Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers
Abstract
1. Introduction
2. Materials and Methods
2.1. Field of Research
2.2. Datasets and Processing
2.2.1. NPP Measured Data
2.2.2. Remote Sensing Data
2.2.3. Land Use Data
2.2.4. Other Data
2.2.5. Data Processing
2.2.6. Data Discussion
2.3. Methods
2.3.1. NPP-Based Evaluation of Plant Carbon Sequestration Potential
2.3.2. Investigation of Trends
2.3.3. Analysis of Differences
2.3.4. Analysis of Variational Stability
2.3.5. Matrix of Land Use Changes
2.3.6. Analysis of Limiting Factors
2.3.7. Model Construction
Dataset Analysis
Transformer Model
Carbon Sink Prediction Model Using the Transformer Framework
3. Results
3.1. Verification of the Model
3.2. Seasonal Fluctuations in Plant NPP
3.3. Spatial—Temporal Variations in NPP Across Different Plant Types
3.4. Evaluation of Plant Carbon Sequestration Potential Based on NPP
3.5. Factors Influencing Plant NPP
3.5.1. Analysis of the Limiting Relationships Between Plant NPP and Climatic Parameters
- ➀
- |R| ≥ 0.7 “Strong correlation”
- ➁
- 0.3 ≤ |R| < 0.7 “Moderate correlation”
- ➂
- |R| < 0.3 “Weak correlation”
3.5.2. Impact of Elevation on Plant NPP
3.5.3. Impact of Land Use Changes on Plant NPP
4. Discussion
4.1. Spatiotemporal Variation in NPP Across Multiple Plant Species
4.2. Climate, Elevation, and Land Use Shape NPP in Guangxi
4.3. Relationship Between Plant NPP and Carbon Sequestration Capacity
4.4. Study Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seo, H.; Kim, Y. Interactive impacts of fire and vegetation dynamics on global carbon and water budget using Community Land Model version 4.5. Geosci. Model Dev. 2019, 12, 457–472. [Google Scholar] [CrossRef]
- Song, L.; Li, M.; Xu, H.; Guo, Y.; Wang, Z.; Li, Y.; Wu, X.; Feng, L.; Chen, J.; Lu, X. Spatiotemporal variation and driving factors of vegetation net primary productivity in a typical karst area in China from 2000 to 2010. Ecol. Indic. 2021, 132, 108280. [Google Scholar] [CrossRef]
- Liu, M.; Jiao, J.; Pan, J.; Song, J.; Che, Y.; Li, L. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province. Acta Ecol. Sin. 2020, 40, 5306–5317. [Google Scholar]
- Clark, D.A.; Brown, S.; Kicklighter, D.W.; Chambers, J.Q.; Thomlinson, J.R.; Ni, J. Measuring net primary production in forests: Concepts and field methods. Ecol. Appl. 2001, 11, 356–370. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the primary productivity of the world. Prim. Product. Biosph. 1975, 14, 237–263. [Google Scholar]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- De Masi, R.F.; Ruggiero, S.; Tariello, F.; Vanoli, G.P. Passive envelope solutions to aid design of sustainable livestock buildings in Mediterranean climate. J. Clean. Prod. 2021, 311, 127444. [Google Scholar] [CrossRef]
- Chen, S.-T.; Guo, B.; Zhang, R.; Zang, W.-Q.; Wei, C.-X.; Wu, H.-W.; Yang, X.; Zhen, X.-Y.; Li, X.; Zhang, D.-F. Quantitatively determine the dominant driving factors of the spatial—Temporal changes of vegetation NPP in the Hengduan Mountain area during 2000–2015. J. Mt. Sci. 2021, 18, 427–445. [Google Scholar] [CrossRef]
- Pei, Y.; Dong, J.; Zhang, Y.; Yang, J.; Zhang, Y.; Jiang, C.; Xiao, X. Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and PML) for grasslands in drought years. Ecol. Inform. 2020, 56, 101052. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data. Ecol. Environ. Sci. 2018, 27, 397–405. [Google Scholar]
- Xu, Y.; Huang, W.-T.; Zheng, Z.-W.; Dai, Q.-Y.; Li, X.-Y. Detecting Influencing Factor of Vegetation NPP in Southwest China Based on Spatial Scale Effect. Huan Jing ke Xue=Huanjing Kexue 2023, 44, 900–911. [Google Scholar] [PubMed]
- Yi, S.; Jun, L.; Tao, J. Effects of vegetation coverage change on net primary productivity of Heihe River Basin during 2008–2014. Res. Soil Water Conserv. 2017, 24, 204–209. [Google Scholar]
- Ahmadaali, K.; Eskandari Damaneh, H.; Ababaei, B.; Eskandari Damaneh, H. Impacts of droughts on rainfall use efficiency in different climatic zones and land uses in Iran. Arab. J. Geosci. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Fang, P.; Yan, N.; Wei, P.; Zhao, Y.; Zhang, X. Aboveground biomass mapping of crops supported by improved casa model and sentinel-2 multispectral imagery. Remote Sens. 2021, 13, 2755. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Luo, P.; Zhang, S.; Sun, B. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 138, 108834. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ahmad, M.; Irfan, M.; Traore, O.; Chandio, A.A. Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol. Indic. 2021, 125, 107460. [Google Scholar] [CrossRef]
- Hu, B.; Lan, J.; Ying, C.; Fang, J. Comprehensive evaluation of fragile karst eco-environment in guangxi zhuang autonomous region based on GIS. J. Soil Water Conserv. 2004, 3, 103–107. [Google Scholar]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef]
- Su, H.; Feng, J.; Axmacher, J.C.; Sang, W. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. Sci. Rep. 2015, 5, 9115. [Google Scholar] [CrossRef] [PubMed]
- Michaletz, S.T.; Cheng, D.; Kerkhoff, A.J.; Enquist, B.J. Convergence of terrestrial plant production across global climate gradients. Nature 2014, 512, 39–43. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Deng, G.; Rihan, W.; Wang, S. Vegetation productivity dynamics in response to climate change and human activities under different topography and land cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Tian, Y.; Luo, G.; Wang, J.; Li, Q.; Chen, F.; Deng, Y.; Yang, Y. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecol. Indic. 2020, 115, 106392. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, N.; Lin, H.; Liu, Y.; Zhang, H. Quantitative estimation of the factors impacting spatiotemporal variation in NPP in the Dongting Lake wetlands using Landsat time series data for the last two decades. Ecol. Indic. 2022, 135, 108544. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Duan, L.; Si, G.; Liu, W.; Zhang, T.; Mulder, J. Long-Term 15N Balance After Single-Dose Input of 15N-Labeled NH4+ and NO3− in a Subtropical Forest Under Reducing N Deposition. Glob. Biogeochem. Cycles 2021, 35, e2021GB006959. [Google Scholar] [CrossRef]
- Xia, A.; Wang, Y.; Hao, Y.; Hu, R.; Wang, F.; Wu, W.; Cui, X. Research progress on estimation of vegetation carbon storage of grassland on complex terrain by remote sensing technology. Acta Ecol. Sin. 2020, 40, 6338–6350. [Google Scholar]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Sardans, J.; Luyssaert, S.; Campioli, M.; Chapin, F.S., III; Ciais, P.; Malhi, Y.; Obersteiner, M. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 2014, 4, 471–476. [Google Scholar] [CrossRef]
- Liu, H.; Jia, J.; Lin, Z.; Wang, Z.; Gong, H. Relationship between net primary production and climate change in different vegetation zones based on EEMD detrending–a case study of Northwest China. Ecol. Indic. 2021, 122, 107276. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, G.; Liu, F. Analysis on the distribution and formation conditions of geological hazards in Guangxi. Eng. Technol. Res. 2021, 6, 244–245. [Google Scholar]
- Wang, D. Current Situation and Development Trend of Soil and Water Loss in Guangxi. Soil Water Conserv. China 2022, 10, 41–43. [Google Scholar]
- Huang, D.; Chen, Y.; Mo, J.; Huang, X.; Mao, Y.; Tan, B. Vegetation Coverage Change Characteristics of Typical Landforms in Guangxi with Topography. Guangxi For. Sci. 2022, 51, 626–633. [Google Scholar]
- Wang, H.; Liu, G.; Li, Z.; Ye, X.; Wang, M.; Gong, L. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China. Chin. Geogr. Sci. 2016, 26, 35–47. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Lin, Z.; Li, S. National-scale connectivity analysis and construction of forest networks based on graph theory: A case study of China. Ecol. Eng. 2025, 216, 107639. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, S.; Wu, M.A. Spatial Assessment of Ecosystem Services in Zhoushan Archipelago Based on InVEST Model. Sustainability 2025, 17, 3913. [Google Scholar] [CrossRef]
- Liu, F.; Zeng, Y. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000–2015. Acta Ecol. Sin. 2021, 41, 5792–5803. [Google Scholar]
- Pei, Z.; Zhou, C.; Ouyang, H.; Yang, W. A carbon budget of alpine steppe area in the Tibetan Plateau. Geogr. Res. 2010, 29, 102–110. [Google Scholar]
- Wei, W.; Zhang, J.; Zhou, J.; Zhou, L.; Xie, B.; Li, C. Monitoring drought dynamics in China using Optimized Meteorological Drought Index (OMDI) based on remote sensing data sets. J. Environ. Manag. 2021, 292, 112733. [Google Scholar] [CrossRef]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef]
- Liu, L.; Guan, Y.; Mu, C.; Han, W.; Qiao, X.; Zheng, J. Spatio-temporal characteristics of vegetation net primary productivity in the Ili River Basin from 2008 to 2018. Acta Ecol. Sin. 2022, 42, 4861–4871. [Google Scholar]
- Zhang, M.; Rong, G.; Han, A.; Riao, D.; Liu, X.; Zhang, J.; Tong, Z. Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020. Water 2021, 13, 1955. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, X.; Wu, Y.; Tan, Y.; Zhang, Y.; Shen, L. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Zhou, A.; Xiang, W.; Yao, Y.; Huang, F.; Li, X. Analyzing variation characteristics of vegetation net primary productivity (NPP) in Guangxi. Guangxi Zhiwu/Guihaia 2014, 34, 622–628. [Google Scholar]
- Li, Y.; Pan, X.; Wang, C.; Liu, Y.; Zhao, Q. Changes of vegetation net primary productivity and its driving factors from 2000 to 2011 in Guangxi, China. Acta Ecol. Sin. 2014, 34, 5220–5228. [Google Scholar]
- Xiong, X.; Liao, C.; Hu, B.; Chen, Y.; Zhu, H. Spatial and temporal variability in the net primary production and its driving factors base on MODIS data in Guangxi, China. J. Guangxi Norm. Univ.-Nat. Sci. Ed. 2019, 37, 187–195. [Google Scholar]
- Mao, Y.; Jiang, Y.; Zhang, C.; Qiao, Y.; Lü, T.; Qiu, J. Spatio-temporal Changes and Influencing Factors of Vegetation Net Primary Productivity in Southwest China in the Past 20 years and Its Response to Ecological Engineering. Acta Ecol. Sin. 2022, 42, 2878–2890. [Google Scholar]
- Fang, X.; Zhang, C.; Wang, Q.; Chen, X.; Ding, J.; Karamage, F. Isolating and quantifying the effects of climate and CO2 changes (1980–2014) on the net primary productivity in arid and semiarid China. Forests 2017, 8, 60. [Google Scholar] [CrossRef]
- Zhao, R.; Sun, B.; Yu, M.; Guo, C. Characterics of Carbon Storage in Forests of Grain for Green Project in Pingguo County, Guangxi Zhuang Autonomous Region. Bull. Soil Water Conserv. 2015, 35, 350–353. [Google Scholar]
- Wei, X.; Wang, N.; Luo, P.; Yang, J.; Zhang, J.; Lin, K. Spatiotemporal assessment of land marketization and its driving forces for sustainable urban–rural development in Shaanxi province in China. Sustainability 2021, 13, 7755. [Google Scholar] [CrossRef]
- Wen, Y.; Hu, J.; Wang, J.; Liu, X.; Li, S.; Luo, Y. Effect of glycolysis and heat shock proteins on hypoxia adaptation of Tibetan sheep at different altitude. Gene 2021, 803, 145893. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. CATENA 2021, 206, 105542. [Google Scholar] [CrossRef]
- Brown, S.; Lugo, A.E. Trailblazing the carbon cycle of tropical forests from Puerto Rico. Forests 2017, 8, 101. [Google Scholar] [CrossRef]
- Högberg, P.; Näsholm, T.; Franklin, O.; Högberg, M.N. Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. For. Ecol. Manag. 2017, 403, 161–185. [Google Scholar] [CrossRef]
- Luo, Y.; White, L.W.; Canadell, J.G.; DeLucia, E.H.; Ellsworth, D.S.; Finzi, A.; Lichter, J.; Schlesinger, W.H. Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Li, X.; Zhou, T.; He, X. Carbon sink of forest ecosystem driven by NPP increasing in China. J. Nat. Resour. 2009, 24, 491–497. [Google Scholar]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; Smith, W.K.; Chang, Q.; Wang, H.; D’Odorico, P. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 2021, 12, 3777. [Google Scholar] [CrossRef]
- Abdi, A.M.; Boke-Olén, N.; Jin, H.; Eklundh, L.; Tagesson, T.; Lehsten, V.; Ardö, J. First assessment of the Plant Phenology Index for estimating gross primary productivity in African semi-arid ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 249–260. [Google Scholar] [CrossRef]
- Valerio, F.; Godinho, S.; Ferraz, G.; Pita, R.; Gameiro, J.; Silva, B.; Marques, A.T.; Silva, J.P. Multi-temporal remote sensing of inland surface waters: A fusion of Sentinel-1 & 2 data applied to small seasonal ponds in semiarid environments. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104283. [Google Scholar]
Model | MAE | RMSE | R2 | R2/FLUX | ∆MAE vs. XGB (%) |
---|---|---|---|---|---|
RF | 48.4 ± 2.7 | 63.9 ± 3.0 | 0.42 | - | −5.1 |
XGBoost | 46.1 ± 2.5 | 61.8 ± 2.9 | 0.45 | - | 0 |
PCADT | 40.4 ± 2.2 | 55.4 ± 2.6 | 0.56 | 0.83 | −10.7 |
Year | Baise | Qinzhou | Beihai | Liuzhou | Wuzhou | Chongzuo | Fangchenggang | Nanning | Laibin | Guilin | Hechi | Hezhou | Guigang | Yulin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 1002.62 | 810.00 | 659.99 | 796.27 | 1104.53 | 935.35 | 1038.38 | 813.73 | 818.48 | 792.62 | 926.58 | 959.39 | 841.85 | 901.08 |
2016 | 1012.04 | 844.10 | 665.76 | 793.77 | 1136.76 | 981.27 | 1100.39 | 848.05 | 840.81 | 784.84 | 941.34 | 977.14 | 868.0 | 923.14 |
2017 | 991.60 | 828.28 | 661.95 | 840.78 | 1142.21 | 959.24 | 1040.48 | 846.34 | 862.38 | 833.50 | 952.11 | 1017.56 | 878.87 | 902.57 |
2018 | 1002.52 | 857.48 | 699.72 | 781.38 | 1148.39 | 975.72 | 1093.27 | 847.05 | 829.51 | 795.30 | 922.64 | 1004.47 | 885.66 | 952.74 |
2019 | 1021.96 | 806.70 | 675.37 | 751.93 | 1065.46 | 950.17 | 1026.11 | 802.75 | 781.99 | 746.30 | 886.61 | 909.82 | 821.46 | 880.88 |
2020 | 1007.81 | 803.12 | 660.23 | 790.45 | 1177.97 | 946.96 | 1043.48 | 827.96 | 841.67 | 813.27 | 932.72 | 1044.79 | 885.31 | 915.02 |
Mean | 1006.43 | 824.95 | 670.50 | 792.4 | 1129.22 | 958.12 | 1057.02 | 830.98 | 829.14 | 794.31 | 927.00 | 985.53 | 863.53 | 912.57 |
City | Baise | Qinzhou | Beihai | Liuzhou | Wuzhou | Chongzuo | Fangchenggang | Nanning | Laibin | Guilin | Hechi | Hezhou | Guigang | Yulin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Land area (km2) | 36,300 | 10,897 | 3337 | 18,596 | 12,588 | 17,300 | 6173 | 22,100 | 13,411 | 27,800 | 33,500 | 11,753 | 10,602 | 12,800 |
Ability to sequester the carbon (gCm−2a−1) | 599 | 491 | 399 | 471 | 672 | 570 | 629 | 494 | 493 | 473 | 551 | 586 | 514 | 543 |
Total carbon sink (TgC) | 21.7 | 5.4 | 1.3 | 8.8 | 8.5 | 9.9 | 3.9 | 10.9 | 6.6 | 13.1 | 18.5 | 6.9 | 5.4 | 6.9 |
Land Use Type | 2020 | ||||||
---|---|---|---|---|---|---|---|
Forest Land | Grass Land | Construction Land | Cultivated Land | Water Area | Unused Land | ||
2015 | Forest land | 36,371 | 20,695 | 0 | 26 | 1 | 8 |
Grass land | 4625 | 131,711 | 185 | 4874 | 42 | 117 | |
Construction land | 0 | 341 | 2816 | 118 | 5 | 3 | |
Cultivated land | 11 | 5020 | 118 | 28,504 | 7 | 2 | |
Water area | 1 | 40 | 4 | 9 | 1258 | 51 | |
Unused land | 10 | 221 | 1 | 7 | 36 | 668 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Wang, M.; Wang, C.; Zhang, Y.; Zhou, X.; Jiang, L. Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers. Sustainability 2025, 17, 5840. https://doi.org/10.3390/su17135840
Ma R, Wang M, Wang C, Zhang Y, Zhou X, Jiang L. Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers. Sustainability. 2025; 17(13):5840. https://doi.org/10.3390/su17135840
Chicago/Turabian StyleMa, Runping, Maofa Wang, Chengcheng Wang, Yibo Zhang, Xiang Zhou, and Li Jiang. 2025. "Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers" Sustainability 17, no. 13: 5840. https://doi.org/10.3390/su17135840
APA StyleMa, R., Wang, M., Wang, C., Zhang, Y., Zhou, X., & Jiang, L. (2025). Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers. Sustainability, 17(13), 5840. https://doi.org/10.3390/su17135840