Deep Transformer (PCADT) model that integrates attention mechanisms and geospatial covariates to enhance NPP estimation accuracy in Guangxi, China—a global karst hotspot. Leveraging multisource remote sensing data (2015–2020), PCADT achieves 10.7% higher predictive accuracy (R2 = 0.83 vs. conventional models) at 500 m resolution, thereby capturing the fine-scale heterogeneity essential for sustainability planning. The results reveal a significant annual NPP increase (4.14 gC·m−2·a−1, p < 0.05), with eastern areas exhibiting higher baseline productivity (1129 gC·m−2 in Wuzhou) but western regions showing steeper growth rates (5.2% vs. 2.1%). Vegetation carbon sequestration capacity, validated against MOD17A3HGF data (R2 = 0.998), demonstrates spatial consistency (east > west), with forest-dominated Wuzhou contributing 6.5 TgC annually. Mechanistic analyses identify precipitation as the dominant climatic driver (partial r = 0.62, p < 0.01), surpassing temperature sensitivity, while bimodal NPP-altitude peaks (300 m and 900 m) and land -use transitions (e.g., forest-to-cropland conversions) explain 18.5% of NPP variability and reduce regional carbon stocks by 4593 tC. The PCADT framework offers a scalable solution for precision carbon management by emphasizing the role of anthropogenic interventions—such as afforestation—in alleviating climatic constraints. It advocates for spatially adaptive strategies to optimize water resource utilization, enhance forest conservation, and promote sustainable land -use transitions. By identifying areas where water -scarcity relief and targeted afforestation would yield the highest carbon returns, the PCADT framework directly supports SDG 13 (Climate Action) and SDG 15 (Life on Land), providing a strategic blueprint for sustainable development in water-limited karst regions globally. Full article
Show Figures

Figure 1

21 pages, 10091 KiB  
Article
Scalable Hyperspectral Enhancement via Patch-Wise Sparse Residual Learning: Insights from Super-Resolved EnMAP Data
by Parth Naik, Rupsa Chakraborty, Sam Thiele and Richard Gloaguen
Remote Sens. 2025, 17(11), 1878; https://doi.org/10.3390/rs17111878 - 28 May 2025
Viewed by 645
Abstract
A majority of hyperspectral super-resolution methods aim to enhance the spatial resolution of hyperspectral imaging data (HSI) by integrating high-resolution multispectral imaging data (MSI), leveraging rich spectral information for various geospatial applications. Key challenges include spectral distortions from high-frequency spatial data, high computational [...] Read more.
A majority of hyperspectral super-resolution methods aim to enhance the spatial resolution of hyperspectral imaging data (HSI) by integrating high-resolution multispectral imaging data (MSI), leveraging rich spectral information for various geospatial applications. Key challenges include spectral distortions from high-frequency spatial data, high computational complexity, and limited training data, particularly for new-generation sensors with unique noise patterns. In this contribution, we propose a novel parallel patch-wise sparse residual learning (P2SR) algorithm for resolution enhancement based on fusion of HSI and MSI. The proposed method uses multi-decomposition techniques (i.e., Independent component analysis, Non-negative matrix factorization, and 3D wavelet transforms) to extract spatial and spectral features to form a sparse dictionary. The spectral and spatial characteristics of the scene encoded in the dictionary enable reconstruction through a first-order optimization algorithm to ensure an efficient sparse representation. The final spatially enhanced HSI is reconstructed by combining the learned features from low-resolution HSI and applying an MSI-regulated guided filter to enhance spatial fidelity while minimizing artifacts. P2SR is deployable on a high-performance computing (HPC) system with parallel processing, ensuring scalability and computational efficiency for large HSI datasets. Extensive evaluations on three diverse study sites demonstrate that P2SR consistently outperforms traditional and state-of-the-art (SOA) methods in both quantitative metrics and qualitative spatial assessments. Specifically, P2SR achieved the best average PSNR (25.2100) and SAM (12.4542) scores, indicating superior spatio-spectral reconstruction contributing to sharper spatial features, reduced mixed pixels, and enhanced geological features. P2SR also achieved the best average ERGAS (8.9295) and Q2n (0.5156), which suggests better overall fidelity across all bands and perceptual accuracy with the least spectral distortions. Importantly, we show that P2SR preserves critical spectral signatures, such as Fe2+ absorption, and improves the detection of fine-scale environmental and geological structures. P2SR’s ability to maintain spectral fidelity while enhancing spatial detail makes it a powerful tool for high-precision remote sensing applications, including mineral mapping, land-use analysis, and environmental monitoring. Full article
Show Figures

Graphical abstract

28 pages, 2816 KiB  
Article
Enhancing Urban Understanding Through Fine-Grained Segmentation of Very-High-Resolution Aerial Imagery
by Umamaheswaran Raman Kumar, Toon Goedemé and Patrick Vandewalle
Remote Sens. 2025, 17(10), 1771; https://doi.org/10.3390/rs17101771 - 19 May 2025
Viewed by 627
Abstract
Despite the growing availability of very-high-resolution (VHR) remote sensing imagery, extracting fine-grained urban features and materials remains a complex task. Land use/land cover (LULC) maps generated from satellite imagery often fall short in providing the resolution needed for detailed urban studies. While hyperspectral [...] Read more.
Despite the growing availability of very-high-resolution (VHR) remote sensing imagery, extracting fine-grained urban features and materials remains a complex task. Land use/land cover (LULC) maps generated from satellite imagery often fall short in providing the resolution needed for detailed urban studies. While hyperspectral imagery offers rich spectral information ideal for material classification, its complex acquisition process limits its use on aerial platforms such as manned aircraft and unmanned aerial vehicles (UAVs), reducing its feasibility for large-scale urban mapping. This study explores the potential of using only RGB and LiDAR data from VHR aerial imagery as an alternative for urban material classification. We introduce an end-to-end workflow that leverages a multi-head segmentation network to jointly classify roof and ground materials while also segmenting individual roof components. The workflow includes a multi-offset self-ensemble inference strategy optimized for aerial data and a post-processing step based on digital elevation models (DEMs). In addition, we present a systematic method for extracting roof parts as polygons enriched with material attributes. The study is conducted on six cities in Flanders, Belgium, covering 18 material classes—including rare categories such as green roofs, wood, and glass. The results show a 9.88% improvement in mean intersection over union (mIOU) for building and ground segmentation, and a 3.66% increase in mIOU for material segmentation compared to a baseline pyramid attention network (PAN). These findings demonstrate the potential of RGB and LiDAR data for high-resolution material segmentation in urban analysis. Full article
(This article belongs to the Special Issue Applications of AI and Remote Sensing in Urban Systems II)
Show Figures

Figure 1

18 pages, 8987 KiB  
Article
Risk-Targets Identification and Source Apportionment Associated with Heavy Metals for Different Agricultural Soils in Sunan Economic Region, China
by Dawei Hou, Hu Xie and Lixiao Yang
Land 2025, 14(5), 1058; https://doi.org/10.3390/land14051058 - 13 May 2025
Viewed by 542
Abstract
Rapid socio-economic transition is often accompanied by intensive anthropogenic activities, leading to a significant build-up of heavy metals within farmland soils. However, this unwanted outcome may not be fully uniform but exhibit spatial variability, particularly involving different land uses. Based on 1839 topsoil [...] Read more.
Rapid socio-economic transition is often accompanied by intensive anthropogenic activities, leading to a significant build-up of heavy metals within farmland soils. However, this unwanted outcome may not be fully uniform but exhibit spatial variability, particularly involving different land uses. Based on 1839 topsoil samples from China’s Sunan Economic Region, this study estimated the contamination profiles and associated ecological risks posed by five heavy metals (As, Cd, Cr, Pb, and Hg) across cash-crop and cereal-crop soils. Further, we applied a combination of geostatistics and positive matrix factorization (PMF) model to identify the targeted zones, priority pollutants, and their underlying sources to pave the way for formulating detailed and fine-scale risk-mitigation strategies. Our results revealed that heavy metal pollution in Sunan displayed significant spatial variability, predominantly influenced by localized Hg and Cd accumulation, with more severe contamination observed in cash-crop soils compared to cereal-crop soils. The 232,532 ha of agricultural land could be designated as the targeted zones in which excessive Hg and Cd accumulation can be identified as the priority pollutants contributing to potential ecological risk. PMF modeling also suggested that within targeted zones, Cd accumulation was predominantly driven by intensive agrochemical application, whereas multiple sources simultaneously determined Hg accumulation. Our findings offer valuable guidance for optimizing land management strategies aimed at mitigating agricultural soil degradation driven by intensive anthropogenic activities. In addition, the integrated approach highlighted the crucial values in aspects to spatially identify risk-targeted zones and priority pollutants. Full article
Show Figures

Figure 1

23 pages, 14157 KiB  
Article
A Spatial–Frequency Combined Transformer for Cloud Removal of Optical Remote Sensing Images
by Fulian Zhao, Chenlong Ding, Xin Li, Runliang Xia, Caifeng Wu and Xin Lyu
Remote Sens. 2025, 17(9), 1499; https://doi.org/10.3390/rs17091499 - 23 Apr 2025
Viewed by 679
Abstract
Cloud removal is a vital preprocessing step in optical remote sensing images (RSIs), directly enhancing image quality and providing a high-quality data foundation for downstream tasks, such as water body extraction and land cover classification. Existing methods attempt to combine spatial and frequency [...] Read more.
Cloud removal is a vital preprocessing step in optical remote sensing images (RSIs), directly enhancing image quality and providing a high-quality data foundation for downstream tasks, such as water body extraction and land cover classification. Existing methods attempt to combine spatial and frequency features for cloud removal, but they rely on shallow feature concatenation or simplistic addition operations, which fail to establish effective cross-domain synergistic mechanisms. These approaches lead to edge blurring and noticeable color distortions. To address this issue, we propose a spatial–frequency collaborative enhancement Transformer network named SFCRFormer, which significantly improves cloud removal performance. The core of SFCRFormer is the spatial–frequency combined Transformer (SFCT) block, which implements cross-domain feature reinforcement through a dual-branch spatial attention (DBSA) module and frequency self-attention (FreSA) module to effectively capture global context information. The DBSA module enhances the representation of spatial features by decoupling spatial-channel dependencies via parallelized feature refinement paths, surpassing the performance of traditional single-branch attention mechanisms in maintaining the overall structure of the image. FreSA leverages fast Fourier transform to convert features into the frequency domain, using frequency differences between object and cloud regions to achieve precise cloud detection and fine-grained removal. In order to further enhance the features extracted by DBSA and FreSA, we design the dual-domain feed-forward network (DDFFN), which effectively improves the detail fidelity of the restored image by multi-scale convolution for local refinement and frequency transformation for global structural optimization. A composite loss function, incorporating Charbonnier loss and Structural Similarity Index (SSIM) loss, is employed to optimize model training and balance pixel-level accuracy with structural fidelity. Experimental evaluations on the public datasets demonstrate that SFCRFormer outperforms state-of-the-art methods across various quantitative metrics, including PSNR and SSIM, while delivering superior visual results. Full article
Show Figures

Figure 1

18 pages, 2634 KiB  
Article
Monitoring Fine-Scale Urban Shrinkage Space with NPP-VIIRS Imagery
by Shili Chen and Cheng Cheng
Remote Sens. 2025, 17(4), 688; https://doi.org/10.3390/rs17040688 - 18 Feb 2025
Viewed by 595
Abstract
Urban shrinkage is a significant challenge to sustainable urban development. To date, the existing research has yet to analyze urban shrinkage at a fine-scale level. This study addresses this gap by employing nighttime light (NTL) data, which, due to its strong correlation with [...] Read more.
Urban shrinkage is a significant challenge to sustainable urban development. To date, the existing research has yet to analyze urban shrinkage at a fine-scale level. This study addresses this gap by employing nighttime light (NTL) data, which, due to its strong correlation with human activity and high spatial–temporal resolution, offers a robust approach for micro-scale population estimation. This paper aims to explore the characteristics and formation mechanisms of urban shrinkage spaces in Guangzhou, using NTL data and applying ordinary least squares (OLS) and geographically weighted regression (GWR) models. The correlational analysis reveals a marked improvement in model fit with GWR (R2 = 0.91) compared with OLS (R2 = 0.63), confirming the predictive power of NTL-based GWR for population mapping and the spatial delineation of urban shrinkage. We demonstrate that urban shrinkage spaces in Guangzhou are predominantly distributed in the outer suburbs, while urban growth is concentrated within the urban core area and inner suburbs. The formation of urban shrinkage in Liwan District examined as a case study, is primarily influenced by market factors, government actions, and regulatory constraints—a constellation of factors likely generalizable with other contexts of urban shrinkage. A comprehensive understanding of urban shrinkage at a fine-scale level is imperative for policy makers to optimize urban land use planning and mitigate the factors contributing to shrinkage space, thereby promoting sustainable urban development. Full article
Show Figures

Figure 1

16 pages, 8606 KiB  
Article
Annual Cropping Intensity Dynamics in China from 2001 to 2023
by Jie Ren, Yang Shao and Yufei Wang
Remote Sens. 2024, 16(24), 4801; https://doi.org/10.3390/rs16244801 - 23 Dec 2024
Viewed by 1012
Abstract
Spatial and temporal information about cropping patterns of single and multiple crops is important for monitoring crop production and land-use intensity. We used time-series MODIS NDVI 8-day composite data to develop annual cropping pattern products at a 250 m spatial resolution for China, [...] Read more.
Spatial and temporal information about cropping patterns of single and multiple crops is important for monitoring crop production and land-use intensity. We used time-series MODIS NDVI 8-day composite data to develop annual cropping pattern products at a 250 m spatial resolution for China, covering the period from 2001 to 2023. To address the potential impacts of varying parameters in both data pre-processing and the peak detection algorithm on the accuracy of cropping pattern mapping, we employed a grid-search method to fine-tune these parameters. This process focused on optimizing the Savitzky–Golay smoothing window size and the peak width parameters using a calibration dataset. The results highlighted that an optimal combination of a five to seven MODIS composite window size in Savitzky–Golay smoothing and a peak width of four MODIS composites achieved good overall mapping accuracy. Pixel-wise accuracy assessments were conducted for the selected mapping years of 2001, 2011, and 2021. Overall accuracies were between 89.7% and 92.0%, with F1 scores ranging from 0.921 to 0.943. Nationally, this study observed a fluctuating trend in multiple cropping percentages, with a notable increase after 2013, suggesting shifts toward more intensive agricultural practices in recent years. At a finer spatial scale, the combination of Mann–Kendall and Sen’s slope analyses revealed that approximately 12.9% of 3 km analytical windows exhibited significant changes in cropping intensity. We observed spatial clusters of increasing and decreasing crop intensity trends across provinces such as Hebei, Shandong, Shaanxi, and Gansu. This study underscores the importance of data smoothing and peak detection methods in analyzing high temporal resolution remote sensing data. The generation of annual single/multiple cropping pattern maps at a 250 m spatial resolution enhances our comprehension of agricultural dynamics through time and across different regions. Full article
Show Figures

Graphical abstract

20 pages, 52399 KiB  
Article
Enhancing Soil Salinity Evaluation Accuracy in Arid Regions: An Integrated Spatiotemporal Data Fusion and AI Model Approach for Arable Lands
by Tong Su, Xinjun Wang, Songrui Ning, Jiandong Sheng, Pingan Jiang, Shenghan Gao, Qiulan Yang, Zhixin Zhou, Hanyu Cui and Zhilin Li
Land 2024, 13(11), 1837; https://doi.org/10.3390/land13111837 - 5 Nov 2024
Cited by 1 | Viewed by 1677
Abstract
Soil salinization is one of the primary factors contributing to land degradation in arid areas, severely restricting the sustainable development of agriculture and the economy. Satellite remote sensing is essential for real-time, large-scale soil salinity content (SSC) evaluation. However, some satellite images have [...] Read more.
Soil salinization is one of the primary factors contributing to land degradation in arid areas, severely restricting the sustainable development of agriculture and the economy. Satellite remote sensing is essential for real-time, large-scale soil salinity content (SSC) evaluation. However, some satellite images have low temporal resolution and are affected by weather conditions, leading to the absence of satellite images synchronized with ground observations. Additionally, some high-temporal-resolution satellite images have overly coarse spatial resolution compared to ground features. Therefore, the limitations of these spatiotemporal features may affect the accuracy of SSC evaluation. This study focuses on the arable land in the Manas River Basin, located in the arid areas of northwest China, to explore the potential of integrated spatiotemporal data fusion and deep learning algorithms for evaluating SSC. We used the flexible spatiotemporal data fusion (FSDAF) model to merge Landsat and MODIS images, obtaining satellite fused images synchronized with ground sampling times. Using support vector regression (SVR), random forest (RF), and convolutional neural network (CNN) models, we evaluated the differences in SSC evaluation results between synchronized and unsynchronized satellite images with ground sampling times. The results showed that the FSDAF model’s fused image was highly similar to the original image in spectral reflectance, with a coefficient of determination (R2) exceeding 0.8 and a root mean square error (RMSE) below 0.029. This model effectively compensates for the missing fine-resolution satellite images synchronized with ground sampling times. The optimal salinity indices for evaluating the SSC of arable land in arid areas are S3, S5, SI, SI1, SI3, SI4, and Int1. These indices show a high correlation with SSC based on both synchronized and unsynchronized satellite images with ground sampling times. SSC evaluation models based on synchronized satellite images with ground sampling times were more accurate than those based on unsynchronized images. This indicates that synchronizing satellite images with ground sampling times significantly impacts SSC evaluation accuracy. Among the three models, the CNN model demonstrates the highest predictive accuracy in SSC evaluation based on synchronized and unsynchronized satellite images with ground sampling times, indicating its significant potential in image prediction. The optimal evaluation scheme is the CNN model based on satellite image synchronized with ground sampling times, with an R2 of 0.767 and an RMSE of 1.677 g·kg−1. Therefore, we proposed a framework for integrated spatiotemporal data fusion and CNN algorithms for evaluating soil salinity, which improves the accuracy of soil salinity evaluation. The results provide a valuable reference for the real-time, rapid, and accurate evaluation of soil salinity of arable land in arid areas. Full article
(This article belongs to the Special Issue Salinity Monitoring and Modelling at Different Scales: 2nd Edition)
Show Figures

Figure 1

28 pages, 12392 KiB  
Article
Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data
by Ziyu Wang, Wei Wu and Hongbin Liu
Remote Sens. 2024, 16(17), 3268; https://doi.org/10.3390/rs16173268 - 3 Sep 2024
Cited by 5 | Viewed by 2801
Abstract
The accurate prediction of soil organic carbon (SOC) is important for agriculture and land management. Methods using remote sensing data are helpful for estimating SOC in bare soils. To overcome the challenge of predicting SOC under vegetation cover, this study extracted spectral, radar, [...] Read more.
The accurate prediction of soil organic carbon (SOC) is important for agriculture and land management. Methods using remote sensing data are helpful for estimating SOC in bare soils. To overcome the challenge of predicting SOC under vegetation cover, this study extracted spectral, radar, and topographic variables from multi-temporal optical satellite images (high-resolution PlanetScope and medium-resolution Sentinel-2), synthetic aperture radar satellite images (Sentinel-1), and digital elevation model, respectively, to estimate SOC content in arable soils in the Wuling Mountain region of Southwest China. These variables were modeled at four different spatial resolutions (3 m, 20 m, 30 m, and 80 m) using the eXtreme Gradient Boosting algorithm. The results showed that modeling resolution, the combination of multi-source remote sensing data, and temporal phases all influenced SOC prediction performance. The models generally yielded better results at a medium (20 m) modeling resolution than at fine (3 m) and coarse (80 m) resolutions. The combination of PlanetScope, Sentinel-2, and topography factors gave satisfactory predictions for dry land (R2 = 0.673, MAE = 0.107%, RMSE = 0.135%). The addition of Sentinel-1 indicators gave the best predictions for paddy field (R2 = 0.699, MAE = 0.114%, RMSE = 0.148%). The values of R2 of the optimal models for paddy field and dry land improved by 36.0% and 33.4%, respectively, compared to that for the entire study area. The optical images in winter played a dominant role in the prediction of SOC for both paddy field and dry land. This study offers valuable insights into effectively modeling soil properties under vegetation cover at various scales using multi-source and multi-temporal remote sensing data. Full article
Show Figures

Figure 1

20 pages, 9179 KiB  
Article
EIAGA-S: Rapid Mapping of Mangroves Using Geospatial Data without Ground Truth Samples
by Yuchen Zhao, Shulei Wu, Xianyao Zhang, Hui Luo, Huandong Chen and Chunhui Song
Forests 2024, 15(9), 1512; https://doi.org/10.3390/f15091512 - 29 Aug 2024
Cited by 2 | Viewed by 1181
Abstract
Mangrove forests are essential for coastal protection and carbon sequestration, yet accurately mapping their distribution remains challenging due to spectral similarities with other vegetation. This study introduces a novel unsupervised learning method, the Elite Individual Adaptive Genetic Algorithm-Semantic Inference (EIAGA-S), designed for the [...] Read more.
Mangrove forests are essential for coastal protection and carbon sequestration, yet accurately mapping their distribution remains challenging due to spectral similarities with other vegetation. This study introduces a novel unsupervised learning method, the Elite Individual Adaptive Genetic Algorithm-Semantic Inference (EIAGA-S), designed for the high-precision semantic segmentation of mangrove forests using remote sensing images without the need for ground truth samples. EIAGA-S integrates an adaptive Genetic Algorithm with an elite individual’s evolution strategy, optimizing the segmentation process. A new Mangrove Enhanced Vegetation Index (MEVI) was developed to better distinguish mangroves from other vegetation types within the spectral feature space. EIAGA-S constructs segmentation rules through iterative rule stacking and enhances boundary information using connected component analysis. The method was evaluated using a multi-source remote sensing dataset covering the Hainan Dongzhai Port Mangrove Nature Reserve in China. The experimental results demonstrate that EIAGA-S achieves a superior overall mIoU (mean intersection over union) of 0.92 and an F1 score of 0.923, outperforming traditional models such as K-means and SVM (Support Vector Machine). A detailed boundary analysis confirms EIAGA-S’s ability to extract fine-grained mangrove patches. The segmentation includes five categories: mangrove canopy, other terrestrial vegetation, buildings and streets, bare land, and water bodies. The proposed EIAGA-S model offers a precise and data-efficient solution for mangrove semantic mapping while eliminating the dependency on extensive field sampling and labeled data. Additionally, the MEVI index facilitates large-scale mangrove monitoring. In future work, EIAGA-S can be integrated with long-term remote sensing data to analyze mangrove forest dynamics under climate change conditions. This innovative approach has potential applications in rapid forest change detection, environmental protection, and beyond. Full article
(This article belongs to the Special Issue New Tools for Forest Science)
Show Figures

Figure 1

24 pages, 42877 KiB  
Article
Optimizing Urban Green Spaces for Air Quality Improvement: A Multiscale Land Use/Land Cover Synergy Practical Framework in Wuhan, China
by Shibo Bi, Ming Chen, Zheng Tian, Peiyi Jiang, Fei Dai and Guowei Wang
Land 2024, 13(7), 1020; https://doi.org/10.3390/land13071020 - 8 Jul 2024
Cited by 2 | Viewed by 1952
Abstract
Air pollution, particularly fine particulate matter (PM2.5), poses a significant health risk, especially in high-density urban areas. Urban green space (UGS) can effectively mitigate this pollution. Despite their potential, strategies for effectively leveraging Land Use/Land Cover (LULC) optimization to combat PM [...] Read more.
Air pollution, particularly fine particulate matter (PM2.5), poses a significant health risk, especially in high-density urban areas. Urban green space (UGS) can effectively mitigate this pollution. Despite their potential, strategies for effectively leveraging Land Use/Land Cover (LULC) optimization to combat PM2.5 remain largely unexplored. Ordinary least squares (OLS), geographically weighted regression (GWR) and multiscale geographically weighted regression (MGWR) were employed to investigate the spatial heterogeneity relationship between UGS conversion and PM2.5 fluctuations across various scales and evolutionary stages, developing a multiscale practical framework for LULC synergy in combating air pollution. The areas of UGSs to/from other LULCs, PM2.5 concentrations and corresponding variation zones exhibited significant spatial clustering. These UGS conversions explained more than 65% of the PM2.5 changes in the study area, peaking at 76.4% explanatory power in the fourth stage. Compared to global spatial analysis (OLS: 0–0.48), local spatial regression analysis significantly improved the R2 value (GWR: 0.32–0.75, MGWR: 0.48–0.90), but the fitting quality of local spatial regression analysis decreased with increasing scale, highlighting the importance of scale diagnosis. A 2 km scale was identified as optimal for assessing the spatial heterogeneity impact of UGS and other LULC conversions on PM2.5 changes. Conversion areas from water bodies and bare land to UGSs maintain stable local spatial properties at this scale (bandwidths: 44–99). Our research provides new insights into LULC management and planning, offering a coordinated approach to mitigating urban air pollution. Additionally, a practical framework was established for addressing spatially continuous variables such as PM2.5, revealing effective approaches for addressing urban environmental issues. Full article
Show Figures

Figure 1

20 pages, 11939 KiB  
Article
Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China
by Shuai Li, Pu Guo, Fei Sun, Jinlei Zhu, Xiaoming Cao, Xue Dong and Qi Lu
Land 2024, 13(6), 845; https://doi.org/10.3390/land13060845 - 13 Jun 2024
Cited by 3 | Viewed by 2269
Abstract
Drylands are characterized by unique ecosystem types, sparse vegetation, fragile environments, and vital ecosystem services. The accurate mapping of dryland ecosystems is essential for their protection and restoration, but previous approaches primarily relied on modifying land use data derived from remote sensing, lacking [...] Read more.
Drylands are characterized by unique ecosystem types, sparse vegetation, fragile environments, and vital ecosystem services. The accurate mapping of dryland ecosystems is essential for their protection and restoration, but previous approaches primarily relied on modifying land use data derived from remote sensing, lacking the direct utilization of latest remote sensing technologies and methods to map ecosystems, especially failing to effectively identify key ecosystems with sparse vegetation. This study attempts to integrate Google Earth Engine (GEE), random forest (RF) algorithm, multi-source remote sensing data (spectral, radar, terrain, texture), feature optimization, and image segmentation to develop a fine-scale mapping method for an ecologically critical area in northern China. The results showed the following: (1) Incorporating multi-source remote sensing data significantly improved the overall classification accuracy of dryland ecosystems, with radar features contributing the most, followed by terrain and texture features. (2) Optimizing the features set can enhance the classification accuracy, with overall accuracy reaching 91.34% and kappa coefficient 0.90. (3) User’s accuracies exceeded 90% for forest, cropland, and water, and were slightly lower for steppe and shrub-steppe but were still above 85%, demonstrating the efficacy of the GEE and RF algorithm to map sparse vegetation and other dryland ecosystems. Accurate dryland ecosystems mapping requires accounting for regional heterogeneity and optimizing sample data and feature selection based on field surveys to precisely depict ecosystem patterns in complex regions. This study precisely mapped dryland ecosystems in a typical dryland region, and provides baseline data for ecological protection and restoration policies in this region, as well as a methodological reference for ecosystem mapping in similar regions. Full article
Show Figures

Figure 1

32 pages, 5530 KiB  
Article
Calibration for Improving the Medium-Range Soil Temperature Forecast of a Semiarid Region over Tibet: A Case Study
by Yakai Guo, Baojun Yuan, Aifang Su, Changliang Shao and Yong Gao
Atmosphere 2024, 15(5), 591; https://doi.org/10.3390/atmos15050591 - 13 May 2024
Cited by 3 | Viewed by 1479
Abstract
The high complexity of the parameter–simulation problem in land surface models over semiarid areas makes it difficult to reasonably estimate the surface simulation conditions that are important for both weather and climate in different regions. In this study, using the dense site datasets [...] Read more.
The high complexity of the parameter–simulation problem in land surface models over semiarid areas makes it difficult to reasonably estimate the surface simulation conditions that are important for both weather and climate in different regions. In this study, using the dense site datasets of a typical semiarid region over Tibet and the Noah land surface model with the constrained land parameters of multiple sites, an enhanced Kling–Gupta efficiency criterion comprising multiple objectives, including variable and layer dimensions, was obtained, which was then applied to calibration schemes based on two global search algorithms (particle swarm optimization and shuffled complex evaluation) to investigate the site-scale spatial complexities in soil temperature simulations. The calibrations were then compared and further validated. The results show that the Noah land surface model obtained reasonable simulations of soil moisture against the observations with fine consistency, but the negative fit and huge spatial errors compared with the observations indicated its weak ability to simulate the soil temperature over regional semiarid land. Both calibration schemes significantly improved the soil moisture and temperature simulations, but particle swarm optimization generally converged to a better objective than shuffled complex evaluation, although with more parameter uncertainties and less heterogeneity. Moreover, simulations initialized with the optimal parameter tables for the calibrations obtained similarly sustainable improvements for soil moisture and temperature, as well as good consistency with the existing soil reanalysis. In particular, the soil temperature simulation errors for particle swarm optimization were unbiased, while those for the other method were found to be biased around −3 K. Overall, particle swarm optimization was preferable when conducting soil temperature simulations, and it may help mitigate the efforts in surface forecast improvement over semiarid regions. Full article
(This article belongs to the Special Issue Climate Change and Regional Sustainability in Arid Lands)
Show Figures

Figure 1

23 pages, 16274 KiB  
Article
Multi-Scenario Land Use Optimization Simulation and Ecosystem Service Value Estimation Based on Fine-Scale Land Survey Data
by Rui Shu, Zhanqi Wang, Na Guo, Ming Wei, Yebin Zou and Kun Hou
Land 2024, 13(4), 557; https://doi.org/10.3390/land13040557 - 22 Apr 2024
Cited by 6 | Viewed by 2020
Abstract
Land optimization simulation and ecosystem service value (ESV) estimation can better serve land managers in decision-making. However, land survey data are seldom used in existing studies, and land optimization constraints fail to fully consider land planning control, and the optimization at the provincial [...] Read more.
Land optimization simulation and ecosystem service value (ESV) estimation can better serve land managers in decision-making. However, land survey data are seldom used in existing studies, and land optimization constraints fail to fully consider land planning control, and the optimization at the provincial scale is not fine enough, which leads to a disconnection between academic research and land management. We coupled ESV, gray multi-objective optimization (GMOP), and patch-generating land use simulation (PLUS) models based on authoritative data on land management to project land use and ESV change under natural development (ND), rapid economic development (RED), ecological land protection (ELP), and sustainable development (SD) scenarios in 2030. The results show that construction land expanded dramatically (by 97.96% from 2000 to 2020), which encroached on grassland and cropland. This trend will continue in the BAU scenario. Construction land, woodland, and cropland are the main types of land used for expansion, while grassland and unused land, which lack strict use control, are the main land outflow categories. From 2000 to 2030, the total amount of ESV increases steadily and slightly. The spatial distribution of ESV is significantly aggregated and the agglomeration is increasing. The policy direction and land planning are important reasons for land use changes. The land use scenarios we set up can play an important role in preventing the uncontrolled expansion of construction land, mitigating the phenomenon of ecological construction, i.e., “governance while destruction”, and promoting food security. This study provides a new approach for provincial large-scale land optimization and ESV estimation based on land survey data and provides technical support for achieving sustainable land development. Full article
Show Figures

Figure 1

24 pages, 26513 KiB  
Article
Semi-Supervised Detection of Detailed Ground Feature Changes and Its Impact on Land Surface Temperature
by Pinghao Wu, Jiacheng Liang, Jianhui Xu, Kaiwen Zhong, Hongda Hu and Jian Zuo
Atmosphere 2023, 14(12), 1813; https://doi.org/10.3390/atmos14121813 - 12 Dec 2023
Viewed by 1399
Abstract
This paper presents a semi-supervised change detection optimization strategy as a means to mitigate the reliance of unsupervised/semi-supervised algorithms on pseudo-labels. The benefits of the Class-balanced Self-training Framework (CBST) and Deeplab V3+ were exploited to enhance classification accuracy for further analysis of microsurface [...] Read more.
This paper presents a semi-supervised change detection optimization strategy as a means to mitigate the reliance of unsupervised/semi-supervised algorithms on pseudo-labels. The benefits of the Class-balanced Self-training Framework (CBST) and Deeplab V3+ were exploited to enhance classification accuracy for further analysis of microsurface land surface temperature (LST), as indicated by the change detection difference map obtained using iteratively reweighted multivariate alteration detection (IR-MAD). The evaluation statistics revealed that the DE_CBST optimization scheme achieves superior change detection outcomes. In comparison to the results of Deeplab V3+, the precision indicator demonstrated a 2.5% improvement, while the commission indicator exhibited a reduction of 2.5%. Furthermore, when compared to those of the CBST framework, the F1 score showed a notable enhancement of 6.3%, and the omission indicator exhibited a decrease of 8.9%. Moreover, DE_CBST optimization improves the identification accuracy of water in unchanged areas on the basis of Deeplab V3+ classification results and significantly improves the classification effect on bare land in changed areas on the basis of CBST classification results. In addition, the following conclusions are drawn from the discussion on the correlation between ground object categories and LST on a fine-scale: (1) the correlation between land use categories and LST all have good results in GTWR model fitting, which shows that local LST has a high correlation with the corresponding range of the land use category; (2) the changes of the local LST were generally consistent with the changes of the overall LST, but the evolution of the LST in different regions still has a certain heterogeneity, which might be related to the size of the local LST region; and (3) the local LST and the land use category of the corresponding grid cells did not show a completely consistent correspondence relationship. When discussing the local LST, it is necessary to consider the change in the overall LST, the land use types around the region, and the degree of interaction between surface objects. Finally, future experiments will be further explored through more time series LST and land use data. Full article
Show Figures

Figure 1

Back to TopTop