Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,120)

Search Parameters:
Keywords = filtration processes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1063 KB  
Article
Assessment of Rainwater Treatment Using Sand and Gravel Filtration and Chlorine Disinfection for Non-Potable Domestic Reuse
by Mara-Georgiana Giurgiu, Ioan Așchilean and Raluca-Andreea Felseghi
Buildings 2025, 15(20), 3759; https://doi.org/10.3390/buildings15203759 (registering DOI) - 18 Oct 2025
Abstract
Rainwater, originating from atmospheric precipitation, has historically been used as an alternative source to meet daily water needs. This study aims to analyze the physicochemical and microbiological parameters of rainwater in order to assess its potential for reuse in non-potable domestic applications and [...] Read more.
Rainwater, originating from atmospheric precipitation, has historically been used as an alternative source to meet daily water needs. This study aims to analyze the physicochemical and microbiological parameters of rainwater in order to assess its potential for reuse in non-potable domestic applications and outdoor activities. The research focuses on identifying key water quality indicators and evaluating the feasibility of using rainwater for non-potable purposes. Rainwater will be collected from the roof of a residential building, treated through filtration and disinfection processes, and subsequently subjected to laboratory analyses to determine its physicochemical and microbiological characteristics. In the final stage, its reuse potential will be evaluated. Currently, the use of rainwater in households is limited due to non-compliance with certain quality standards. However, in the context of the increasingly severe global water crisis, rainwater could represent a sustainable alternative source, contributing to water security and the conservation of this essential resource for future generations. Full article
Show Figures

Figure 1

18 pages, 2838 KB  
Article
Interference-Free Measurement of Urinary Angiotensin-Converting Enzyme (ACE) Activity: Diagnostic and Therapeutic Monitoring Implications
by Attila Ádám Szabó, Enikő Edit Enyedi, Tamás Bence Pintér, Ivetta Siket Mányiné, Csongor Váradi, Emese Bányai, Attila Tóth, Zoltán Papp and Miklós Fagyas
Biomedicines 2025, 13(10), 2528; https://doi.org/10.3390/biomedicines13102528 - 16 Oct 2025
Abstract
Background/Objectives: Urinary angiotensin-converting enzyme (uACE) activity has long been regarded as a promising biomarker for kidney and cardiovascular diseases; however, its clinical applicability has been limited by the presence of endogenous urinary inhibitors and technically demanding assay protocols. We aimed to establish [...] Read more.
Background/Objectives: Urinary angiotensin-converting enzyme (uACE) activity has long been regarded as a promising biomarker for kidney and cardiovascular diseases; however, its clinical applicability has been limited by the presence of endogenous urinary inhibitors and technically demanding assay protocols. We aimed to establish a fast and reproducible method for measuring uACE activity to identify the inhibitory compounds responsible for previous assay failures and to define practical preanalytical conditions suitable for routine laboratory implementation. Methods: A fluorescence-based kinetic assay was optimized for urine samples. Endogenous inhibitors were isolated by membrane filtration and chemically characterized, while the effect of sample dilution was evaluated as a simplified alternative for eliminating inhibitory interference. We assessed the stability of ACE activity under various storage conditions to support reliable measurement. Results: Urea (IC50 = 1.18 M), uric acid (IC50 = 3.61 × 10−3 M), and urobilinogen (IC50 = 2.98 × 10−4 M) were identified as the principal reversible inhibitors, jointly accounting for up to 90% suppression of uACE activity. Their inhibitory effect was effectively eliminated by a 128-fold dilution. ACE activity remained stable for 24 h at 25 °C but was completely lost after freezing. A strong positive correlation between uACE activity and creatinine concentration (r = 0.76, p < 0.0001) justified normalization. ACE activity-to-creatinine ratio turned out to be significantly lower in ACE inhibitor-treated patients than in untreated controls (6.49 vs. 36.69 U/mol, p < 0.0001). Conclusions: Our findings demonstrate that accurate measurement of uACE activity is feasible using a rapid dilution-based protocol. The normalized ACE activity can serve as a practical biomarker for detecting pharmacological ACE inhibition and monitoring therapy adherence in cardiovascular care and may also provide insight into renal pathophysiology such as tubular injury or local RAAS-related processes. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology, 2nd Edition)
Show Figures

Figure 1

22 pages, 6369 KB  
Article
Keggin Heteropolyacid Immobilized on Nanosilica as a Heterogeneous Catalyst for Sugar Dehydration in an Aqueous Medium
by Vincenzo Campisciano, Serena Lima, Giuseppe Marcì, Filippo Vitale, Maria Luisa Saladino, Francesco Giacalone and Elisa I. García-López
Molecules 2025, 30(20), 4097; https://doi.org/10.3390/molecules30204097 - 15 Oct 2025
Viewed by 81
Abstract
The dehydration of fructose and glucose to 5-hydroxymethylfurfural (HMF) in water solution was carried out in the presence of functionalized heteropolyanion-based heterogeneous catalysts. Two catalysts were prepared by immobilizing the Keggin polyoxometalate H3PW12O40 (PW12) onto nanoSiO [...] Read more.
The dehydration of fructose and glucose to 5-hydroxymethylfurfural (HMF) in water solution was carried out in the presence of functionalized heteropolyanion-based heterogeneous catalysts. Two catalysts were prepared by immobilizing the Keggin polyoxometalate H3PW12O40 (PW12) onto nanoSiO2 by the use of imidazoline and -SO3 surface species through acid–base reactions. The catalysts were characterized by N2 adsorption–desorption isotherms, XRD, TGA, FTIR, solid-state NMR, SEM, and acidity–basicity measurements. Catalytic reactions in batch conditions were performed at 165 °C in the presence of suspended catalysts, and the yield of furfural and 5-hydroxymethylfurfural (5-HMF) was determined. The catalytic activity of the materials was tested for sugars at 1M concentration in a water solution. The valorization of sugars (fructose and glucose) was found to be more effective in the case of fructose. Furthermore, the two catalysts in which the heteropolyacid was immobilized showed activity similar to that observed for naked PW12 (reaction in homogeneous phase), despite the heterogeneous nature of the process, but with the advantage of easier separation at the end of the reaction by simple filtration. The material’s substantial stability was demonstrated through three consecutive catalytic test cycles, in which the same catalyst was recovered after each experiment and washed several times with hot water. Finally, tests devoted to the valorization of sugars contained in wastewater from the brewing industry provided a poor yield in 5-HMF, indicating that the catalysts prepared here were, unfortunately, not suitable for this transformation under the conditions tested. This was because the catalysts prepared in this work showed a low capacity to transform glucose (the most present sugar in the carbohydrate fraction of this biomass) into furans. Full article
(This article belongs to the Special Issue From Biomass to High-Value Products: Processes and Applications)
Show Figures

Figure 1

19 pages, 679 KB  
Review
Wheat Hydrocolloids and Their Importance for Brewing
by Kristina Habschied, Marija Kovačević Babić, Daniela Horvat, Krešimir Dvojković, Vinko Krstanović and Krešimir Mastanjević
Polysaccharides 2025, 6(4), 94; https://doi.org/10.3390/polysaccharides6040094 - 13 Oct 2025
Viewed by 204
Abstract
Wheat is often used as a raw material in the brewing of special styles of beer. Hydrocolloids naturally present in wheat are called pentosans. They constitute approximately 2% of wheat flour. Arabinoxylans (pentosanes) and β-glucan are common compounds in wheat and are mostly [...] Read more.
Wheat is often used as a raw material in the brewing of special styles of beer. Hydrocolloids naturally present in wheat are called pentosans. They constitute approximately 2% of wheat flour. Arabinoxylans (pentosanes) and β-glucan are common compounds in wheat and are mostly found in the cell wall. Hydrocolloids are commonly used to retain moisture in bread and baked goods. Besides the moisture content, they affect the texture and retrogradation enthalpy of starch molecules. In the baking industry, they can be useful and improve the dough properties, but in the brewing industry, they are commonly designated as problematic compounds. Namely, to a certain extent, they can improve the foam stability; however, they can hinder the filtration process. This review paper aims to give an overview of non-starch compounds and their properties and to emphasize the significance of these macromolecules in the malting and brewing industries, especially in wheat varieties. The objective of this review is to gather information by searching different databases with scientific papers to broaden knowledge on arabinoxylans and β-glucans in brewing. Full article
Show Figures

Figure 1

21 pages, 5915 KB  
Article
A Machine Learning Approach to Predicting the Turbidity from Filters in a Water Treatment Plant
by Joseph Kwarko-Kyei, Hoese Michel Tornyeviadzi and Razak Seidu
Water 2025, 17(20), 2938; https://doi.org/10.3390/w17202938 - 12 Oct 2025
Viewed by 386
Abstract
Rapid sand filtration is a critical step in the water treatment process, as its effectiveness directly impacts the supply of safe drinking water. However, optimising filtration processes in water treatment plants (WTPs) presents a significant challenge due to the varying operational parameters and [...] Read more.
Rapid sand filtration is a critical step in the water treatment process, as its effectiveness directly impacts the supply of safe drinking water. However, optimising filtration processes in water treatment plants (WTPs) presents a significant challenge due to the varying operational parameters and conditions. This study applies explainable machine learning to enhance insights into predicting direct filtration operations at the Ålesund WTP in Norway. Three baseline models (Multiple Linear Regression, Support Vector Regression, and K-Nearest Neighbour (KNN)) and three ensemble models (Random Forest (RF), Extra Trees (ET), and XGBoost) were optimised using the GridSearchCV algorithm and implemented on seven filter units to predict their filtered water turbidity. The results indicate that ML models can reliably predict filtered water turbidity in WTPs, with Extra Trees models achieving the highest predictive performance (R2 = 0.92). ET, RF, and KNN ranked as the three top-performing models using Alternative Technique for Order of Preference by Similarity to Ideal Solution (A-TOPSIS) ranking for the suite of algorithms used. The feature importance analysis ranked the filter runtime, flow rate, and bed level. SHAP interpretation of the best model provided actionable insights, revealing how operational adjustments during the ripening stage can help mitigate filter breakthroughs. These findings offer valuable guidance for plant operators and highlight the benefits of explainable machine learning in water quality management. Full article
Show Figures

Figure 1

27 pages, 2973 KB  
Review
Innovative Approaches to Mitigating Microplastic Pollution in Effluents and Soils
by Solange Magalhães, Luís Alves, Bruno Medronho, Ida Svanedal, Magnus Norgren and Maria Graça Rasteiro
Sustainability 2025, 17(20), 9014; https://doi.org/10.3390/su17209014 - 11 Oct 2025
Viewed by 418
Abstract
Microplastic pollution represents a significant environmental challenge, as microplastics accumulate in effluents and soils, causing serious risks to ecosystems and human health. Efficient removal of these contaminants is essential to mitigate their potential adverse effects. This review summarizes and critically analyses current methods [...] Read more.
Microplastic pollution represents a significant environmental challenge, as microplastics accumulate in effluents and soils, causing serious risks to ecosystems and human health. Efficient removal of these contaminants is essential to mitigate their potential adverse effects. This review summarizes and critically analyses current methods for the removal of microplastics from effluents and soils, focusing on their effectiveness, advantages, and limitations. Conventional techniques—including filtration, flotation, chemical coagulation, flocculation, and adsorption—are discussed in the context of wastewater treatment and soil remediation. Emerging approaches, such as flocculation processes with special focus on the application of bio-based flocculants, are also highlighted as promising solutions. Key challenges in microplastic removal, including the diversity of microplastic types, their small size, and the complexity of environmental matrices, are addressed. This work intends to contribute to the urgent need for further research to develop more efficient and sustainable strategies for microplastic removal from environmental systems. Full article
(This article belongs to the Special Issue Microplastic Research and Environmental Sustainability)
Show Figures

Graphical abstract

20 pages, 8964 KB  
Article
A Robust, High-Titer, Semi-Automated, and In-Culture Antibody-Capturing Transient CHO Platform Technology
by Lauren Gebhardt, Molica Abel, Jing Zhou, Audrey M. Vogt, Bo Hee Shin, Sarah L. Herrick Wagman, Ana Santos, Jerome Puginier, Florian M. Wurm, Maria J. Wurm, Guoying Grace Yan, Adedolapo Adeniyi, Sean K. H. Lim, Will Somers, Laura Lin, Aaron M. D’Antona and Xiaotian Zhong
Antibodies 2025, 14(4), 87; https://doi.org/10.3390/antib14040087 - 11 Oct 2025
Viewed by 258
Abstract
Background: Recent advances in antibody discovery technologies, especially progress in de novo synthesis through machine learning, have imposed a significant production challenge for the generation of a large diversity of antibodies against nearly any target of interest. There is a demand for the [...] Read more.
Background: Recent advances in antibody discovery technologies, especially progress in de novo synthesis through machine learning, have imposed a significant production challenge for the generation of a large diversity of antibodies against nearly any target of interest. There is a demand for the rapid production of dozens of purified antibodies in 10-milligram quantities sufficient for functional screening and molecular assessment studies. Objectives: To meet this requirement, a semi-automated production methodology and workflow was developed to bridge the miniaturized high-throughput screenings (HTSs) and the conventional custom-scale workflow by taking advantage of four new technology applications. Methods: First, it exploited a novel, simple, high-titer transient expression system, “CHO4Tx®”, which could achieve high yields in the range of 200 mg/L and above, across a variety of antibody constructs, including challenging targets. The consistently high yields from this transient CHO platform enabled the delivery of ~20 mg of crude material per 100 mL scale flask production with a throughput capacity of nineteen constructs in a single run. Secondly, we established a magnetic ProA bead in-culture antibody-capturing process, which significantly shortened the production timeline by eliminating the steps of cell centrifugation, filtration, and medium column loading. Third, we utilized the GenScript AmMag™ SA Plus semi-automation, which could handle magnetic ProA bead elution for 12 constructs within less than 1 h. Lastly, we transformed the AKTA PureTM system into an automated buffer exchange purification system with a capacity of processing 19 samples in a single run. Results and Conclusions: This new production platform was proven to be robust and could be applied for the routine production of antibodies of sufficient quality and quantity in support of cell-based assays and biophysical characterization. Full article
Show Figures

Graphical abstract

17 pages, 2819 KB  
Article
Effect of Hydroxyvalerate Molar Percentage on Physicochemical and Degradation Properties of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fibrous Membranes and Potential Application for Air Filtration
by Yaohui Liu, Cheng-Hao Lee, Yanming Wang, Chi-Wai Kan and Xiao-Ying Lu
Polymers 2025, 17(20), 2719; https://doi.org/10.3390/polym17202719 - 10 Oct 2025
Viewed by 327
Abstract
This study investigates the air filtration capabilities of fibrous membranes fabricated via electrospinning, with a focus on optimizing processing parameters. Specifically, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a well-characterized biodegradable polyester, was electrospun to produce membranes exhibiting precisely controlled surface microstructures. The optimal fiber morphology was attained [...] Read more.
This study investigates the air filtration capabilities of fibrous membranes fabricated via electrospinning, with a focus on optimizing processing parameters. Specifically, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a well-characterized biodegradable polyester, was electrospun to produce membranes exhibiting precisely controlled surface microstructures. The optimal fiber morphology was attained under conditions of a 20 kV applied electric field, a solution flow rate of 0.5 mL·h−1, a polymer concentration of 13 wt.%, and a needle inner diameter of 0.21 mm. The microstructural features of the electrospun PHBV membranes were characterized using scanning electron microscopy (SEM). Complementary analysis via 13C nuclear magnetic resonance (NMR) spectroscopy confirmed that the membranes comprised pure 3-hydroxyvalerate (3HV) copolymerized with 3-hydroxybutyrate (3HB) terminal units, with 3HV mole fractions ranging from 17% to 50%. The incorporation of different molar percentages of 3HV in PHBV membrane significantly enhances its durability, as evidenced by Ball Burst Strength (BBS) measurements, with an elongation at burst that is 65–86% greater than that of ASTM F2100 level 3 mask. The nanofibrous membranes exhibited a controlled pore size distribution, indicating their potential suitability for air filtration applications. Particle filtration efficiency (PFE) assessments under standard atmospheric pressure conditions showed that the optimized electrospun PHBV membranes achieved filtration efficiencies exceeding 98%. Additionally, the influence of 3HV content on biodegradation behavior was evaluated through soil burial tests conducted over 90 days. Results indicated that membranes with lower 3HV content (17 mol.%) experienced the greatest weight loss, suggesting accelerated degradation in natural soil environments. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

12 pages, 3054 KB  
Article
The Influence of Y2O3 Nanoparticles on the Permeation Properties of Polyethersulfone Membranes
by Andreea Liliana Lazăr, Adrian Cîrciumaru, Gina Genoveva Istrate, Eliza Dănăilă and Ștefan Baltă
Separations 2025, 12(10), 272; https://doi.org/10.3390/separations12100272 - 7 Oct 2025
Viewed by 225
Abstract
Y2O3 nanoparticles were used in a polyethersulfone (PES) as additives to increase the permeation properties of the polymeric membranes. Membranes were manufactured by diffusion-induced phase inversion in N-methyl-pyrrolidone (NMP) using a different concentration of nanoparticles. Y2O3 is [...] Read more.
Y2O3 nanoparticles were used in a polyethersulfone (PES) as additives to increase the permeation properties of the polymeric membranes. Membranes were manufactured by diffusion-induced phase inversion in N-methyl-pyrrolidone (NMP) using a different concentration of nanoparticles. Y2O3 is used in polymeric membranes to enhance their functional properties, especially in wastewater treatment processes. Incorporating Y2O3 nanoparticles into the polymer matrix improves the membrane’s hydrophilicity, permeability, and mechanical strength. Additionally, Y2O3 provides better properties and reduces fouling. Recent studies highlight its potential as a modifying agent for advanced composite membranes. This paper investigated challenges in the synthesis of Y2O3-enhanced membranes and links synthesis with performance. It was observed that the composite membranes have better permeation properties by adding a small amount of Y2O3. For membranes at 21 wt.% PES permeability increase from 107 to 112 L/m2·h/bar. Fouling performance increases by adding nanoparticles, relative flux decreases by 30% for membranes without nanoparticles and by 10% for membranes with nanoparticles, both at a concentration of 25% PES. Rejection increases for membranes at 21%Pes from 21% for membranes without nanoparticles to 39% for membranes with nanoparticles. The influence of Y2O3 nanoparticles on the membranes’ performance was determined by filtration experiments to establish the permeability, fouling, retention, and the water flux; by contact angle to establish the surface hydrophilicity; and by SEM to investigate the membranes’ structures. Full article
Show Figures

Figure 1

16 pages, 3299 KB  
Article
Association Mapping for Biomass and Kernel Traits in Doubled-Haploid Population Derived from Texas Wheat Cultivars
by Yahya Rauf, Zhen Wang, Kyle Parker, Shannon A. Baker, Jason A. Baker, Jackie C. Rudd, Qingwu Xue, Amir Ibrahim and Shuyu Liu
Genes 2025, 16(10), 1172; https://doi.org/10.3390/genes16101172 - 5 Oct 2025
Viewed by 1066
Abstract
Background: Genetic improvement in wheat yield is the most focused research area for the breeding community to ensure sustainable production. Wheat kernel traits and biomass are considered key contributors to enhance crop yield. Methods: This study was designed to explore the genetic diversity [...] Read more.
Background: Genetic improvement in wheat yield is the most focused research area for the breeding community to ensure sustainable production. Wheat kernel traits and biomass are considered key contributors to enhance crop yield. Methods: This study was designed to explore the genetic diversity of kernel and biomass traits in popular wheat varieties from the US Southern Great Plains using 264 doubled haploid (DH) lines mainly derived from TAM 114 or TAM 204. This population was evaluated in two field environments planted in alpha lattice design during the 2020 crop season. Kernel traits were collected using the hp Scanjet G4010 photo scanner for image capturing and GrainScan v3. software for image analysis. Biomass parameters were collected and processed manually. For genotyping genomic libraries were prepared and sequenced on Illumina NovaSeq 6000 to generate paired end reads of 150 bp. Sequences were aligned to the IWGSC RefSeq genome assembly v2.1 using the Burrows Wheeler Aligner for SNP calling. Results: A total of 59,482 polymorphic SNP markers were retained for genetic analysis after the filtration at 50% missing data and 5% minor allele frequency. To investigate the marker–trait association and the genomic regions, four genome-wide association study models were implemented using the R package GAPIT version 3.5. Based on the Bonferroni correction <8.41 × 10−7 was used as a threshold to declare marker-trait associations (MTAs) significant. The BLINK model identified 12 MTAs on chromosomes 1A, 2A, 2B, 4A, 4B, and 6B. Conclusions: The identified MTAs can be used to develop diagnostic markers for efficient selection and utilization in recombination breeding and cultivar development process. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1269 KB  
Article
Epidemiological Survey of Human Zoonotic Fascioliasis and Schistosomiasis in the Lake Victoria and Southern Highland Ecological Zones of Tanzania
by Godlisten Shedrack Materu, Jahashi Nzalawahe, Mita Eva Sengupta, Anna-Sofie Stensgaard, Abdul Katakweba, Yasinter Silvester, Gerald P. Mwing’a, Birgitte J. Vennervald and Safari Kinung’hi
Zoonotic Dis. 2025, 5(4), 29; https://doi.org/10.3390/zoonoticdis5040029 - 5 Oct 2025
Viewed by 319
Abstract
Background: Zoonotic fascioliasis and schistosomiasis, caused by trematode parasites transmitted by freshwater snails, are neglected tropical diseases of both medical and veterinary importance. There are critical knowledge gaps regarding the transmission dynamics of these infections in humans and animals, particularly in endemic African [...] Read more.
Background: Zoonotic fascioliasis and schistosomiasis, caused by trematode parasites transmitted by freshwater snails, are neglected tropical diseases of both medical and veterinary importance. There are critical knowledge gaps regarding the transmission dynamics of these infections in humans and animals, particularly in endemic African communities. Therefore, the current study aimed to determine the burden of human zoonotic schistosomiasis and fascioliasis among different age groups, focusing on the Lake Victoria zone and the Southern Highlands of Tanzania. Methods: A cross-sectional study was conducted among preschool-aged children, school-aged children, and adults. A total of 1557 stool and urine samples were collected, 400 from preschool children, 804 from school-aged children, and 353 from adults. Stool samples were processed using the Kato–Katz technique and the formol-ether concentration method to detect Schistosoma mansoni and Fasciola spp., respectively. Urine samples were examined for Schistosoma haematobium infection using the urine filtration method. Data were analyzed using Stata version 17. The t-tests or one-way ANOVA were used to assess statistical differences in the mean egg counts of S. mansoni and S. haematobium between exposure groups. Results: The overall prevalence of S. haematobium was 4.9%, S. mansoni was 1.2% with no significant differences across age groups, but with a statistically significant difference between sexes 1.8%. Males had a higher prevalence of both S. haematobium and S. mansoni infections compared to females. The prevalence of Fasciola infection was 0.9%, with the highest prevalence found in adults (≥18 years). Conclusions: Zoonotic schistosomiasis and fascioliasis are prevalent in the study area, affecting individuals across all age groups. This is the first study to report the presence of Fasciola infection in both the Lake Victoria zone and the Southern Highlands of Tanzania. These findings call for the Ministry of Health, through the Tanzania NTD Control Program, to recognize fascioliasis as a high-priority disease and include it in the national master plan. Full article
Show Figures

Figure 1

21 pages, 5507 KB  
Article
Exploring the Effect of the Porogenic Agent on Flat Membranes Based on Polyamide 6 (PA6)/Carbon Nanotubes (MWCNT) Nanocomposites
by Clara Maria Marinho Serafim, Renê Anísio da Paz, Rafael Agra Dias, Vanessa da Nóbrega Medeiros, Pamela Thainara Vieira da Silva, Carlos Bruno Barreto Luna, Renate Maria Ramos Wellen and Edcleide Maria Araújo
Processes 2025, 13(10), 3155; https://doi.org/10.3390/pr13103155 - 2 Oct 2025
Viewed by 467
Abstract
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per [...] Read more.
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per hundred resin (phr). The membranes were produced using the phase inversion process through the immersion–precipitation technique. In total, eight membrane compositions were developed with solvent/polymer ratios of 80/20 (weight %). Calcium chloride (CaCl2) was used as a pore-forming agent at a content of 10 phr. Thus, the characterizations performed were: solution viscosity, FTIR, contact angle measurement, SEM, AFM, water permeability test, and water vapor permeation test. The results showed that the high viscosity of membranes, excessive gelation time, and higher MWCNT contents contributed to a decrease and/or absence of flow. Through SEM images and water flow measurements, the significant influence of CaCl2 was observed in modifying the membrane morphology (more interconnected porous structures), ensuring the presence of flow. The AFM images also confirm this phenomenon through the increase in roughness. Water vapor transmission increased with higher MWCNT content. These results demonstrate that PA6 and MWCNT membranes were effective for water filtration, only in those where CaCl2 was used, and for water vapor initially. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Graphical abstract

47 pages, 5360 KB  
Review
Current Progress in Advanced Functional Membranes for Water-Pollutant Removal: A Critical Review
by Manseeb M. Mannaf, Md. Mahbubur Rahman, Sonkorson Talukder Sabuj, Niladri Talukder and Eon Soo Lee
Membranes 2025, 15(10), 300; https://doi.org/10.3390/membranes15100300 - 2 Oct 2025
Viewed by 1084
Abstract
As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in [...] Read more.
As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in effectively addressing these complex pollutants. In response, researchers have turned to Advanced Functional Membranes (AFMs) as promising alternatives, owing to their customizable structures and enhanced performance. Among the most explored AFMs are those based on metal–organic frameworks (MOFs), carbon nanotubes (CNTs), and electro–catalytic systems, each offering unique advantages such as high permeability, selective pollutant removal, and compatibility with advanced oxidation processes (AOPs). Notably, hybrid systems combining AFMs with electrochemical or photocatalytic technologies have demonstrated remarkable efficiency in laboratory settings. However, translating these successes to real-world applications remains a challenge due to issues related to cost, scalability, and long-term stability. This review explores the recent progress in AFM development, particularly MOF-based, CNT-based, and electro-Fenton (EF)-based membranes, highlighting their material aspects, pollutant filtration mechanisms, benefits, and limitations. It also offers insights into how these next-generation materials can contribute to more sustainable, practical, and economically viable water purification solutions in the near future. Full article
Show Figures

Figure 1

14 pages, 611 KB  
Article
Studies on the Recovery of Wash Water from Swimming Pool Filters and Their Characteristics—A Case Study
by Wojciech Poćwiardowski
Water 2025, 17(19), 2854; https://doi.org/10.3390/w17192854 - 30 Sep 2025
Viewed by 551
Abstract
Filter wash water (FWW) from public swimming pools is a recoverable resource, yet full-scale evidence on safe on-site reuse with documented economics is scarce. We evaluated a full-scale integrated recovery unit (SOWA) installed at an indoor public pool. The SOWA system—sedimentation, granular filtration [...] Read more.
Filter wash water (FWW) from public swimming pools is a recoverable resource, yet full-scale evidence on safe on-site reuse with documented economics is scarce. We evaluated a full-scale integrated recovery unit (SOWA) installed at an indoor public pool. The SOWA system—sedimentation, granular filtration operated at a hydraulic loading rate (HLR) of 7.5–10 m3 m−2 h−1, ultrafiltration, and chlorine-dioxide (ClO2) disinfection—was monitored for physicochemical and microbiological performance. Turbidity decreased from 23.1 nephelometric turbidity units (NTU) to 0.25 NTU; chemical oxygen demand, reported as the permanganate index (COD_Mn), fell from 10.4 to 1.6 mg O2 L−1; and total microbial count declined from 1.6 × 104 to 30 colony-forming units per millilitre (CFU mL−1). Indicator organisms (Escherichia coli, Intestinal enterococci and Pseudomonas aeruginosa) were not detected, and all quality criteria complied with national standards. At the Olender facility, monthly freshwater use dropped from 1700 to 1000 m3 after 24/7 SOWA operation, while combined chlorine was maintained at 0.12 mg Cl2/L and no issues with chloroform were observed. The unit recovered 4.7 m3 h−1 of FWW for non-potable uses. According to manufacturer catalogue data, the recovery process can reach up to 96%, enabling annual savings up to ~EUR 9000 and a payback of ~2 years under favourable tariffs and loads. Our outcomes are consistent with independent full-scale reuse trains (e.g., ultrafiltration/reverse osmosis) and with disinfection-by-product control strategies reported in the literature, and they align with international guidance for swimming-pool water reuse. This study provides a rare, end-to-end implementation at full scale, documenting continuous operation, verified microbial safety, regulatory compliance, quantified water and cost savings, and site-specific economics for a compact, multi-barrier FBW recovery system that can be directly transferred to similar facilities. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 1964 KB  
Article
Hydrocracking of Algae Oil and Model Alkane into Jet Fuel Using a Catalyst Containing Pt and Solid Acid
by Yanyong Liu
Processes 2025, 13(10), 3129; https://doi.org/10.3390/pr13103129 - 29 Sep 2025
Viewed by 452
Abstract
Aluminum polyoxocations were introduced into a lamellar zirconium phosphate (α-ZrP) via ion exchange. The Al polyoxocation pillars transformed into Al2O3 particles within the interlayer zone after calcination at 673 K. The resulting Al2O3-α-ZrP exhibited a large [...] Read more.
Aluminum polyoxocations were introduced into a lamellar zirconium phosphate (α-ZrP) via ion exchange. The Al polyoxocation pillars transformed into Al2O3 particles within the interlayer zone after calcination at 673 K. The resulting Al2O3-α-ZrP exhibited a large BET surface area and medium-strength acidity. Pt-supported Al2O3-α-ZrP was used as a catalyst for hydrocracking squalene and Botryococcus braunii oil in an autoclave batch system. In a one-step squalene hydrocracking process, the yield of jet-fuel-range hydrocarbons was 52.8% on 1 wt.% Pt/Al2O3-α-ZrP under 2 MPa H2 at 623 K for 3 h. A two-step process was designed with the first step at 523 K for 1 h and the second at 623 K for 3 h. During the first step, the squalene was hydrogenated to squalane without cracking, and in the second step, the squalane was hydrocracked. This two-step catalytic process increased the yield of jet-fuel-range hydrocarbons to 65% in squalene hydrocracking. For algae oil hydrocracking, the jet-fuel-range hydrocarbons occupied 66% of the total products in the two-step reaction. Impurities in algae oil, mainly fatty acids, did not affect the yield of jet-fuel-range hydrocarbons because they were deoxygenated into hydrocarbons during the reaction. The activity of Pt/Al2O3-α-ZrP remained unchanged after four reuses through simple filtration. Full article
(This article belongs to the Special Issue Biomass to Renewable Energy Processes, 2nd Edition)
Show Figures

Figure 1

Back to TopTop