Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,601)

Search Parameters:
Keywords = fine particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4081 KB  
Article
A Novel Method to Determine the Grain Size and Structural Heterogeneity of Fine-Grained Sedimentary Rocks
by Fang Zeng, Shansi Tian, Hongli Dong, Zhentao Dong, Bo Liu and Haiyang Liu
Fractal Fract. 2025, 9(10), 642; https://doi.org/10.3390/fractalfract9100642 - 30 Sep 2025
Abstract
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry [...] Read more.
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry data indicates strong methodological reliability (absolute errors ranging from −5% to 3%), especially for particle sizes greater than 0.039 mm. The methodology reveals substantial internal heterogeneity within Es3 laminated shale samples from the Shahejie Formation (Bohai Bay Basin), distinctly identifying coarser siliceous laminae (grain size >0.039 mm, Φ < 8 based on Udden-Wentworth classification) indicative of high-energy depositional environments, and finer-grained clay-rich laminae (grain size <0.039 mm, Φ > 8) representing low-energy conditions. Conversely, massive mudstones exhibit comparatively homogeneous grain size distributions. Additionally, a multifractal analysis (Multifractal method) based on the S50bi/S50si ratio further quantifies spatial heterogeneity and pore-structure complexity, significantly enhancing facies differentiation and reservoir characterization capabilities. This method significantly improves facies differentiation ability, provides reliable constraints for shale oil reservoir characterization, and has important reference value for the exploration and development of the Bohai Bay Basin and similar petroliferous basins. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

14 pages, 5130 KB  
Article
Study on the Drying Characteristics of Moist Fine Lignite in a Dense Gas–Solid Separation Fluidized Bed
by Huicheng Lei, Tengfeng Wan, Tingguan Chen, Bingbing Ma, Zongxu Yao, Bao Xu, Qingfei Wang and Xuan Xu
Minerals 2025, 15(10), 1039; https://doi.org/10.3390/min15101039 - 30 Sep 2025
Abstract
Coal serves as a cornerstone and stabilizer for China’s energy security; utilizing it in a clean and efficient manner aligns with the current national energy situation. The moisture content of coal is a crucial factor affecting its calorific value and separation efficiency. Therefore, [...] Read more.
Coal serves as a cornerstone and stabilizer for China’s energy security; utilizing it in a clean and efficient manner aligns with the current national energy situation. The moisture content of coal is a crucial factor affecting its calorific value and separation efficiency. Therefore, enhancing the drying rate while simultaneously reducing the moisture content in coal is essential to improve separation efficiency. This paper primarily investigates the drying and separation characteristics of wet fine coal particles within a gas–solid fluidized bed system. A hot gas–solid fluidized bed was employed to study the particle fluidization behavior, heat–mass transfer, and agglomeration drying properties under varying airflow temperatures. The results indicate that as the airflow temperature increases, the minimum fluidization velocity tends to decrease. Additionally, with an increase in bed height, the particle temperature correspondingly decreases, leading to weakened heat exchange capability in the upper layer of the bed. Faster heating rates facilitate rapid moisture removal while minimizing agglomeration formation. The lower the proportion of moisture and magnetite powder present, the less force is required to break apart particle agglomerates. The coal drying process exhibits distinct stages. Within a temperature range of 75 °C to 100 °C, there is a significant enhancement in drying rate, while issues such as particle fragmentation or pore structure collapse are avoided at elevated temperatures. This research aims to provide foundational insights into effective drying processes for wet coal particles in gas–solid fluidized beds. Full article
Show Figures

Graphical abstract

18 pages, 7712 KB  
Article
Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm
by Zhaoze Li, Xiaoguang Guo, Guanghui Fan, Yueming Deng, Renke Kang and Xuefei Wang
Micromachines 2025, 16(10), 1121; https://doi.org/10.3390/mi16101121 - 30 Sep 2025
Abstract
Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including [...] Read more.
Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including oxidant concentration, catalyst type, and abrasive particle size, on surface quality through single-factor experiments. Subsequently, an Archimedes optimization algorithm (AOA)-based prediction model for diamond CMP surface roughness (Sa) is developed and validated experimentally. Results reveal that high-concentration oxidants, fine-particle abrasives, and dual-catalyst polishing systems synergistically enhance surface quality. The AOA-based prediction model demonstrates a root-mean-square error (RMSE) of 0.006 and a correlation coefficient (R) of 0.98 between the predicted and experimental Sa values. Under the conditions of a dual-catalyst type, 35% oxidant concentration, and 500 nm abrasive particle size, the model predicts a surface roughness of 0.128 nm, with an experimental value of 0.125 nm and a relative error of less than 3%. These findings highlight the capability of the model to accurately forecast surface roughness across diverse process parameters, offering a novel predictive framework for precision CMP of SCD. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 4th Edition)
Show Figures

Figure 1

21 pages, 2096 KB  
Article
Dry Deposition of Fine Particulate Matter by City-Owned Street Trees in a City Defined by Urban Sprawl
by Siliang Cui and Matthew Adams
Land 2025, 14(10), 1969; https://doi.org/10.3390/land14101969 - 29 Sep 2025
Abstract
Urban expansion intensifies population exposures to fine particulate matter (PM2.5). Trees mitigate pollution by dry deposition, in which particles settle on plants. However, city-scale models frequently overlook differences in tree species and structure. This study assesses PM2.5 removal by individual [...] Read more.
Urban expansion intensifies population exposures to fine particulate matter (PM2.5). Trees mitigate pollution by dry deposition, in which particles settle on plants. However, city-scale models frequently overlook differences in tree species and structure. This study assesses PM2.5 removal by individual city-owned street trees in Mississauga, Canada, throughout the 2019 leaf-growing season (May to September). Using a modified i-Tree Eco framework, we evaluated the removal of PM2.5 by 200,560 city-owned street trees (245 species) in Mississauga from May to September 2019. The model used species-specific deposition velocities (Vd) from the literature or leaf morphology estimates, adjusted for local winds, a 3 m-resolution satellite-derived Leaf Area Index (LAI), field-validated, crown area modelled from diameter at breast height, and 1 km2 resolution PM2.5 data geolocated to individual trees. About twenty-eight tons of PM2.5 were removed from 200,560 city-owned trees (245 species). Coniferous species (14.37% of trees) removed 25.62 tons (92% of total), much higher than deciduous species (85.63%, 2.18 tons). Picea pungens (18.33 tons, 66%), Pinus nigra (3.29 tons, 12%), and Picea abies (1.50 tons, 5%) are three key species. Conifers’ removal efficiency originates from the faster deposition velocities, larger tree size, and dense foliage, all of which enhance particle deposition. This study emphasizes species-specific approaches for improving urban air quality through targeted tree planting. Prioritizing coniferous species such as spruce and pine can improve pollution mitigation, providing actionable strategies for Mississauga and other cities worldwide to develop green infrastructure planning for air pollution. Full article
Show Figures

Figure 1

16 pages, 1780 KB  
Article
Study of Wet Agglomeration in Rotating Drums by the Discrete Element Method: Effect of Particle-Size Distribution on Agglomerate Formation
by Manuel Moncada, Carlos Henríquez, Patricio Toledo, Cristian G. Rodríguez and Fernando Betancourt
Minerals 2025, 15(10), 1033; https://doi.org/10.3390/min15101033 - 29 Sep 2025
Abstract
Wet agglomeration is essential in heap leaching of minerals, as it improves permeability by forming agglomerates through capillary and viscous forces. The Discrete Element Method (DEM) has been used to model this phenomenon, enabling the detailed tracking of interactions between individual particles. This [...] Read more.
Wet agglomeration is essential in heap leaching of minerals, as it improves permeability by forming agglomerates through capillary and viscous forces. The Discrete Element Method (DEM) has been used to model this phenomenon, enabling the detailed tracking of interactions between individual particles. This study employs DEM to analyze the effect of particle-size distribution (PSD) on agglomerate formation inside a rotating agglomeration drum. The DEM model was validated using geometry and parameters reported in the literature, which are based on experimental studies of agglomeration in rotating drums. Both wide and bimodal PSD cases were simulated. The results demonstrate that DEM simulations of drums with exclusively fine particles are prone to producing poorly defined macrostructures. In contrast, the presence of coarse particles promotes the formation of stable agglomerates with fine particles attached to them. Additionally, decreasing the maximum particle size increases the number of agglomerates and improves the homogeneity of the final PSD. These findings improve our understanding of wet agglomeration dynamics and provide practical criteria for optimizing feed design in mineral-processing applications. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 1274 KB  
Article
Study on the Effect of Grinding Media Material and Proportion on the Cyanide Gold Extraction Process
by Guiqiang Niu, Yunfeng Shao, Qingfei Xiao, Mengtao Wang, Saizhen Jin, Guobin Wang and Yijun Cao
Minerals 2025, 15(10), 1031; https://doi.org/10.3390/min15101031 - 28 Sep 2025
Abstract
Laboratory and industrial tests were conducted to study the impact of grinding media material on key indicators such as grinding product particle size, sodium cyanide consumption, gold recovery rate, unit power consumption, and ball consumption. Laboratory test results indicate that the reasonable mixing [...] Read more.
Laboratory and industrial tests were conducted to study the impact of grinding media material on key indicators such as grinding product particle size, sodium cyanide consumption, gold recovery rate, unit power consumption, and ball consumption. Laboratory test results indicate that the reasonable mixing of ceramic and steel balls can achieve an increase of more than 2.8% in the fineness of the grinding product (−0.038 mm), an increase of 0.3% in the gold recovery rate, and a decrease of 1.3 kg/t in the consumption of sodium cyanide. Industrial trial studies indicate that, compared to the traditional steel ball scheme, using a ceramic ball to steel ball mass ratio of 3:1 under conditions of processing 50,000 tons of gold concentrate annually can save a total of 1.31 million yuan in annual ball consumption, electricity consumption, and cyanide consumption costs. Additionally, the improved recovery rate generates an additional economic benefit of 3.63 million yuan, resulting in an annual comprehensive economic benefit increase of 4.94 million yuan. In summary, in gold cyanide leaching grinding, the mixture ratio between ceramic balls and steel balls demonstrates significant potential for energy conservation, cost reduction, and efficiency enhancement, providing a theoretical basis and technical support for subsequent process optimization and green gold extraction. Full article
(This article belongs to the Collection Advances in Comminution: From Crushing to Grinding Optimization)
Show Figures

Figure 1

37 pages, 2119 KB  
Review
Recycled Components in 3D Concrete Printing Mixes: A Review
by Marcin Maroszek, Magdalena Rudziewicz and Marek Hebda
Materials 2025, 18(19), 4517; https://doi.org/10.3390/ma18194517 - 28 Sep 2025
Abstract
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable [...] Read more.
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable construction, recycled aggregates and industrial by-products such as fly ash, slags, crushed glass, and other secondary raw materials have emerged as viable substitutes in concrete production. At the same time, three-dimensional concrete printing (3DCP) offers opportunities to optimize material use and minimize waste, yet it requires tailored mix designs with controlled rheological and mechanical performance. This review synthesizes current knowledge on the use of recycled construction and demolition waste, industrial by-products, and geopolymers in concrete mixtures for 3D printing applications. Particular attention is given to pozzolanic activity, particle size effects, mechanical strength, rheology, thermal conductivity, and fire resistance of recycled-based composites. The environmental assessment is considered through life-cycle analysis (LCA), emphasizing carbon footprint reduction strategies enabled by recycled constituents and low-clinker formulations. The analysis demonstrates that recycled-based 3D printable concretes can maintain or enhance structural performance while mix-level (cradle-to-gate, A1–A3) LCAs of printable mixes report CO2 reductions typically in the range of ~20–50% depending on clinker substitution and recycled constituents—with up to ~48% for fine recycled aggregates when accompanied by cement reduction and up to ~62% for mixes with recycled concrete powder, subject to preserved printability. This work highlights both opportunities and challenges, outlining pathways for advancing durable, energy-efficient, and environmentally responsible 3D-printed construction materials. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

18 pages, 1667 KB  
Article
Theoretical Validations and Analysis of Fine Aerosol Droplet Interactions with Submicron Contaminant Particles in Indoor Air Purification
by Olga Kudryashova, Andrey Shalunov, Vladimir Khmelev and Natalya Titova
Environments 2025, 12(10), 349; https://doi.org/10.3390/environments12100349 - 26 Sep 2025
Abstract
Environmental problems associated with emergency emissions, indoor air pollution with harmful particles, and the spread of viruses and bacteria make the topic of cleaning indoor air from small particles of pollution relevant. In the event of a dangerous situation associated with the presence [...] Read more.
Environmental problems associated with emergency emissions, indoor air pollution with harmful particles, and the spread of viruses and bacteria make the topic of cleaning indoor air from small particles of pollution relevant. In the event of a dangerous situation associated with the presence of small particles in the air, especially those smaller than 10 μm, methods for quickly cleaning the air from such pollutants are required. One of these new methods is the efficient spraying of fine aerosol using the ultrasound technique. Fine aerosol with a droplet size of about 30–50 μm interacts more effectively with pollutant particles compared to larger aerosols. In this paper, the process of interaction of droplets with a characteristic size of 30–50 μm with airborne pollutant particles sized 0.1–10 μm is theoretically studied. Particular attention is paid to particles sized 0.1–2 μm, which are the most difficult to remove from the air. The work will serve as a theoretical basis for the development of methods for cleaning indoor air of pollutant particles using fine aerosol. Full article
Show Figures

Figure 1

13 pages, 8153 KB  
Article
An Investigation of the Microstructure and Wear Resistance of Laser Clad 316 Stainless Steel/TiC Coatings Containing Different LaB6 Contents
by Dongdong Zhang, Haozhe Li, Yu Liu, Jingyu Jiang and Yali Gao
Ceramics 2025, 8(4), 121; https://doi.org/10.3390/ceramics8040121 - 26 Sep 2025
Abstract
In this paper, 316 stainless steel/TiC coatings with different LaB6 contents (0%, 2%, 4%, 6%) were prepared on the surface of 45 steel by laser cladding technology. The effects of the LaB6 content on the phase composition, microstructure, microhardness, and wear [...] Read more.
In this paper, 316 stainless steel/TiC coatings with different LaB6 contents (0%, 2%, 4%, 6%) were prepared on the surface of 45 steel by laser cladding technology. The effects of the LaB6 content on the phase composition, microstructure, microhardness, and wear resistance of the coatings were studied. The results show that without the LaB6 addition, the coating is composed of Austenite and TiC phases, with defects such as pores and cracks, and the microstructure is mainly equiaxed grains. With the addition of LaB6, Fe-Cr phases are formed in the coating, and the microstructure transforms into columnar grains and dendritic grains. The grains are first refined and then coarsened, among which the coating with 4% LaB6 (C4) has the smallest grain size. The experimental results indicate that the microhardness of the coatings first increases and then decreases with the increase in the LaB6 content, and the C4 coating has the highest microhardness (594HV0.2). The wear rate shows the same variation trend. The C4 coating has the lowest wear rate and the best wear resistance. This is attributed to the synergistic effect of the fine grain strengthening and TiC particle dispersion strengthening. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

14 pages, 4515 KB  
Article
Mechanisms of Fine Mud Covering and Enhanced Dispersion for a Rutile Middling
by Yang Wang, Yongxing Zheng, Liuyi Ren, Shaojun Bai, Lingyun Huang and Jieli Peng
Metals 2025, 15(10), 1074; https://doi.org/10.3390/met15101074 - 25 Sep 2025
Abstract
Electric separation is usually adopted to separate and purify rutile and zircon. However, fine mud covering over the target minerals either reduces the conductivity of rutile or improves the conductivity of zircon. Therefore, the conductivity difference between zircon and rutile becomes smaller, leading [...] Read more.
Electric separation is usually adopted to separate and purify rutile and zircon. However, fine mud covering over the target minerals either reduces the conductivity of rutile or improves the conductivity of zircon. Therefore, the conductivity difference between zircon and rutile becomes smaller, leading to the difficulty of separation and purification of both minerals. In this paper, the mechanisms of fine mud covering and enhanced dispersion for a rutile middling were illustrated by theoretical calculations of Derjaguin–Landau–Verwey–Overbeek (DLVO) and the extended DLVO (EDLVO), respectively. The fine mud was initially characterized by chemical multi-element analysis, X-ray diffractometer (XRD) analysis, electron probe micro analysis (EPMA), and laser particle size analyzer. The results showed that the gangue was mainly composed of goethite, quartz, calcite, and kaolinite and the average particle size of the fine mud reached 11.06 μm. The DLVO theoretical calculation revealed that the covering ability of fine-grained gangue ranked as follows: quartz < goethite < kaolinite < calcite. Compared with the zircon, the fine-grained gangue was more likely to cover the surface of rutile. The EDLVO theoretical calculation suggested that the addition of sodium silicate or sodium hexametaphosphate promoted detachment of the gangue from the surface of rutile and zircon and the shedding order was quartz > kaolinite > calcite > goethite. Moreover, the sodium hexametaphosphate had a better dispersion effect than the sodium silicate. Full article
(This article belongs to the Special Issue Advances in Sustainable Utilization of Metals: Recovery and Recycling)
Show Figures

Figure 1

23 pages, 2297 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
20 pages, 3517 KB  
Article
Mercury Pollution in a Coastal City of Northern China Driven by Temperature Re-Emission, Coal Combustion, and Port Activities
by Ruihe Lyu, Liyuan Xue, Xuefang Wu, Ye Mu, Jie Cheng, Liqiu Zhou, Yuhan Wang and Roy M. Harrison
Atmosphere 2025, 16(10), 1121; https://doi.org/10.3390/atmos16101121 - 24 Sep 2025
Viewed by 43
Abstract
This study investigates the dynamics and sources of atmospheric mercury in Qinhuangdao (QHD), a coastal urban area significantly impacted by both marine and terrestrial sources. Sampling of gaseous elemental mercury (GEM), fine particle-bound mercury (PBM2.5), and coarse particle-bound mercury (PBM2.5–10 [...] Read more.
This study investigates the dynamics and sources of atmospheric mercury in Qinhuangdao (QHD), a coastal urban area significantly impacted by both marine and terrestrial sources. Sampling of gaseous elemental mercury (GEM), fine particle-bound mercury (PBM2.5), and coarse particle-bound mercury (PBM2.5–10) was conducted from September 2022 to August 2023. The annual mean concentrations of GEM, PBM2.5, and PBM2.5–10 were 2.66, 1.01, and 0.73 ng m−3, respectively, with PBM levels among the highest reported for coastal cities in eastern China. GEM displayed a pronounced midday peak (12:00–14:00) with correlations to temperature (R2 = 0.25–0.65) and a significant winter association with SO2 (R2 = 0.52), suggesting the combined influence of surface re-emission and coal combustion. Seasonal variations in the GEM/CO ratio (spring: 7.12; winter: 2.62) further reflected the shift between natural and combustion-related sources. PBM2.5 exhibited elevated concentrations (1.0–1.4 ng m−3) under westerly winds (~3 m s−1), indicating inputs from traffic, shipping, and light industries, while PBM2.5–10 (0.5–1.1 μg m−3) was strongly linked to coal-handling activities at QHD port and soil resuspension. Backward trajectory analysis showed continental air masses dominated in winter (53–100%) and maritime air masses in summer (30–50%), whereas high Hg/Na ratios in PM2.5 (3.22 × 10−4) and PM2.5–10 (2.17 × 10−4), far exceeding typical marine aerosol values (10−7–10−5), indicated negligible marine contributions to PBM. These findings provide new insights into the processes driving mercury pollution in coastal urban environments and highlight the critical role of port-related activities in regional mercury management. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

18 pages, 54553 KB  
Article
An Improved Comprehensive Learning Jaya Algorithm with Lévy Flight for Engineering Design Optimization Problems
by Xintong Shen and Xiaonan Luo
Electronics 2025, 14(19), 3776; https://doi.org/10.3390/electronics14193776 - 24 Sep 2025
Viewed by 159
Abstract
The JAYA algorithm has been widely applied due to its simplicity and efficiency but is prone to entrapment in sub-optimal solutions. This study introduces the Lévy flight mechanism and proposes the CLJAYA-LF algorithm, which integrates large-step and small-step Lévy movements with a multi-strategy [...] Read more.
The JAYA algorithm has been widely applied due to its simplicity and efficiency but is prone to entrapment in sub-optimal solutions. This study introduces the Lévy flight mechanism and proposes the CLJAYA-LF algorithm, which integrates large-step and small-step Lévy movements with a multi-strategy particle update mechanism. The large-step strategy enhances global exploration and helps escape local optima, while the small-step strategy improves fine-grained local search accuracy. Extensive experiments on the CEC2017 benchmark suite and real-world engineering optimization problems demonstrate the effectiveness of CLJAYA-LF. In 50-dimensional benchmark problems, it outperforms JAYA, JAYALF, and CLJAYA in 15 of 22 functions with lower mean fitness and competitive variance; in 100-dimensional problems, it achieves smaller variance in 17 of 24 functions. For engineering applications, CLJAYA-LF attains a mean of 16.9 and variance of 0.332 for the Step-cone Pulley, 1.44 × 10−15 and 3.14 × 10−15 for the Gear Train, and 0.535 and 0.0498 for the Planetary Gear Train, surpassing most JAYA variants. These results indicate that CLJAYA-LF delivers superior optimization performance while maintaining robust stability across dimensions and problem types, demonstrating significant potential for complex and high-dimensional optimization scenarios. Full article
Show Figures

Figure 1

16 pages, 2952 KB  
Review
Sediment–Phosphorus Dynamics in the Yellow River Estuary
by Yuan Gao, Kun Liu, Shengpin Li and Wenpeng Li
Water 2025, 17(19), 2794; https://doi.org/10.3390/w17192794 - 23 Sep 2025
Viewed by 207
Abstract
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews [...] Read more.
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews the distribution of phosphorus in overlying water and sediment, the characteristics of phosphorus migration and transformation across the sediment–water interface, and the effecting factors of phosphorus migrate, such as sediment properties and environmental factors in the YRE. Inorganic phosphorus was the dominant form in the overlying water and sediment. Suspended sediment acts as a dynamic reservoir for phosphorus transportation in the YRE. The dynamic estuarine environment promotes sediment deposition, which helps reduce phosphorus levels in the water. Upon entering the Bohai Sea, sediment is transformed into the source of phosphorus. The released phosphorus may increase the nutrient load in shallow Bohai Sea waters. Fine particles demonstrate strong adsorption capacity for reactive phosphorus, acting as the primary carriers for phosphorus migration at the sediment–water interface. The grain size of the suspended sediment in the Yellow River exhibited significant sorting characteristics with varying sediment content, consequently affecting the forms of phosphorus. Likewise, the influence of biogeochemical conditions on the transport and transformation of sediment and phosphorus was further analyzed and the partial least squares-path model of related variables on estuarine phosphorus is constructed to interpret the behavior of sediment and phosphorus in the YRE. Finally, the current situation and indeterminacy of water quality models in the estuary were appraised. The priority of analyzing and revealing the environmental behaviors of phosphorus in a sediment-laden river estuary in the future was further proposed against the present deficiencies. This review holds significant practical importance for enhancing the assessment of ecological environment quality and ecological restoration in the YRE. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

45 pages, 7921 KB  
Review
Powder-Gas Jet Stream Characterisation Techniques in Laser Directed Energy Deposition: A Systematic Review
by João Pedro Madeira Araujo, Jhonattan Gutjahr, Qingping Yang and Diane Mynors
Processes 2025, 13(9), 2995; https://doi.org/10.3390/pr13092995 - 19 Sep 2025
Viewed by 238
Abstract
This work presents a systematic literature review of powder-gas jet stream (PGJS) characterisation techniques for coaxial nozzles in the laser directed energy deposition process (L-DEDp). The analysis includes thirty-four camera-based and four weight-based techniques. In weight-based techniques, the mapping of powder concentration is [...] Read more.
This work presents a systematic literature review of powder-gas jet stream (PGJS) characterisation techniques for coaxial nozzles in the laser directed energy deposition process (L-DEDp). The analysis includes thirty-four camera-based and four weight-based techniques. In weight-based techniques, the mapping of powder concentration is made by measuring the powder flow rate in certain areas within the PGJS. Despite being cost-effective, these methods are time-consuming, invasive, and less suitable for real-time monitoring. Camera-based techniques use laser light and a camera to capture particle intensities, allowing for the non-intrusive measurement of powder distribution. Despite its advantage, limitations are reported in the literature regarding the techniques. Detecting dense or fine powder flows accurately is challenging. Two-dimensional images cannot fully represent the jet’s three-dimensional structure, relying on image processing algorithms for the results. However, the non-existence of a common standard metric for evaluating and comparing results across various setups is a significant gap, as each characterisation often needs to be performed on a case-by-case basis. To address these challenges, a basic reporting structure is suggested to enable a standardised assessment of PGJS measurements, thereby supporting process control and quality assurance in L-DEDp applications. Full article
Show Figures

Figure 1

Back to TopTop