Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Environmental Data for Modeling
2.3.1. Optical Satellite Images Collection and Processing
2.3.2. Radar Satellite Images Collection and Processing
Type | Spectral Index | Calculation Formula | Reference |
---|---|---|---|
Soil radiometric indices | Brightness Index (BI) | [61] | |
Second Brightness Index (BI2) | [61] | ||
Redness Index (RI) | [62] | ||
Color Index (CI) | [62] | ||
Hue Index (HI) | [63] | ||
Saturation Index (SI) | [63] | ||
Vegetation radiometric indices | Soil Adjusted Vegetation Index (SAVI) | [64] | |
Transformed Soil Adjusted Vegetation Index (TSAVI) | [65] | ||
Modified Soil Adjusted Vegetation Index (MSAVI) | [66] | ||
Second Modified Soil Adjusted Vegetation Index (MSAV12) | [67] | ||
Difference Vegetation Index (DVI) | [68] | ||
Ratio Vegetation Index (RVI) | [69] | ||
Perpendicular Vegetation Index (PVI) | [70] | ||
Weighted Difference Vegetation Index (WDVI) | [71] | ||
Infrared Percentage Vegetation Index (IPVI) | [72] | ||
Normalized Difference Vegetation Index (NDVI) | [73] | ||
Transformed Normalized Difference Vegetation Index (TNDVI) | [74] | ||
Atmospherically Resistant Vegetation Index (ARVI) | [75] | ||
Global Environmental Monitoring Index (GEMI) | [76] | ||
Soil salinity indices | Soil salinity index1 (SSII) | [77] | |
Soil salinity index2 (SSI2) | [78] | ||
Soil salinity index 3 (SSI3) | [79] | ||
Radar Index | Radar Vegetation Index (RVI) | [59] | |
Cross Ratio (CR) | [60] |
2.3.3. Topographic and Land Use Data
2.4. Modeling Process
2.5. Model Validation
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistics of SOC
3.2. Model Evaluation and Comparison
3.3. Relative Importance of Predictor Variables
3.4. Spatial Prediction
4. Discussion
4.1. Performance of SOC Prediction Models Using Different Combinations of Environmental Variables
4.2. Feasibility of Multi-Temporal, Multi-Scale Remote Sensing Images for SOC Mapping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Train | Test | |||||
---|---|---|---|---|---|---|---|
MAE (%) | RMSE (%) | MAE (%) | RMSE (%) | ||||
Model A | |||||||
3 m | 0.724 | 0.193 | 0.248 | 0.389 | 0.159 | 0.211 | |
20 m | 0.471 | 0.278 | 0.344 | 0.566 | 0.138 | 0.178 | |
30 m | 0.392 | 0.292 | 0.368 | 0.523 | 0.152 | 0.187 | |
80 m | 0.999 | 0.001 | 0.002 | 0.495 | 0.161 | 0.192 | |
Model B | |||||||
3 m | 0.294 | 0.318 | 0.397 | 0.498 | 0.154 | 0.192 | |
20 m | 0.632 | 0.233 | 0.287 | 0.603 | 0.127 | 0.171 | |
30 m | 0.292 | 0.321 | 0.398 | 0.411 | 0.161 | 0.208 | |
80 m | 0.999 | 0.002 | 0.001 | 0.505 | 0.158 | 0.192 | |
Model C | |||||||
3 m | 0.238 | 0.323 | 0.412 | 0.081 | 0.185 | 0.259 | |
20 m | 0.592 | 0.177 | 0.235 | 0.245 | 0.177 | 0.235 | |
30 m | 0.996 | 0.021 | 0.028 | 0.131 | 0.192 | 0.252 | |
80 m | 0.586 | 0.247 | 0.304 | 0.071 | 0.198 | 0.261 | |
Model D | |||||||
3 m | 0.207 | 0.292 | 0.398 | 0.131 | 0.297 | 0.376 | |
20 m | 0.621 | 0.223 | 0.291 | 0.414 | 0.162 | 0.207 | |
30 m | 0.721 | 0.186 | 0.241 | 0.052 | 0.313 | 0.359 | |
80 m | 0.999 | 0.003 | 0.009 | 0.102 | 0.341 | 0.456 | |
Model E | |||||||
3 m | 0.298 | 0.322 | 0.396 | 0.412 | 0.156 | 0.207 | |
20 m | 0.709 | 0.202 | 0.255 | 0.647 | 0.129 | 0.161 | |
30 m | 0.292 | 0.317 | 0.398 | 0.538 | 0.147 | 0.184 | |
80 m | 0.999 | 0.001 | 0.001 | 0.125 | 0.191 | 0.253 | |
Model F | |||||||
3 m | 0.323 | 0.312 | 0.389 | 0.405 | 0.162 | 0.209 | |
20 m | 0.729 | 0.194 | 0.246 | 0.699 | 0.114 | 0.148 | |
30 m | 0.622 | 0.241 | 0.291 | 0.382 | 0.162 | 0.213 | |
80 m | 0.321 | 0.311 | 0.392 | 0.123 | 0.178 | 0.253 |
Model | Train | Test | |||||
---|---|---|---|---|---|---|---|
MAE (%) | RMSE (%) | MAE (%) | RMSE (%) | ||||
Model A | |||||||
3 m | 0.952 | 0.063 | 0.091 | 0.201 | 0.167 | 0.201 | |
20 m | 0.999 | 0.001 | 0.001 | 0.504 | 0.136 | 0.166 | |
30 m | 0.904 | 0.081 | 0.128 | 0.244 | 0.132 | 0.196 | |
80 m | 0.214 | 0.285 | 0.368 | 0.131 | 0.153 | 0.204 | |
Model B | |||||||
3 m | 0.692 | 0.179 | 0.231 | 0.237 | 0.153 | 0.196 | |
20 m | 0.999 | 0.001 | 0.001 | 0.341 | 0.151 | 0.192 | |
30 m | 0.911 | 0.076 | 0.124 | 0.299 | 0.132 | 0.188 | |
80 m | 0.235 | 0.284 | 0.363 | 0.028 | 0.161 | 0.216 | |
Model C | |||||||
3 m | 0.273 | 0.287 | 0.354 | 0.161 | 0.156 | 0.206 | |
20 m | 0.735 | 0.169 | 0.213 | 0.585 | 0.129 | 0.152 | |
30 m | 0.511 | 0.221 | 0.291 | 0.281 | 0.158 | 0.191 | |
80 m | 0.961 | 0.046 | 0.083 | 0.211 | 0.153 | 0.194 | |
Model D | |||||||
3 m | 0.999 | 0.003 | 0.013 | 0.323 | 0.151 | 0.185 | |
20 m | 0.928 | 0.057 | 0.111 | 0.373 | 0.162 | 0.187 | |
30 m | 0.999 | 0.003 | 0.012 | 0.377 | 0.145 | 0.177 | |
80 m | 0.307 | 0.279 | 0.346 | 0.011 | 0.16 | 0.218 | |
Model E | |||||||
3 m | 0.883 | 0.096 | 0.142 | 0.235 | 0.151 | 0.197 | |
20 m | 0.692 | 0.181 | 0.229 | 0.673 | 0.107 | 0.135 | |
30 m | 0.749 | 0.161 | 0.208 | 0.338 | 0.148 | 0.183 | |
80 m | 0.574 | 0.204 | 0.271 | 0.151 | 0.159 | 0.202 | |
Model F | |||||||
3 m | 0.999 | 0.002 | 0.003 | 0.426 | 0.136 | 0.171 | |
20 m | 0.897 | 0.109 | 0.133 | 0.571 | 0.123 | 0.155 | |
30 m | 0.996 | 0.007 | 0.026 | 0.359 | 0.131 | 0.182 | |
80 m | 0.289 | 0.275 | 0.351 | 0.058 | 0.162 | 0.212 |
Model | Train | Test | |||||
---|---|---|---|---|---|---|---|
MAE (%) | RMSE (%) | MAE (%) | RMSE (%) | ||||
Model A | |||||||
3 m | 0.997 | 0.01 | 0.021 | 0.156 | 0.275 | 0.395 | |
20 m | 0.999 | 0.002 | 0.008 | 0.289 | 0.262 | 0.362 | |
30 m | 0.999 | 0.001 | 0.001 | 0.138 | 0.307 | 0.399 | |
80 m | 0.999 | 0.001 | 0.001 | 0.021 | 0.352 | 0.436 | |
Model B | |||||||
3 m | 0.993 | 0.016 | 0.036 | 0.168 | 0.288 | 0.392 | |
20 m | 0.997 | 0.012 | 0.023 | 0.195 | 0.286 | 0.386 | |
30 m | 0.999 | 0.001 | 0.004 | 0.099 | 0.293 | 0.408 | |
80 m | 0.175 | 0.293 | 0.381 | 0.031 | 0.305 | 0.423 | |
Model C | |||||||
3 m | 0.988 | 0.038 | 0.047 | 0.179 | 0.291 | 0.389 | |
20 m | 0.999 | 0.001 | 0.002 | 0.251 | 0.285 | 0.372 | |
30 m | 0.996 | 0.004 | 0.016 | 0.146 | 0.303 | 0.397 | |
80 m | 0.999 | 0.004 | 0.013 | 0.094 | 0.264 | 0.341 | |
Model D | |||||||
3 m | 0.993 | 0.027 | 0.036 | 0.16 | 0.288 | 0.394 | |
20 m | 0.998 | 0.012 | 0.017 | 0.231 | 0.275 | 0.377 | |
30 m | 0.999 | 0.006 | 0.008 | 0.13 | 0.309 | 0.401 | |
80 m | 0.999 | 0.001 | 0.002 | 0.057 | 0.281 | 0.348 | |
Model E | |||||||
3 m | 0.858 | 0.091 | 0.158 | 0.192 | 0.287 | 0.386 | |
20 m | 0.937 | 0.078 | 0.105 | 0.339 | 0.268 | 0.349 | |
30 m | 0.999 | 0.002 | 0.008 | 0.197 | 0.286 | 0.385 | |
80 m | 0.996 | 0.009 | 0.025 | 0.021 | 0.309 | 0.425 | |
Model F | |||||||
3 m | 0.993 | 0.015 | 0.035 | 0.211 | 0.289 | 0.384 | |
20 m | 0.96 | 0.062 | 0.084 | 0.233 | 0.272 | 0.376 | |
30 m | 0.999 | 0.002 | 0.009 | 0.193 | 0.28 | 0.386 | |
80 m | 0.997 | 0.012 | 0.021 | 0.037 | 0.308 | 0.422 |
Model | Land Use Type | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paddy Field | Dry Land | Total Area | |||||||||||
MAE (%) | RMSE (%) | AIC | MAE (%) | RMSE (%) | AIC | MAE (%) | RMSE (%) | AIC | |||||
Model A | |||||||||||||
3 m | 0.401 | 0.155 | 0.209 | 228.950 | 0.069 | 0.178 | 0.217 | 228.515 | 0.084 | 0.295 | 0.411 | 376.667 | |
20 m | 0.419 | 0.160 | 0.206 | 227.892 | 0.327 | 0.155 | 0.194 | 211.006 | 0.128 | 0.292 | 0.401 | 373.374 | |
30 m | 0.398 | 0.162 | 0.210 | 229.142 | 0.222 | 0.145 | 0.192 | 222.914 | 0.094 | 0.297 | 0.409 | 375.912 | |
80 m | 0.328 | 0.188 | 0.222 | 232.966 | 0.087 | 0.161 | 0.215 | 227.877 | −0.038 | 0.299 | 0.366 | 373.813 | |
Model B | |||||||||||||
3 m | 0.380 | 0.177 | 0.213 | 278.163 | 0.182 | 0.159 | 0.203 | 272.250 | 0.081 | 0.289 | 0.412 | 424.921 | |
20 m | 0.437 | 0.161 | 0.203 | 274.811 | 0.304 | 0.151 | 0.197 | 270.132 | 0.065 | 0.297 | 0.416 | 426.011 | |
30 m | 0.418 | 0.162 | 0.206 | 275.952 | 0.109 | 0.162 | 0.212 | 275.097 | 0.065 | 0.311 | 0.416 | 426.027 | |
80 m | 0.340 | 0.184 | 0.220 | 280.358 | 0.063 | 0.158 | 0.212 | 274.953 | −0.025 | 0.299 | 0.363 | 420.887 | |
Model C | |||||||||||||
3 m | −0.144 | 0.210 | 0.289 | 299.608 | 0.128 | 0.168 | 0.210 | 274.364 | 0.132 | 0.299 | 0.400 | 421.076 | |
20 m | 0.414 | 0.150 | 0.207 | 276.199 | 0.199 | 0.171 | 0.211 | 274.756 | 0.202 | 0.277 | 0.380 | 415.397 | |
30 m | 0.191 | 0.181 | 0.243 | 287.472 | 0.173 | 0.158 | 0.204 | 272.611 | 0.138 | 0.296 | 0.399 | 420.615 | |
80 m | 0.079 | 0.191 | 0.260 | 292.022 | 0.211 | 0.149 | 0.194 | 269.279 | −0.075 | 0.302 | 0.372 | 424.295 | |
Model D | |||||||||||||
3 m | −0.135 | 0.221 | 0.288 | 347.337 | 0.255 | 0.146 | 0.194 | 317.169 | 0.098 | 0.300 | 0.408 | 471.644 | |
20 m | 0.310 | 0.161 | 0.225 | 329.921 | 0.231 | 0.165 | 0.207 | 321.428 | 0.115 | 0.292 | 0.404 | 470.380 | |
30 m | −0.041 | 0.206 | 0.276 | 344.294 | 0.186 | 0.155 | 0.203 | 321.102 | 0.104 | 0.303 | 0.407 | 471.154 | |
80 m | 0.095 | 0.187 | 0.257 | 339.418 | 0.054 | 0.156 | 0.213 | 323.274 | −0.081 | 0.309 | 0.373 | 472.681 | |
Model E | |||||||||||||
3 m | 0.336 | 0.159 | 0.220 | 488.577 | 0.139 | 0.176 | 0.209 | 481.958 | 0.094 | 0.292 | 0.409 | 631.936 | |
20 m | 0.470 | 0.145 | 0.197 | 480.662 | 0.358 | 0.158 | 0.189 | 475.479 | 0.243 | 0.259 | 0.375 | 624.469 | |
30 m | 0.366 | 0.167 | 0.215 | 486.939 | 0.207 | 0.163 | 0.200 | 479.231 | 0.132 | 0.284 | 0.401 | 629.108 | |
80 m | 0.217 | 0.196 | 0.239 | 494.337 | 0.199 | 0.145 | 0.196 | 477.792 | 0.005 | 0.303 | 0.426 | 634.808 | |
Model F | |||||||||||||
3 m | 0.309 | 0.175 | 0.225 | 537.983 | 0.212 | 0.163 | 0.199 | 527.009 | 0.106 | 0.295 | 0.407 | 679.089 | |
20 m | 0.533 | 0.146 | 0.185 | 524.246 | 0.316 | 0.157 | 0.195 | 525.568 | 0.147 | 0.280 | 0.371 | 672.369 | |
30 m | 0.244 | 0.179 | 0.235 | 541.129 | 0.174 | 0.160 | 0.204 | 528.582 | 0.112 | 0.284 | 0.399 | 676.240 | |
80 m | 0.227 | 0.186 | 0.238 | 541.908 | 0.159 | 0.152 | 0.201 | 527.370 | −0.026 | 0.295 | 0.363 | 676.664 |
Model | Land Use Type | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paddy Field | Dry Land | Total Area | |||||||||||
MAE (%) | RMSE (%) | AIC | MAE (%) | RMSE (%) | AIC | MAE (%) | RMSE (%) | AIC | |||||
Model A | |||||||||||||
3 m | 0.554 | 0.137 | 0.181 | 218.616 | 0.149 | 0.160 | 0.203 | 223.969 | 0.038 | 0.309 | 0.422 | 379.939 | |
20 m | 0.510 | 0.145 | 0.189 | 221.939 | 0.332 | 0.163 | 0.193 | 220.789 | 0.152 | 0.285 | 0.396 | 371.479 | |
30 m | 0.449 | 0.161 | 0.201 | 226.007 | 0.203 | 0.148 | 0.201 | 223.400 | 0.059 | 0.299 | 0.417 | 378.432 | |
80 m | 0.237 | 0.204 | 0.237 | 237.680 | 0.077 | 0.156 | 0.210 | 226.448 | −0.079 | 0.300 | 0.373 | 376.598 | |
Model B | |||||||||||||
3 m | 0.500 | 0.153 | 0.191 | 270.631 | 0.110 | 0.162 | 0.212 | 275.058 | 0.083 | 0.295 | 0.412 | 424.768 | |
20 m | 0.445 | 0.158 | 0.201 | 274.270 | 0.374 | 0.141 | 0.186 | 266.639 | 0.073 | 0.296 | 0.414 | 425.463 | |
30 m | 0.311 | 0.169 | 0.225 | 281.864 | 0.092 | 0.149 | 0.214 | 275.718 | 0.046 | 0.305 | 0.420 | 427.405 | |
80 m | −0.007 | 0.198 | 0.271 | 295.134 | −0.008 | 0.170 | 0.220 | 277.364 | −0.085 | 0.301 | 0.374 | 424.925 | |
Model C | |||||||||||||
3 m | 0.049 | 0.191 | 0.264 | 293.148 | 0.137 | 0.158 | 0.209 | 274.015 | 0.153 | 0.300 | 0.396 | 419.404 | |
20 m | 0.247 | 0.173 | 0.235 | 284.961 | 0.187 | 0.177 | 0.213 | 275.246 | 0.178 | 0.287 | 0.389 | 417.433 | |
30 m | 0.164 | 0.177 | 0.247 | 288.627 | 0.213 | 0.150 | 0.199 | 270.992 | 0.120 | 0.302 | 0.403 | 422.013 | |
80 m | 0.089 | 0.182 | 0.258 | 291.609 | 0.137 | 0.150 | 0.203 | 272.228 | −0.019 | 0.293 | 0.362 | 420.503 | |
Model D | |||||||||||||
3 m | 0.029 | 0.187 | 0.266 | 341.862 | 0.162 | 0.156 | 0.206 | 321.060 | 0.182 | 0.298 | 0.389 | 465.077 | |
20 m | 0.420 | 0.160 | 0.206 | 323.809 | 0.254 | 0.170 | 0.204 | 320.404 | 0.136 | 0.292 | 0.399 | 468.759 | |
30 m | −0.135 | 0.204 | 0.288 | 347.332 | 0.197 | 0.158 | 0.202 | 319.666 | 0.105 | 0.310 | 0.407 | 471.093 | |
80 m | 0.089 | 0.182 | 0.258 | 339.609 | 0.116 | 0.154 | 0.206 | 321.018 | -0.026 | 0.296 | 0.364 | 469.000 | |
Model E | |||||||||||||
3 m | 0.316 | 0.171 | 0.224 | 489.618 | 0.190 | 0.152 | 0.202 | 479.943 | 0.109 | 0.308 | 0.406 | 630.785 | |
20 m | 0.598 | 0.135 | 0.171 | 470.985 | 0.493 | 0.136 | 0.168 | 467.689 | 0.213 | 0.280 | 0.381 | 622.491 | |
30 m | 0.465 | 0.158 | 0.198 | 480.957 | 0.126 | 0.165 | 0.210 | 482.452 | 0.104 | 0.301 | 0.407 | 631.190 | |
80 m | 0.248 | 0.186 | 0.235 | 492.945 | 0.124 | 0.158 | 0.205 | 480.738 | −0.053 | 0.308 | 0.368 | 630.784 | |
Model F | |||||||||||||
3 m | 0.286 | 0.175 | 0.229 | 539.126 | 0.247 | 0.143 | 0.195 | 525.544 | 0.139 | 0.289 | 0.398 | 676.442 | |
20 m | 0.639 | 0.131 | 0.162 | 515.166 | 0.447 | 0.145 | 0.175 | 518.538 | 0.135 | 0.287 | 0.399 | 676.788 | |
30 m | 0.429 | 0.162 | 0.204 | 531.313 | 0.125 | 0.164 | 0.207 | 529.549 | 0.091 | 0.295 | 0.410 | 680.158 | |
80 m | 0.165 | 0.192 | 0.247 | 544.579 | 0.090 | 0.154 | 0.209 | 529.973 | −0.046 | 0.298 | 0.367 | 678.334 |
Model | Land Use Type | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paddy Field | Dry Land | Total Area | |||||||||||
MAE (%) | RMSE (%) | AIC | MAE (%) | RMSE (%) | AIC | MAE (%) | RMSE (%) | AIC | |||||
Model A | |||||||||||||
3 m | 0.036 | 0.185 | 0.266 | 245.617 | −0.010 | 0.169 | 0.226 | 231.213 | −0.017 | 0.309 | 0.430 | 382.658 | |
20 m | 0.033 | 0.185 | 0.266 | 245.741 | 0.012 | 0.178 | 0.235 | 233.710 | 0.001 | 0.310 | 0.429 | 382.453 | |
30 m | 0.029 | 0.190 | 0.266 | 245.854 | 0.049 | 0.160 | 0.219 | 229.224 | 0.046 | 0.309 | 0.420 | 379.381 | |
80 m | 0.029 | 0.195 | 0.267 | 245.867 | 0.020 | 0.160 | 0.217 | 228.443 | 0.010 | 0.285 | 0.357 | 370.405 | |
Model B | |||||||||||||
3 m | 0.022 | 0.189 | 0.268 | 294.130 | −0.006 | 0.168 | 0.226 | 279.087 | −0.002 | 0.312 | 0.430 | 430.707 | |
20 m | 0.030 | 0.187 | 0.266 | 293.821 | −0.002 | 0.179 | 0.236 | 282.167 | −0.009 | 0.312 | 0.431 | 431.124 | |
30 m | 0.017 | 0.188 | 0.268 | 294.301 | 0.022 | 0.165 | 0.222 | 278.151 | 0.009 | 0.302 | 0.428 | 429.969 | |
80 m | 0.025 | 0.188 | 0.267 | 294.017 | 0.027 | 0.159 | 0.216 | 276.191 | 0.018 | 0.286 | 0.356 | 417.861 | |
Model C | |||||||||||||
3 m | 0.014 | 0.187 | 0.287 | 294.425 | 0.048 | 0.170 | 0.219 | 277.253 | 0.186 | 0.276 | 0.388 | 416.755 | |
20 m | 0.069 | 0.184 | 0.261 | 292.407 | −0.012 | 0.185 | 0.238 | 282.498 | 0.141 | 0.281 | 0.398 | 420.392 | |
30 m | 0.032 | 0.184 | 0.266 | 293.759 | 0.056 | 0.166 | 0.218 | 276.970 | 0.045 | 0.298 | 0.419 | 427.452 | |
80 m | 0.011 | 0.189 | 0.269 | 294.507 | 0.118 | 0.163 | 0.206 | 272.967 | 0.036 | 0.286 | 0.353 | 416.574 | |
Model D | |||||||||||||
3 m | 0.017 | 0.185 | 0.268 | 342.304 | 0.046 | 0.171 | 0.219 | 325.347 | 0.069 | 0.311 | 0.415 | 473.784 | |
20 m | 0.240 | 0.163 | 0.234 | 333.304 | −0.009 | 0.189 | 0.237 | 330.410 | 0.064 | 0.299 | 0.416 | 474.087 | |
30 m | 0.018 | 0.184 | 0.268 | 342.247 | 0.050 | 0.167 | 0.219 | 325.184 | 0.018 | 0.315 | 0.426 | 477.351 | |
80 m | 0.008 | 0.190 | 0.269 | 342.615 | 0.063 | 0.163 | 0.212 | 322.957 | 0.033 | 0.288 | 0.353 | 464.784 | |
Model E | |||||||||||||
3 m | 0.005 | 0.189 | 0.270 | 502.724 | 0.025 | 0.169 | 0.222 | 486.067 | 0.027 | 0.306 | 0.424 | 636.725 | |
20 m | 0.021 | 0.188 | 0.268 | 502.147 | 0.025 | 0.183 | 0.233 | 483.589 | 0.027 | 0.309 | 0.424 | 636.733 | |
30 m | 0.008 | 0.188 | 0.269 | 502.611 | 0.095 | 0.176 | 0.214 | 483.589 | 0.052 | 0.304 | 0.418 | 634.982 | |
80 m | 0.048 | 0.183 | 0.264 | 501.167 | 0.019 | 0.160 | 0.217 | 484.476 | 0.035 | 0.281 | 0.353 | 624.630 | |
Model F | |||||||||||||
3 m | 0.006 | 0.189 | 0.270 | 550.685 | 0.000 | 0.174 | 0.225 | 534.887 | 0.033 | 0.311 | 0.423 | 684.315 | |
20 m | 0.222 | 0.173 | 0.239 | 542.136 | −0.020 | 0.181 | 0.238 | 538.751 | 0.005 | 0.311 | 0.429 | 686.212 | |
30 m | 0.009 | 0.189 | 0.269 | 550.584 | 0.033 | 0.174 | 0.221 | 533.790 | 0.025 | 0.304 | 0.424 | 684.829 | |
80 m | 0.014 | 0.188 | 0.269 | 550.400 | 0.019 | 0.160 | 0.217 | 532.476 | 0.014 | 0.284 | 0.356 | 674.107 |
References
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Li, R.; Zhang, Y.; Wu, Q. Identification of priority areas for soil erosion control based on minimum administrative units and karst landforms in karst areas of Guizhou. Prog. Phys. Geogr. Earth Environ. 2023, 47, 892–911. [Google Scholar] [CrossRef]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Adv. Agron. 2014, 125, 93–134. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, W.; Xiao, J.; Li, H.; Yao, L.; Xie, L.; Wang, K. Soil Organic Carbon Prediction Using Sentinel-2 Data and Environmental Variables in a Karst Trough Valley Area of Southwest China. Remote Sens. 2023, 15, 2118. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, Y. Comparison of the use of Landsat 8, Sentinel-2, and Gaofen-2 images for mapping soil pH in Dehui, northeastern China. Ecol. Inform. 2022, 70, 101705. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Wang, Z. Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing. Comput. Electron. Agric. 2018, 154, 204–212. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Wang, X.; Yao, H.; Zhang, L. Estimating soil organic matter content using sentinel-2 imagery by machine learning in shanghai. IEEE Access 2021, 9, 78215–78225. [Google Scholar] [CrossRef]
- Paul, S.S.; Coops, N.C.; Johnson, M.S.; Krzic, M.; Chandna, A.; Smukler, S.M. Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation. Geoderma 2020, 363, 114177. [Google Scholar] [CrossRef]
- Hengl, T.; Leenaars, J.G.; Shepherd, K.D.; Walsh, M.G.; Heuvelink, G.B.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; et al. Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycl. Agroecosyst. 2017, 109, 77–102. [Google Scholar] [CrossRef]
- Planet. Satellite Imagery and Archive. 2021. Available online: https://planet.com/products/planet-imagery/ (accessed on 17 June 2024).
- Moon, M.; Richardson, A.D.; Friedl, M.A. Multiscale assessment of land surface phenology from harmonized Landsat 8 and Sentinel-2, PlanetScope, and PhenoCam imagery. Remote Sens. Environ. 2021, 266, 112716. [Google Scholar] [CrossRef]
- Kimm, H.; Guan, K.; Jiang, C.; Peng, B.; Gentry, L.F.; Wilkin, S.C.; Wang, S.; Cai, Y.; Bernacchi, C.J.; Peng, J.; et al. Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the US Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sens. Environ. 2020, 239, 111615. [Google Scholar] [CrossRef]
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Wang, J.; Yang, D.; Detto, M.; Nelson, B.W.; Chen, M.; Guan, K.; Wu, S.; Yan, Z.; Wu, J. Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest. Remote Sens. Environ. 2020, 246, 111865. [Google Scholar] [CrossRef]
- Neyns, R.; Efthymiadis, K.; Libin, P.; Canters, F. Fusion of multi-temporal PlanetScope data and very high-resolution aerial imagery for urban tree species mapping. Urban For. Urban Green. 2024, 99, 128410. [Google Scholar] [CrossRef]
- Pabla, S.S.; Mandla, M.S.; Narendra, H.; Patel, S. Classification of multi-temporal images using machine learning. EarthArXiv 2021. [Google Scholar] [CrossRef]
- Dobrinić, D.; Miler, M.; Medak, D. A Comparative Analysis of Pixel-Based and Object-Based Approaches Using Multitemporal PlanetScope Imagery for Land Cover Classification. Forest 2024, 67204, 39. [Google Scholar]
- Qayyum, N.; Ghuffar, S.; Ahmad, H.M.; Yousaf, A.; Shahid, I. Glacial lakes mapping using multi satellite PlanetScope imagery and deep learning. ISPRS Int. J. Geo-Inf. 2020, 9, 560. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvão, L.S.; Dalagnol, R.; Dauve, C.E.; Parraga, A.; Santi, A.L.; Della Flora, D.P.; Chen, S. Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102004. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Wu, W.; Liu, H. Prediction of Soil Organic Carbon under Different Land Use Types Using Sentinel-1/-2 Data in a Small Watershed. Remote Sens. 2021, 13, 1229. [Google Scholar] [CrossRef]
- Yang, R.; Guo, W. Using time-series Sentinel-1 data for soil prediction on invaded coastal wetlands. Environ. Monit. Assess. 2019, 191, 462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [Google Scholar] [CrossRef]
- Yang, R.; Guo, W. Modelling of soil organic carbon and bulk density in invaded coastal wetlands using Sentinel-1 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101906. [Google Scholar] [CrossRef]
- Dahhani, S.; Raji, M.; Bouslihim, Y. Synergistic Use of Multi-Temporal Radar and Optical Remote Sensing for Soil Organic Carbon Prediction. Remote Sens. 2024, 16, 1871. [Google Scholar] [CrossRef]
- Poggio, L.; Gimona, A. Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas. Sci. Total Environ. 2017, 579, 1094–1110. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, W.; Liu, H. Exploring the Influencing Factors in Identifying Soil Texture Classes Using Multitemporal Landsat-8 and Sentinel-2 Data. Remote Sens. 2022, 14, 5571. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, F.; Talebi-khiyavi, H.; Xu, T.; Homaee, M. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena 2022, 212, 106077. [Google Scholar] [CrossRef]
- Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, X.; Meng, X.; Zhu, H.; Ni, C.; Chen, M.; Liu, H. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine. Catena 2022, 209, 105842. [Google Scholar] [CrossRef]
- Peng, L.; Wu, X.; Feng, C.; Gao, L.; Li, Q.; Xu, J.; Li, B. Assessing the potential of multi-source remote sensing data for cropland soil organic matter mapping in hilly and mountainous areas. Catena 2024, 245, 108312. [Google Scholar] [CrossRef]
- Xie, B.; Ding, J.; Ge, X.; Li, X.; Han, L.; Wang, Z. Estimation of soil organic carbon content in the Ebinur Lake wetland, Xinjiang, China, based on multisource remote sensing data and ensemble learning algorithms. Sensors 2022, 22, 2685. [Google Scholar] [CrossRef] [PubMed]
- Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; Van Wesemael, B. Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma Int. J. Soil Sci. 2010, 1/2, 158. [Google Scholar] [CrossRef]
- Íala, D.; Minaík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef]
- Tayebi, M.; Fim Rosas, J.T.; Mendes, W.D.; Poppiel, R.R.; Ostovari, Y.; Ruiz, L.F.; dos Santos, N.V.; Cerri, C.E.; Silva, S.H.; Curi, N.; et al. Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sens. 2021, 13, 2223. [Google Scholar] [CrossRef]
- Maynard, J.J.; Levi, M.R. Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability. Geoderma 2017, 285, 94–109. [Google Scholar] [CrossRef]
- Pellerin, S.; Bamiere, L.; Constantin, J.; Launay, C.; Martin, R.; Schiavo, M.; Angers, D.; Augusto, L.; Balesdent, J.; Basile-Doelsch, I.; et al. A model-based assessment of the soil C storage potential at the national scale: A case study from France. In Food Security and Climate Change: 4 per 1000 Initiative New Tangible Global Challenges for the Soil; HAL: Poitiers, France, 2019. [Google Scholar]
- Zhang, G. Changes of soil labile organic carbon in different land uses in Sanjiang Plain, Heilongjiang Province. Chin. Geogr. Sci. 2010, 20, 139–143. [Google Scholar] [CrossRef]
- Fang, X.; Xue, Z.; Li, B.; An, S. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 2012, 88, 6–13. [Google Scholar] [CrossRef]
- Emadi, M.; Baghernejad, M.; Memarian, H.R. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy 2009, 26, 452–457. [Google Scholar] [CrossRef]
- Dignac, M.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 1–27. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, D.Q.; Yang, C.; Wu, W.; Liu, H.B. The spatial variability of temporal changes in soil pH affected by topography and fertilization. Catena 2022, 218, 106586. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, Q.; Zhao, X.; Gou, X.; Han, Y.; Xu, J. Hyper-spectral inversion of soil organic carbon content under different land use types. Chin. J. Appl. Ecol. 2020, 31, 863–871, (In Chinese with English Abstract). [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.; Parkin, T.; Karlen, D.; Turco, R.; Konopka, A. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Robertson, G.P.; Gross, K.L.; Caldwell, M.; Pearcy, R. Assessing the heterogeneity of belowground resources: Quantifying pattern and scale. In Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground; Academic Press: Boston, MA, USA, 1994; pp. 237–253. [Google Scholar]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J. Carbon losses from all soils across England and Wales 1978–2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multi-purpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef]
- Lin, C.; Zhu, A.X.; Wang, Z.; Wang, X.; Ma, R. The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102094. [Google Scholar] [CrossRef]
- Yu, L.; Zhuang, T.; Bai, J.; Wang, J.; Yu, Z.; Wang, X.; Zhang, G. Effects of water and salinity on soil labile organic carbon in estuarine wetlands of the Yellow River Delta, China. Ecohydrol. Hydrobiol. 2020, 20, 556–569. [Google Scholar] [CrossRef]
- He, W.; Wang, H.; Ye, W.; Tian, Y.; Hu, G.; Lou, Y.; Pan, H.; Yang, Q.; Zhuge, Y. Distinct stabilization characteristics of organic carbon in coastal salt-affected soils with different salinity under straw return management. Land Degrad. Dev. 2022, 33, 2246–2257. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Araya, T.; Kim, D.G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef]
- Niro, F.; Goryl, P.; Dransfeld, S.; Boccia, V.; Gascon, F.; Adams, J.; Themann, B.; Scifoni, S.; Doxani, G. European Space Agency (ESA) calibration/validation strategy for optical land-imaging satellites and pathway towards interoperability. Remote Sens. 2021, 13, 3003. [Google Scholar] [CrossRef]
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote. Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Trudel, M.; Charbonneau, F.; Leconte, R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Can. J. Remote Sens. 2012, 38, 514–527. [Google Scholar]
- Escadafal, R.; Girard, M.; Courault, D. Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Remote Sens. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Pouget, M.; Madeira, J.; Le Floch, E.; Kamal, S. Caracteristiques spectrales des surfaces sableuses de la region cotiere nord-ouest de l’Egypte: Application aux donnees satellitaires SPOT. In Proceedings of the 2e Journée de télédéTection: CaractéRisation et Suivi des Milieux Terrestres en réGions Arides et Tropicales, Paris, France, 4–6 December 1990; ORSTOM: Paris, France, 1990; pp. 4–6. [Google Scholar]
- Raya, S.S.; Singhb, J.P.; Dasa, G.; Panigrahyb, S. Use of high resolution remote sensing data for generating site-specific soil mangement plan. Red 2004, 550, 727. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huerte, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Qi, J.; Kerr, Y.; Chehbouni, A. External factor consideration in vegetation index development. In Proceedings of the Physical Measurements and Signatures in Remote Sensing, ISPRS, Beijing, China, 17–19 October 1994; Volume 723, p. 730. [Google Scholar]
- Li, Z.; Moreau, L. A new approach for remote sensing of canopy-absorbed photosynthetically active radiation. I: Total surface absorption. Remote Sens. Environ. 1996, 55, 175–191. [Google Scholar] [CrossRef]
- Gupta, R.K. Comparative study of AVHRR ratio vegetation index and normalized difference vegetation index in district level agricultural monitoring. Int. J. Remote. Sens. 1993, 14, 53–73. [Google Scholar] [CrossRef]
- Clevers, J. The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sens. Environ. 1988, 25, 53–69. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Zhou, X.; Dandan, L.; Huiming, Y.; Honggen, C.; Leping, S.; Guojing, Y.; Qingbiao, H.; Brown, L.; Malone, J.B. Use of landsat TM satellite surveillance data to measure the impact of the 1998 flood on snail intermediate host dispersal in the lower Yangtze River Basin. Acta Trop. 2002, 82, 199–205. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Leprieur, C.; Kerr, Y.H.; Pichon, J.M. Critical assessment of vegetation indices from AVHRR in a semi-arid environment. Remote Sens. 1996, 17, 2549–2563. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S. Using remote sensing techniques for appraisal of irrigated soil salinity. In Advances and Applications for Management and Decision Making Land, Water and Environmental Management; Oxley, L., Kulasiri, D., Eds.; Modelling and Simulation Society of Australia and New Zealand: Christchurch, New Zealand, 2007; pp. 2632–2638. [Google Scholar]
- Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Liu, W.; Henneberry, S.R.; Ni, J.; Radmehr, R.; Wei, C. Socio-cultural roots of rural settlement dispersion in Sichuan Basin: The perspective of Chinese lineage. Land Use Policy 2019, 88, 104162. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Wang, M.; Chen, X.; Shi, X.; Jiang, L. Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories. J. Perform. Constr. Facil. 2019, 33, 04019024. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Wu, L.; Chen, G.; Wang, L.; Qin, H. Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting. J. Hydrol. 2020, 582, 124293. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Jia, Y.; Jin, S.; Savi, P.; Gao, Y.; Tang, J.; Chen, Y.; Li, W. GNSS-R soil moisture retrieval based on a XGboost machine learning aided method: Performance and validation. Remote Sens. 2019, 11, 1655. [Google Scholar] [CrossRef]
- Zheng, H.; Yuan, J.; Chen, L. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation. Energies 2017, 10, 1168. [Google Scholar] [CrossRef]
- Hartig, F.; Dormann, C.F. Does model-free forecasting really outperform the true model? Proc. Natl. Acad. Sci. USA 2013, 110, E3975. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage Publications Limited: Washington, DC, USA, 2024. [Google Scholar]
- Tang, Z.; Nan, Z. The potential of cropland soil carbon sequestration in the Loess Plateau, China. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 889–902. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef]
- Li, X.; McCarty, G.W.; Karlen, D.L.; Cambardella, C.A. Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields. Catena 2018, 160, 222–232. [Google Scholar] [CrossRef]
- Xu, X.; Tong, X.; Plaza, A.; Zhong, Y.; Xie, H.; Zhang, L. Using linear spectral unmixing for subpixel mapping of hyperspectral imagery: A quantitative assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1589–1600. [Google Scholar] [CrossRef]
- Dvorakova, K.; Heiden, U.; van Wesemael, B. Sentinel-2 exposed soil composite for soil organic carbon prediction. Remote Sens. 2021, 13, 1791. [Google Scholar] [CrossRef]
- Narayan, U.; Lakshmi, V. Characterizing subpixel variability of low resolution radiometer derived soil moisture using high resolution radar data. Water Resour. Res. 2008, 44, W06425. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Subpixel variability of remotely sensed soil moisture: An inter-comparison study of SAR and ESTAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 326–337. [Google Scholar] [CrossRef]
- Garosi, Y.; Ayoubi, S.; Nussbaum, M.; Sheklabadi, M.; Nael, M.; Kimiaee, I. Use of the time series and multi-temporal features of Sentinel-1/2 satellite imagery to predict soil inorganic and organic carbon in a low-relief area with a semi-arid environment. Int. J. Remote. Sens. 2022, 43, 6856–6880. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Loiseau, T.; Baghdadi, N.; Loubet, B.; Arrouays, D.; Ali, L.; Lagacherie, P. The impact of acquisition date on the prediction performance of topsoil organic carbon from Sentinel-2 for croplands. Remote Sens. 2019, 11, 2143. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, Y.L.; Liu, J.D.; Lin, X.P.; Sun, H.Z.; Tang, X.H.; Hu, Y.L.; Huang, Y.P.; Yi, Z.G. Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical China. Forests 2022, 13, 578. [Google Scholar] [CrossRef]
- Samuel-Rosa, A.; Heuvelink, G.B.; Vasques, G.M.; Anjos, L.H. Do more detailed environmental covariates deliver more accurate soil maps? Geoderma 2015, 243, 214–227. [Google Scholar] [CrossRef]
- Odhiambo, B.O.; Kenduiywo, B.K.; Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. Appl. Geogr. 2020, 114, 102129. [Google Scholar] [CrossRef]
- Brungard, C.; Nauman, T.; Duniway, M.; Veblen, K.; Nehring, K.; White, D.; Salley, S.; Anchang, J. Regional ensemble modeling reduces uncertainty for digital soil mapping. Geoderma 2021, 397, 114998. [Google Scholar] [CrossRef]
PlanetScope | Sentinel-2 | ||||
---|---|---|---|---|---|
Band | Wavelength (nm) | Resolution (m) | Band | Wavelength (nm) | Resolution (m) |
Blue (B) | 457.5–522.5 | 3 | Blue (B) | 458–523 | 10 |
Green (G) | 542–577.5 | 3 | Green (G) | 543–578 | 10 |
650–680 | 3 | 650–680 | 10 | ||
Near infrared (NIR) | 855–875 | 3 | Red edge 1 (RE1) | 698–713 | 20 |
Red edge 2 (RE2) | 733–748 | 20 | |||
Red edge 3 (RE3) | 773–793 | 20 | |||
Near infrared (NIR) | 785–900 | 10 | |||
Near infrared Narrow (NIRn) | 855–875 | 20 | |||
Shortwave Infrared 1 (SWIR1) | 1565–1655 | 20 | |||
Shortwave Infrared 2 (SWIR2) | 2100–2280 | 20 |
Model | Environmental Variable |
---|---|
Model A | DEM + PlanetScope |
Model B | DEM + PlanetScope + Sentinel-1 |
Model C | DEM + Sentinel-2 |
Model D | DEM + Sentinel-2 + Sentinel-1 |
Model E | DEM + PlanetScope + Sentinel-2 |
Model F | DEM + PlanetScope + Sentinel-2 + Sentinel-1 |
Parameter | Threshold | Interval |
---|---|---|
Eta | 0.01, 0.05, 0.1 | - |
Max_Depth | 1–11 | 1 |
Min_Child_Weight | 0–21 | 1 |
Lambda | 0–11 | 1 |
Land Use Type | N | Min | Max | Mean | SD | CV (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Total area | 332 | 0.05 | 2.84 | 1.17 | 0.42 | 36.08 | 0.52 | 1.49 |
Paddy field | 171 | 0.05 | 2.84 | 1.26a | 0.44 | 34.79 | 0.50 | 1.56 |
Dry land | 161 | 0.14 | 2.60 | 1.08b | 0.38 | 35.59 | 0.40 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, W.; Liu, H. Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data. Remote Sens. 2024, 16, 3268. https://doi.org/10.3390/rs16173268
Wang Z, Wu W, Liu H. Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data. Remote Sensing. 2024; 16(17):3268. https://doi.org/10.3390/rs16173268
Chicago/Turabian StyleWang, Ziyu, Wei Wu, and Hongbin Liu. 2024. "Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data" Remote Sensing 16, no. 17: 3268. https://doi.org/10.3390/rs16173268
APA StyleWang, Z., Wu, W., & Liu, H. (2024). Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data. Remote Sensing, 16(17), 3268. https://doi.org/10.3390/rs16173268