Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,765)

Search Parameters:
Keywords = filter comparison

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2267 KiB  
Article
A Mechanical Fault Diagnosis Method for On-Load Tap Changers Based on GOA-Optimized FMD and Transformer
by Ruifeng Wei, Zhenjiang Chen, Qingbo Wang, Yongsheng Duan, Hui Wang, Feiming Jiang, Daoyuan Liu and Xiaolong Wang
Energies 2025, 18(14), 3848; https://doi.org/10.3390/en18143848 - 19 Jul 2025
Viewed by 240
Abstract
Mechanical failures frequently occur in On-Load Tap Changers (OLTCs) during operation, potentially compromising the reliability and stability of power systems. The goal of this study is to develop an intelligent and accurate diagnostic approach for OLTC mechanical fault identification, particularly under the challenge [...] Read more.
Mechanical failures frequently occur in On-Load Tap Changers (OLTCs) during operation, potentially compromising the reliability and stability of power systems. The goal of this study is to develop an intelligent and accurate diagnostic approach for OLTC mechanical fault identification, particularly under the challenge of non-stationary vibration signals. To achieve this, a novel hybrid method is proposed that integrates the Gazelle Optimization Algorithm (GOA), Feature Mode Decomposition (FMD), and a Transformer-based classification model. Specifically, GOA is employed to automatically optimize key FMD parameters, including the number of filters (K), filter length (L), and number of decomposition modes (N), enabling high-resolution signal decomposition. From the resulting intrinsic mode functions (IMFs), statistical time domain features—peak factor, impulse factor, waveform factor, and clearance factor—are extracted to form feature vectors. After feature extraction, the resulting vectors are utilized by a Transformer to classify fault types. Benchmark comparisons with other decomposition and learning approaches highlight the enhanced performance of the proposed framework. The model achieves a 95.83% classification accuracy on the test set and an average of 96.7% under five-fold cross-validation, demonstrating excellent accuracy and generalization. What distinguishes this research is its incorporation of a GOA–FMD and a Transformer-based attention mechanism for pattern recognition into a unified and efficient diagnostic framework. With its high effectiveness and adaptability, the proposed framework shows great promise for real-world applications in the smart fault monitoring of power systems. Full article
Show Figures

Figure 1

18 pages, 4607 KiB  
Article
Multi-Objective Machine Learning Optimization of Cylindrical TPMS Lattices for Bone Implants
by Mansoureh Rezapourian, Ali Cheloee Darabi, Mohammadreza Khoshbin and Irina Hussainova
Biomimetics 2025, 10(7), 475; https://doi.org/10.3390/biomimetics10070475 - 18 Jul 2025
Viewed by 251
Abstract
This study presents a multi-objective optimization framework for designing cylindrical triply periodic minimal surface (TPMS) lattices tailored for bone implant applications. Using an artificial neural network (ANN) as a surrogate model trained on simulated data, four key properties—ultimate stress (U), energy absorption (EA), [...] Read more.
This study presents a multi-objective optimization framework for designing cylindrical triply periodic minimal surface (TPMS) lattices tailored for bone implant applications. Using an artificial neural network (ANN) as a surrogate model trained on simulated data, four key properties—ultimate stress (U), energy absorption (EA), surface area-to-volume ratio (SA/VR), and relative density (RD)—were predicted from seven lattice design parameters. To address anatomical variability, a novel implant size-based categorization (small, medium, and large) was introduced, and separate optimization runs were conducted for each group. The optimization was performed via the NSGA-II algorithm to maximize mechanical performance (U and EA) and surface efficiency (SA/VR), while filtering for biologically relevant RD values (20–40%). Separate optimization runs were conducted for small, medium, and large implant size groups. A total of 105 Pareto-optimal designs were identified, with 75 designs retained after RD filtering. SHapley Additive exPlanations (SHAP) analysis revealed the dominant influence of thickness and unit cell size on target properties. Kernel density and boxplot comparisons confirmed distinct performance trends across size groups. The framework effectively balances competing design goals and enables the selection of size-specific lattices. The proposed approach provides a reproducible pathway for optimizing bioarchitectures, with the potential to accelerate the development of lattice-based implants in personalized medicine. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 5th Edition)
Show Figures

Figure 1

15 pages, 802 KiB  
Article
Differential Cortical Activations Among Young Adults Who Fall Versus Those Who Recover Successfully Following an Unexpected Slip During Walking
by Rudri Purohit, Shuaijie Wang and Tanvi Bhatt
Brain Sci. 2025, 15(7), 765; https://doi.org/10.3390/brainsci15070765 - 18 Jul 2025
Viewed by 165
Abstract
Background: Biomechanical and neuromuscular differences between falls and recoveries have been well-studied; however, the cortical correlations remain unclear. Using mobile brain imaging via electroencephalography (EEG), we examined differences in sensorimotor beta frequencies between falls and recoveries during an unpredicted slip in walking. Methods [...] Read more.
Background: Biomechanical and neuromuscular differences between falls and recoveries have been well-studied; however, the cortical correlations remain unclear. Using mobile brain imaging via electroencephalography (EEG), we examined differences in sensorimotor beta frequencies between falls and recoveries during an unpredicted slip in walking. Methods: We recruited 22 young adults (15 female; 18–35 years) who experienced a slip (65 cm) during walking. Raw EEG signals were band-pass filtered, and independent component analysis was performed to remove non-neural sources, eventually three participants were excluded due to excessive artifacts. Peak beta power was extracted from three time-bins: 400 milliseconds pre-, 0–150 milliseconds post and 150–300 milliseconds post-perturbation from the midline (Cz) electrode. A 2 × 3 Analysis of Covariance assessed the interaction between time-bins and group on beta power, followed by Independent and Paired t-tests for between and within-group post hoc comparisons. Results: All participants (n = 19) experienced a balance loss, seven experienced a fall. There was a time × group interaction on beta power (p < 0.05). With no group differences pre-perturbation, participants who experienced a fall exhibited higher beta power during 0–150 milliseconds post-perturbation than those who recovered (p < 0.001). However, there were no group differences in beta power during 150–300 milliseconds post-perturbation. Conclusions: Young adults exhibiting a greater increase in beta power during the early post-perturbation period experienced a fall, suggesting a higher cortical error detection due to a larger mismatch in the expected and ongoing postural state and greater cortical dependence for sensorimotor processing. Our study results provide an overview of the possible cortical governance to modulate slip-fall/recovery outcomes. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

21 pages, 10725 KiB  
Article
A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China
by Kaisen Ma, Jing Yi, Hua Sun, Song Chen, Chaokui Li and Ming Gong
Forests 2025, 16(7), 1179; https://doi.org/10.3390/f16071179 - 17 Jul 2025
Viewed by 244
Abstract
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary [...] Read more.
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary filtering methods is limited in complex forest conditions. A partitioned cloth simulation filtering (PCSF) method based on different vegetation cover was proposed in this study to improve the classification accuracy, and tree heights were extracted to demonstrate the effectiveness of the proposed method. UAV-LiDAR data and field measurements collected from the Lutou experimental forest farm in the southern subtropical forest region of China were used for validation, and the slope-based filtering, progressive triangulated irregular network densification filtering (PTD), moving surface fitting filtering (MSFF), and CSF were adopted for comparisons. The results showed that the proposed method yielded the best ground filtering effect, reducing the filtering total error by 2.12%–4.22% compared with other methods, and the relative root mean squared error (rRMSE) of extracted tree heights was reduced by 1.24%–3.84%, respectively. The proposed method can achieve a satisfactory filtering effect and tree height extraction result, which provides a methodological basis to precisely extract tree heights in large-scale forests. Full article
Show Figures

Figure 1

15 pages, 2098 KiB  
Article
Experimental Testing of Amplified Inertia Response from Synchronous Machines Compared with Frequency Derivative-Based Synthetic Inertia
by Martin Fregelius, Vinicius M. de Albuquerque, Per Norrlund and Urban Lundin
Energies 2025, 18(14), 3776; https://doi.org/10.3390/en18143776 - 16 Jul 2025
Viewed by 132
Abstract
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This [...] Read more.
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This inertia emulation approach is contrasted by what is called synthetic inertia, which uses a frequency-locked loop in order to extract the grid frequency. The synthetic inertia faces the usual input signal filtering challenges if the signal-to-noise ratio is low. The amplified inertia controller avoids the input filtering since it only amplifies the natural inertial response from a synchronous machine. However, rotor angle oscillations lead to filtering requirements of the amplified version as well, but on the output signal of the controller. Experimental comparisons are conducted both on the measurement output from the physical experiments in a microgrid and on analysis based on input from on-site measurements from a 55 MVA hydropower generator connected to the Nordic grid. In the specific cases compared, we observe that the amplified inertia version is the better method for smaller power systems, with large frequency fluctuations. On the other hand, the synthetic inertia method is the better in larger power systems as compared to the amplification of the inertial response from a real production unit. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

13 pages, 830 KiB  
Article
Machine Learning-Based Prediction of Postoperative Deep Vein Thrombosis Following Tibial Fracture Surgery
by Humam Baki and İsmail Bülent Özçelik
Diagnostics 2025, 15(14), 1787; https://doi.org/10.3390/diagnostics15141787 - 16 Jul 2025
Viewed by 189
Abstract
Background/Objectives: Postoperative deep vein thrombosis (DVT) is a common and serious complication after tibial fracture surgery. This study aimed to develop and evaluate machine learning (ML) models to predict the occurrence of DVT following tibia fracture surgery. Methods: A retrospective analysis [...] Read more.
Background/Objectives: Postoperative deep vein thrombosis (DVT) is a common and serious complication after tibial fracture surgery. This study aimed to develop and evaluate machine learning (ML) models to predict the occurrence of DVT following tibia fracture surgery. Methods: A retrospective analysis was conducted on patients who had undergone surgery for isolated tibial fractures. A total of 42 predictive models were developed using combinations of six ML algorithms—logistic regression, support vector machine, random forest, extreme gradient boosting, Light Gradient Boosting Machine (LightGBM), and neural networks—and seven feature selection methods, including SHapley Additive exPlanations (SHAP), Least Absolute Shrinkage and Selection Operator (LASSO), Boruta, recursive feature elimination, univariate filtering, and full-variable inclusion. Model performance was assessed based on discrimination, quantified by the area under the receiver operating characteristic curve (AUC-ROC), and calibration, measured using Brier scores, with internal validation performed via bootstrapping. Results: Of 471 patients, 80 (17.0%) developed postoperative DVT. The ML models achieved high overall accuracy in predicting DVT. Twenty-four models showed similarly excellent discrimination (pairwise AUC comparisons, p > 0.05). The top-performing model (random forest with RFE) attained an AUC of ~0.99, while several others (including LightGBM and SVM-based models) also reached AUC values in the 0.97–0.99 range. Notably, support vector machine models paired with Boruta or LASSO feature selection demonstrated the best calibration (lowest Brier scores), indicating reliable risk estimation. The final selected SVM models achieved high specificity (≥95%) with moderate sensitivity (~75–80%) for DVT detection. Conclusions: ML models demonstrated high accuracy in predicting postoperative DVT following tibial fracture surgery. Support vector machine-based models showed particularly favorable discrimination and calibration. These results suggest the potential utility of ML-based risk stratification to guide individualized prophylaxis, warranting further validation in prospective clinical settings. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Orthopedics)
Show Figures

Figure 1

18 pages, 1565 KiB  
Article
Spatial and Seasonal Analysis of Phyllosphere Bacterial Communities of the Epiphytic Gymnosperm Zamia pseudoparasitica
by Lilisbeth Rodríguez-Castro, Adriel M. Sierra, Juan Carlos Villarreal Aguilar and Kristin Saltonstall
Appl. Biosci. 2025, 4(3), 35; https://doi.org/10.3390/applbiosci4030035 - 11 Jul 2025
Viewed by 196
Abstract
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during [...] Read more.
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during the rainy and dry seasons in the Republic of Panama. We used DNA metabarcoding to describe the total bacteria community with the 16S rRNA gene and the diazotrophic community with nifH gene. Common taxa included members of the Rhizobiales, Frankiales, Pseudonocardiales, Acetobacteriales, and the diazotrophic community was dominated by Cyanobacateria. We observed similar patterns of alpha diversity across sites and seasons, and no community differences were seen within sites between the rainy and dry seasons for either the 16S rRNA or nifH genes. However, pairwise comparisons showed some statistically significant differences in community composition between sites and seasons, but these explained only a small portion of the variation. Beta diversity partitioning indicated that communities were more phylogenetically closely related than expected by chance, indicative of strong environmental or host filtering shaping these phyllosphere communities. These results highlight the influence of host-driven selection and habitat stability in shaping phyllosphere microbiota, offering new insights into microbial assembly in tropical canopy ecosystems. Full article
Show Figures

Figure 1

21 pages, 6277 KiB  
Article
Implementation Method and Bench Testing of Fractional-Order Biquadratic Transfer Function-Based Mechatronic ISD Suspension
by Yujie Shen, Dongdong Qiu, Haolun Xu, Yanling Liu, Kecheng Sun, Xiaofeng Yang and Yan Guo
Sensors 2025, 25(14), 4255; https://doi.org/10.3390/s25144255 - 8 Jul 2025
Viewed by 171
Abstract
To address the challenge of physically realizing fractional-order electrical networks, this study proposes an implementation method for a mechatronic inerter–spring–damper (ISD) suspension based on a fractional-order biquadratic transfer function. Building upon a previously established model of a mechatronic ISD suspension, the influence of [...] Read more.
To address the challenge of physically realizing fractional-order electrical networks, this study proposes an implementation method for a mechatronic inerter–spring–damper (ISD) suspension based on a fractional-order biquadratic transfer function. Building upon a previously established model of a mechatronic ISD suspension, the influence of parameter perturbations on the suspension’s dynamic performance characteristics was systematically investigated. Positive real synthesis was employed to determine the optimal five-element passive network structure for the fractional-order biquadratic electrical network. Subsequently, the Oustaloup filter approximation algorithm was utilized to realize the integer-order equivalents of the fractional-order electrical components, and the approximation effectiveness was analyzed through frequency-domain and time-domain simulations. Bench testing validated the effectiveness of the proposed method: under random road excitation at 20 m/s, the root mean square (RMS) values of the vehicle body acceleration, suspension working space, and dynamic tire load were reduced by 7.86%, 17.45%, and 2.26%, respectively, in comparison with those of the traditional passive suspension. This research provides both theoretical foundations and practical engineering solutions for implementing fractional-order transfer functions in vehicle suspensions, establishing a novel technical pathway for comprehensively enhancing suspension performance. Full article
Show Figures

Figure 1

21 pages, 4859 KiB  
Article
Improvement of SAM2 Algorithm Based on Kalman Filtering for Long-Term Video Object Segmentation
by Jun Yin, Fei Wu, Hao Su, Peng Huang and Yuetong Qixuan
Sensors 2025, 25(13), 4199; https://doi.org/10.3390/s25134199 - 5 Jul 2025
Viewed by 386
Abstract
The Segment Anything Model 2 (SAM2) has achieved state-of-the-art performance in pixel-level object segmentation for both static and dynamic visual content. Its streaming memory architecture maintains spatial context across video sequences, yet struggles with long-term tracking due to its static inference framework. SAM [...] Read more.
The Segment Anything Model 2 (SAM2) has achieved state-of-the-art performance in pixel-level object segmentation for both static and dynamic visual content. Its streaming memory architecture maintains spatial context across video sequences, yet struggles with long-term tracking due to its static inference framework. SAM 2’s fixed temporal window approach indiscriminately retains historical frames, failing to account for frame quality or dynamic motion patterns. This leads to error propagation and tracking instability in challenging scenarios involving fast-moving objects, partial occlusions, or crowded environments. To overcome these limitations, this paper proposes SAM2Plus, a zero-shot enhancement framework that integrates Kalman filter prediction, dynamic quality thresholds, and adaptive memory management. The Kalman filter models object motion using physical constraints to predict trajectories and dynamically refine segmentation states, mitigating positional drift during occlusions or velocity changes. Dynamic thresholds, combined with multi-criteria evaluation metrics (e.g., motion coherence, appearance consistency), prioritize high-quality frames while adaptively balancing confidence scores and temporal smoothness. This reduces ambiguities among similar objects in complex scenes. SAM2Plus further employs an optimized memory system that prunes outdated or low-confidence entries and retains temporally coherent context, ensuring constant computational resources even for infinitely long videos. Extensive experiments on two video object segmentation (VOS) benchmarks demonstrate SAM2Plus’s superiority over SAM 2. It achieves an average improvement of 1.0 in J&F metrics across all 24 direct comparisons, with gains exceeding 2.3 points on SA-V and LVOS datasets for long-term tracking. The method delivers real-time performance and strong generalization without fine-tuning or additional parameters, effectively addressing occlusion recovery and viewpoint changes. By unifying motion-aware physics-based prediction with spatial segmentation, SAM2Plus bridges the gap between static and dynamic reasoning, offering a scalable solution for real-world applications such as autonomous driving and surveillance systems. Full article
Show Figures

Figure 1

19 pages, 2795 KiB  
Article
PCA- and PLSR-Based Machine Learning Model for Prediction of Urea-N Content in Heterogeneous Soils Using Near-Infrared Spectroscopy
by Damiano Crescini, Gabriele Mascialino, Nicola Moggia, Giordano Piubeni, Mauro Serpelloni and Emilio Sardini
Sensors 2025, 25(13), 4176; https://doi.org/10.3390/s25134176 - 4 Jul 2025
Viewed by 201
Abstract
Determining the soil’s nitrogen supply accurately and quickly is essential for effective agricultural management. This study explores the use of near-infrared (NIR) spectroscopy combined with spectral pre-processing techniques (such as Savitzky–Golay filtering) and partial least squares regression (PLSR) to assess soil nitrogen levels. [...] Read more.
Determining the soil’s nitrogen supply accurately and quickly is essential for effective agricultural management. This study explores the use of near-infrared (NIR) spectroscopy combined with spectral pre-processing techniques (such as Savitzky–Golay filtering) and partial least squares regression (PLSR) to assess soil nitrogen levels. Six soil types of varying compositions, treated with different levels of Urea-N fertilizer, were examined. Nitrogen-specific NIR peaks were identified, and regression models were consequently developed. Through a comparison of the performance of the models, the most effective model for nitrogen detection was selected. In calibration, the models performed well, with high R2 (over 0.9) and low root mean square error (RMSE) values. The second derivative-based (SD) model slightly outperformed the first derivative-based (FD) model in terms of accuracy. Both models showed minimal bias, indicating reliable performance. During validation, the FD model outperformed the SD model in terms of R2, root mean square error of prediction (RMSEP), and residual prediction deviation (RPD). Thus, the FD model demonstrated good predictive ability (R2 = 0.77, RPD = 2.06), while the SD model was less effective (R2 = 0.65, RPD = 1.77). Compared to previous studies, this study uniquely combines real-time online detection capability with low computational cost, unlike most prior offline approaches, and includes model validation across various soil types. Overall, NIR spectroscopy coupled with multivariate models proves to be a promising tool for the detection of nitrogen levels in various soils. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

27 pages, 2738 KiB  
Article
Design and Analysis of a Hybrid MPPT Method for PV Systems Under Partial Shading Conditions
by Oğuzhan Timur and Bayram Kaan Uzundağ
Appl. Sci. 2025, 15(13), 7386; https://doi.org/10.3390/app15137386 - 30 Jun 2025
Viewed by 415
Abstract
Photovoltaic (PV) power generation may vary with respect to several factors such as solar radiation, temperature, power conditioning units, environmental effects, and shading conditions. The partial shading of PV modules is one of the most crucial factors that causes the performance degradation of [...] Read more.
Photovoltaic (PV) power generation may vary with respect to several factors such as solar radiation, temperature, power conditioning units, environmental effects, and shading conditions. The partial shading of PV modules is one of the most crucial factors that causes the performance degradation of PV systems. The main reason for efficiency reduction under partial shading conditions is the creation of multiple local maximums and one global maximum operating point. The classical Maximum Power Point Tracking (MPPT) algorithm fails to determine the global maximum operating point to prevent power losses under partial shading conditions. In this study, a novel hybrid MPPT method based on Perturb & Observe and Particle Swarm Optimization that mainly aims to determine global operating point, is proposed. The proposed hybrid MPPT method is tested under different partial shading conditions and variable irradiance levels. In this manner, the dynamic response of the system is remarkably increased by the proposed MPPT method. To show the superiority of the developed method, a performance comparison is conducted with the P&O- and Kalman-Filter-based MPPT methods. The obtained results illustrate an improvement around 1.5 V in undershoot voltage and 0.2 ms in convergence speed. In addition, the overall system efficiency of the PV system is increased around 2% when compared to the P&O- and Kalman-Filter-based MPPT methods. Consequently, the proposed method seems to be an efficient method in terms of undershoot voltage, convergence time, tracking accuracy, and efficiency under partial shading conditions. Full article
Show Figures

Figure 1

25 pages, 9194 KiB  
Article
Optimization and Estimation of the State of Charge of Lithium-Ion Batteries for Electric Vehicles
by Luc Vivien Assiene Mouodo and Petros J. Axaopoulos
Energies 2025, 18(13), 3436; https://doi.org/10.3390/en18133436 - 30 Jun 2025
Viewed by 233
Abstract
Lithium batteries have become one of the best choices for current consumer electric vehicle batteries due to their good stability and high energy density. To ensure the safety and reliability of electric vehicles (EVs), the battery management system (BMS) must provide accurate and [...] Read more.
Lithium batteries have become one of the best choices for current consumer electric vehicle batteries due to their good stability and high energy density. To ensure the safety and reliability of electric vehicles (EVs), the battery management system (BMS) must provide accurate and real-time information on the usage status of the onboard battery. This article highlights the precise estimation of the state of charge (SOC) applied to four models of lithium-ion batteries (Turnigy, LG, SAMSUNG, and PANASONIC) for electric vehicles in order to ensure optimal use of the battery and extend its lifespan, which is frequently influenced by certain parameters such as temperature, current, number of charge and discharge cycles, and so on. Because of the work’s novelty, the methodological approach combines the extended Kalman filter algorithm (EKF) with the noise matrix, which is updated in this case through an iterative process. This leads to the migration to a new adaptive extended Kalman filter algorithm (AEKF) in the MATLAB Simulink 2022.b environment, which is novel or original in the sense that it has a first-order association. The four models of batteries from various manufacturers were directly subjected to the Venin estimator, which allowed for direct comparison of the models under a variety of temperature scenarios while keeping an eye on performance metrics. The results obtained were mapped charging status (SOC) versus open circuit voltage (OCV), and the high-performance primitives collection (HPPC) tests were carried out at 40 °C, 25 °C, 10 °C, 0 °C and −10 °C. At these temperatures, their corresponding values for the root mean square error (RMSE) of (SOC) for the Turnigy graphene battery model were found to be: 1.944, 9.6237, 1.253, 1.6963, 16.9715, and for (OCV): 1.3154, 4.895, 4.149, 4.1808, and 17.2167, respectively. The tests cover the SOC range, from 100% to 5% with four different charge and discharge currents at rates of 1, 2, 5 and 10 A. After characterization, the battery was subjected to urban dynamometer driving program (UDDS), Energy Saving Test (HWFET) driving cycles, LA92 (Dynamometric Test), US06 (aggressive driving), as well as combinations of these cycles. Driving cycles were sampled every 0.1 s, and other tests were sampled at a slower or variable frequency, thus verifying the reliability and robustness of the estimator to 97%. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

29 pages, 1089 KiB  
Article
Bacterial Community in Foam-Sand Filter Media in Domestic Sewage Treatment: A Case Study of Elevated Ammonium Nitrogen Content
by Ewa Dacewicz
Water 2025, 17(13), 1957; https://doi.org/10.3390/w17131957 - 30 Jun 2025
Viewed by 223
Abstract
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a [...] Read more.
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a comparison of filters by layer (two or three layers) and type of fill (waste PUR foams with 95% open porosity, sand). Proteobacteria, actinobacteria, and firmicutes were shown to be the most abundant phyla. The number and type of fill layers had a significant impact on the diversity of nitrifying bacteria. The presence of Nitrosomonas and Nitrospira was observed in every sponge fill sample, but the abundance of autotrophic nitrifiers was negligible in the two-layer filter. The conditions there proved more favorable for the growth of aerobic heterotrophic bacteria. Also in the Schmutzdecke layer, a dominance of heterotrophic nitrifiers was found. The abundance of bacteria with nitrifying activity (AOB, comammox, HNAD) in the biomass of spongy fill placed in casings was 1.7 times lower than in foams without casings. In addition, anammox bacteria (unidentified Planctomycetes), found mainly in the sponge fill and Schmutzdecke of the three-layer filters, may have been responsible for NH4+-N removal exceeding 70%. In the case of the two-layer filter, the removal of this pollutant reached 92%. Burkholderia and Sphingopyxis were identified as the predominant denitrifying bacteria. The foam-filled filter in the casings showed an increase in o_Caldilineaceae, involved in nitrate removal as non-denitrifiers. Actinomycetes Pseudonocardia and Amycolatopsis, as well as Proteobacteria Devosia, Acinetobacter, and Bdellovibrio, were found to be involved in phosphorus removal in the waste PUR foams. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 3658 KiB  
Article
The True Shortest Path of Obstacle Grid Graph Is Solved by SGP Vertex Extraction and Filtering Algorithm
by Yijie Zhang and Jizhou Chen
Algorithms 2025, 18(7), 400; https://doi.org/10.3390/a18070400 - 29 Jun 2025
Viewed by 316
Abstract
In the obstacle grid map, due to the limitations in search direction imposed by classical path algorithms and meta-heuristic algorithms, the shortest paths are not the true shortest paths (TSPs) but rather the shortest grid paths (SGPs). This paper introduces an SGP vertex [...] Read more.
In the obstacle grid map, due to the limitations in search direction imposed by classical path algorithms and meta-heuristic algorithms, the shortest paths are not the true shortest paths (TSPs) but rather the shortest grid paths (SGPs). This paper introduces an SGP vertex extraction and filtering algorithm (SGPVEFA) that identifies key nodes within SGPs. After screening, these nodes yield TSPs under the same conditions. Through various experiments, the shortest path length searched by the SGPVEFA proposed in this paper can be used to search for the real shortest path, and it also has advantages in comparison with recent new algorithms. With the increase in map scale and obstacle rate, the advantages of this path algorithm are more significant. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

23 pages, 5417 KiB  
Article
Enhancing Powder Bed Fusion—Laser Beam Process Monitoring: Transfer and Classic Learning Techniques for Convolutional Neural Networks
by Piotr Sawicki and Bogdan Dybała
Materials 2025, 18(13), 3026; https://doi.org/10.3390/ma18133026 - 26 Jun 2025
Viewed by 385
Abstract
In this work, we address the task of monitoring Powder Bed Fusion–Laser Beam processes for metal powders (PBF-LB/M). Two main contributions with practical merit are presented. First, we consider the comparison between a large deep neural network (VGG-19) and a small model consisting [...] Read more.
In this work, we address the task of monitoring Powder Bed Fusion–Laser Beam processes for metal powders (PBF-LB/M). Two main contributions with practical merit are presented. First, we consider the comparison between a large deep neural network (VGG-19) and a small model consisting of, among others, four convolutional layers. Our study shows that the small model can compete favorably with the big model, which takes advantage of transfer learning techniques. Secondly, we present a filtering method using a semantic segmentation approach to preselect a region for the classification algorithm. The region is selected based on post-exposure images, and preselection can be easily adopted for any machine independently of the software used for the translation of process input files. To consider the task, a master dataset with over 260,000 samples was prepared, and a detailed process of preparing the training datasets was described. The study demonstrates that the classification time can be reduced by a factor of 4.51 while still maintaining the model’s necessary performance to detect errors in a PBF-LB process. Full article
Show Figures

Graphical abstract

Back to TopTop