Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = film thickness monitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3728 KiB  
Article
Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films
by Mehmet Şükrü Karakuş
Polymers 2025, 17(14), 1938; https://doi.org/10.3390/polym17141938 - 15 Jul 2025
Viewed by 406
Abstract
This study aimed to enhance the characteristic properties of chickpea proteins enriched with quercetin by incorporating whey proteins. For this, whey proteins were supplemented into the film systems at 10, 20, 30, 40, and 50% of the total protein content, and these formulations [...] Read more.
This study aimed to enhance the characteristic properties of chickpea proteins enriched with quercetin by incorporating whey proteins. For this, whey proteins were supplemented into the film systems at 10, 20, 30, 40, and 50% of the total protein content, and these formulations were labeled as CWF1, CWF2, CWF3, CWF4, and CWF5, in that order. Negative control (CF) was designed with chickpea protein alone. Essential amino acid content of chickpea protein (16.48%) was higher than that of whey protein (8.09%). FTIR spectra revealed protein–protein interactions occurred within film systems. Raising the whey protein content above 40% led to morphological issues in the films. Differences in moisture content, thickness, color, and opacity were obvious (p < 0.05). As the protein content boasted, a decrease in solubility and an increase in the swelling ratio of the films was detected (p < 0.05). CWF4 exhibited enhanced barriers and mechanical properties, followed by CWF3, CWF2, CWF1, CF, and CWF5 (p < 0.05). Moreover, in food simulators, quercetin release from films was monitored, and the highest release of quercetin occurred in 50% ethanol, followed by water and 95% ethanol. Ultimately, highly functional quercetin-loaded edible films, especially CWF4, stood out in protecting fresh strawberries. Full article
(This article belongs to the Special Issue Mechanical Behavior of Polymer Materials and Its Applications)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 369
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 593
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

10 pages, 1177 KiB  
Article
Mold-Free Manufacturing of Ultra-Thin Composite Film with Flower-like Microstructures for Highly Sensitive Tactile Sensing
by Xin-Hua Zhao, Ling-Feng Liu, Qinyu He and Qi-Jun Sun
Materials 2025, 18(12), 2863; https://doi.org/10.3390/ma18122863 - 17 Jun 2025
Viewed by 375
Abstract
Wearable tactile sensors with high sensitivity can be potentially used to continuously monitoring physiological signals that are closely related to disease diagnosis and health condition tracking. However, the development of such tactile sensors involves a number of challenges, including a series of expensive [...] Read more.
Wearable tactile sensors with high sensitivity can be potentially used to continuously monitoring physiological signals that are closely related to disease diagnosis and health condition tracking. However, the development of such tactile sensors involves a number of challenges, including a series of expensive patterning processes for microstructure manufacturing and addressing the large thickness of the microstructured composite film. Herein, a mold-free approach is presented to develop an ultra-thin ZnO/PEDOT:PSS composite film with flower-like microstructures via a feasible solution process for highly sensitive tactile sensors. The fabricated tactile sensors exhibit a high sensitivity of 4 × 103 kPa−1 in the pressure range 0–10 kPa, a fast response to various pressures in merits of the hierarchical microstructures on top of the ultra-thin composite films. Thanks to the fascinating performance of the devices, the tactile sensors are demonstrated with the ability to monitor physiological signals, subtle human body motions, and spatial pressure distribution. Full article
(This article belongs to the Special Issue Smart Textile Materials: Design, Characterization and Application)
Show Figures

Figure 1

22 pages, 3803 KiB  
Article
Advanced Self-Powered Sensor for Carbon Dioxide Monitoring Utilizing Surface Acoustic Wave (SAW) Technology
by Hicham Mastouri, Mohammed Remaidi, Amine Ennawaoui, Meryiem Derraz and Chouaib Ennawaoui
Energies 2025, 18(12), 3082; https://doi.org/10.3390/en18123082 - 11 Jun 2025
Viewed by 591
Abstract
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) [...] Read more.
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) layer, chosen for its high electromechanical coupling and strong CO2 affinity. Finite element simulations were conducted to analyze the resonance frequency response under varying gas concentrations, film thicknesses, pressures, and temperatures. Results demonstrate a linear and sensitive frequency shift, with detection capability starting from 10 ppm. The sensor’s autonomy is ensured by a piezoelectric energy harvester composed of a cantilever beam structure with an attached seismic mass, where mechanical vibrations induce stress in a piezoelectric layer (PZT-5H or PVDF), generating electrical energy via the direct piezoelectric effect. Analytical and numerical analyses were performed to evaluate the influence of excitation frequency, material properties, and optimal load on power output. This integrated configuration offers a compact and energy-independent solution for real-time CO2 monitoring in low-power or inaccessible environments. Full article
Show Figures

Figure 1

11 pages, 2748 KiB  
Article
Time-Dependent Growth of Sputtered MoS2 Films on ZnO Nanorods for Enhanced NO2 Sensing Performance
by Rishi Ranjan Kumar, Shivam Gupta, Aswin kumar Anbalagan, Afzal Khan, Nyan-Hwa Tai, Chih-Hao Lee and Heh-Nan Lin
Micromachines 2025, 16(6), 659; https://doi.org/10.3390/mi16060659 - 30 May 2025
Cited by 1 | Viewed by 606
Abstract
Molybdenum disulfide (MoS2) has gained attention for its promising gas-sensing capabilities due to its high surface area and tunable electronic properties. In this study, we investigate the time-dependent growth (under constant conditions) of sputtered MoS2 films on ZnO nanorods and [...] Read more.
Molybdenum disulfide (MoS2) has gained attention for its promising gas-sensing capabilities due to its high surface area and tunable electronic properties. In this study, we investigate the time-dependent growth (under constant conditions) of sputtered MoS2 films on ZnO nanorods and their impact on NO2 sensing performance. ZnO nanorods, synthesized via a hydrothermal method, provide a high-surface-area template to enhance charge transport and gas adsorption. Gas-sensing experiments revealed a strong correlation between MoS2 thickness and NO2 response, with the 25-min-sputtered MoS2 film exhibiting the highest response of 20.9%. The synergistic interaction between MoS2 and ZnO nanorods facilitated charge transfer and enhanced adsorption sites for NO2 molecules. These findings emphasize the critical role of time-dependent growth of MoS2 film in modulating gas-sensing performance and provide insights into designing high-sensitivity NO2 sensors at room temperature. This study contributes to the development of hybrid MoS2/ZnO nanostructures for next-generation environmental monitoring applications. Full article
Show Figures

Figure 1

17 pages, 8321 KiB  
Article
Flexible Piezoresistive Sensor with High Stability Based on GO@PDMS-PU Porous Structure
by Qingfang Zhang, Yi Li, Xingyu Wang, Xiaoyu Zhang, Shuyi Liu, Hengyi Yuan, Xiaodong Yang, Da Li, Zeping Jin, Yujian Zhang, Yutong Liu and Zhengmai Bian
Symmetry 2025, 17(5), 773; https://doi.org/10.3390/sym17050773 - 16 May 2025
Cited by 1 | Viewed by 761
Abstract
In recent years, flexible piezoresistive sensors based on polydimethylsiloxane (PDMS) matrix materials have developed rapidly, showing broad application prospects in fields such as human motion monitoring, electronic skin, and intelligent robotics. However, achieving a balance between structural durability and fabrication simplicity remains challenging. [...] Read more.
In recent years, flexible piezoresistive sensors based on polydimethylsiloxane (PDMS) matrix materials have developed rapidly, showing broad application prospects in fields such as human motion monitoring, electronic skin, and intelligent robotics. However, achieving a balance between structural durability and fabrication simplicity remains challenging. Traditional methods for preparing PDMS flexible substrates with high porosity and high stability often require complex, costly processes. Breaking through the constraints of conventional material systems, this study innovatively combines the high elasticity of polydimethylsiloxane (PDMS) with the stochastically distributed porous topology of a sponge-derived biotemplate through biomimetic templating replication technology, fabricating a heterogeneous composite system with an architecturally asymmetric spatial network. After 5000 loading cycles, uncoated samples experienced a thickness reduction of 7.0 mm, while PDMS-coated samples showed minimal thickness changes (2.0–3.0 mm), positively correlated with curing agent content (5:1 to 20:1). The 5:1 ratio sample demonstrated exceptional mechanical stability. As evidenced, the PDMS film-encapsulated architecturally asymmetric spatial network demonstrates superior stress dissipation efficacy, effectively mitigating stress concentration phenomena inherent to symmetric configurations that induce matrix fracture, thereby achieving optimal mechanical stability. Compared to the pre-test resistance distribution of 10–248 Ω, after 5000 cyclic loading cycles, the uncoated samples exhibited a narrowed resistance range of 10–50 Ω, while PDMS-coated samples maintained a broader resistance range (10–240 Ω) as the curing agent ratio increased (from 20:1 to 5:1), demonstrating that increasing the curing agent ratio helps maintain conductive network stability. The 5:1 ratio sample displayed the lowest resistance variation rate attenuation—only 3% after 5000 cycles (vs. 80% for uncoated samples)—and consistently minimal attenuation at all stages, validating superior electrical stability. Under 0–6 kPa pressure, the 5:1 ratio device maintained a linear sensitivity of 0.157 kPa−1, outperforming some existing works. Human motion monitoring experiments further confirmed its reliable signal output. Furthermore, the architecturally asymmetric spatial network of the device enables superior conformability to complex curvilinear geometries, leveraging its structural anisotropy to achieve seamless interfacial adaptation. By synergistically optimizing material composition and structural design, this study provides a novel technical method for developing highly durable flexible electronic devices. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 3178 KiB  
Article
Calcium Ion Sensors with Unrivaled Stability and Selectivity Using a Bilayer Approach with Ionically Imprinted Nanocomposites
by Antonio Ruiz-Gonzalez, Roohi Chhabra, Xun Cao, Yizhong Huang, Andrew Davenport and Kwang-Leong Choy
Nanomaterials 2025, 15(10), 741; https://doi.org/10.3390/nano15100741 - 15 May 2025
Viewed by 470
Abstract
Calcium ion sensors are essential in clinical diagnosis, particularly in the management of chronic kidney disease. Multiple approaches have been developed to measure calcium ions, including flame photometry and ion chromatography. However, these devices are bulky and require specialized staff for operation and [...] Read more.
Calcium ion sensors are essential in clinical diagnosis, particularly in the management of chronic kidney disease. Multiple approaches have been developed to measure calcium ions, including flame photometry and ion chromatography. However, these devices are bulky and require specialized staff for operation and evaluation. The integration of all-solid-state ion-selective determination allows the design of miniaturized and low-cost sensing that can be used for the continuous monitoring of electrolytes. However, clinical use has been limited due to the low electrochemical stability and selectivity and high noise rate. This manuscript reports for the first time a novel miniaturized Ca2+ ion-selective sensor, developed by using a two-layer nanocomposite thin film (5 µm thick). The device consists of functionalized silica nanoparticles embedded in a poly(vinyl chloride) (PVC) film, which was deposited onto a nanoporous zirconium silicate nanoparticle layer that served as the sensing surface. Systematic evaluation revealed that perfluoroalkane-functionalized silica nanoparticles enhanced Ca2+ selectivity by minimizing K+ diffusion, confirmed by both potentiometric measurements and quartz microbalance studies. The final sensor demonstrated a super-Nernstian sensitivity of 37 mV/Log[Ca2+], a low signal drift of 28 µV/s, a limit of detection of 1 µM, and exceptional selectivity against Na+, K+, and Mg2+ ions. Long-term testing showed stable performance over three months of continuous operation. Clinical testing was conducted on patients with chronic kidney disease. An accurate real-time monitoring of electrolyte dynamics in dialysate samples was observed, where final concentrations matched those observed in physiological conditions. Full article
Show Figures

Figure 1

15 pages, 778 KiB  
Article
Research on a Broadband Optical Monitoring Method with an Improved Error Compensation Mechanism
by Ming Ji, Yiming Guo, Yuhui Pei, Zhenjiang Qin, Weiji Liu and Chitin Hon
Coatings 2025, 15(5), 551; https://doi.org/10.3390/coatings15050551 - 5 May 2025
Viewed by 459
Abstract
In modern optical coating production, optical monitoring technology is an indispensable component. The traditional monochromatic monitoring technology used in current commercial and research institutions is usually only for a specific wavelength and cannot fully represent the characteristics of the film in the entire [...] Read more.
In modern optical coating production, optical monitoring technology is an indispensable component. The traditional monochromatic monitoring technology used in current commercial and research institutions is usually only for a specific wavelength and cannot fully represent the characteristics of the film in the entire spectral range. Moreover, for non-quarter-wave coating systems (such as multilayer or complex coating systems), a thickness change in a single coating may have a significant effect on the performance of the entire coating system. In this case, it may be difficult to use monochromatic monitoring to accurately determine the thickness of each layer, resulting in reduced monitoring accuracy. At present, although broadband optical monitoring can be monitored over a wide wavelength range, the stop-plating time may be misjudged due to error accumulation during the coating process. To solve these problems, a broadband optical monitoring method with an improved error compensation mechanism is proposed in this paper. An optimal function that combines the absolute error and shape similarity of the transmission spectrum is designed, and the transmission spectrum is optimized by the limited random search method. In addition, a breakpoint algorithm based on parabolic error curve prediction is designed for the first time in this paper, which avoids the problem of excessive deposition thickness encountered by traditional broadband monitoring methods in the automatic coating processes. To verify the effectiveness of the proposed method, a set of hardware verification platforms based on broadband optical monitoring is designed in this paper, and a 30-layer shortwave-pass filter is constructed as an example. Compared with the traditional time monitoring method (CTMM), the proposed broadband optical monitoring method (PBMM) has significant advantages in terms of the matching degree between the transmission spectrum and the target spectrum, as well as the average transmittance in the low-pass band. In summary, the broadband optical monitoring method with an improved error compensation mechanism proposed in this paper provides an effective solution for high-precision optical coating production and has high practical application value and research significance. Full article
(This article belongs to the Special Issue Developments in Optical Coatings and Thin Films)
Show Figures

Graphical abstract

15 pages, 6305 KiB  
Article
A Study on the Spectral Characteristics of 83.4 nm Extreme Ultraviolet Filters
by Qian Liu, Aiming Zhou, Hanlin Wang, Pingxu Wang, Chen Tao, Guang Zhang, Xiaodong Wang and Bo Chen
Coatings 2025, 15(5), 535; https://doi.org/10.3390/coatings15050535 - 30 Apr 2025
Viewed by 629
Abstract
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the [...] Read more.
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the nickel mesh-supported indium (In) filter, and their spectral characteristics were comprehensively studied. The material and thickness of the filter were chosen based on atomic scattering principles, determined through theoretical calculation and software simulation. The metal film was deposited using the vacuum-resistive thermal evaporation method. The measured transmission of the filter was 10.06% at 83.4 nm. The surface elements of the sample were analyzed using X-ray photoelectron spectroscopy (XPS). The surface and cross-sectional morphologies of the filter were observed using a scanning electron microscope (SEM). The impact of the oxide layer and carbon contamination on the filter’s transmittance was investigated using an ellipsometer. A multilayer “In-In2O3-C” model was established to determine the thickness of both the oxide layer and carbon contamination layer on the filter. This model introduces the filling factor based on the original model and considers the diffusion of the contamination layer, resulting in more accurate fitting results. The transmittance of the filter in the visible light range was measured using a UV-VIS spectrophotometer, and the measurement error was analyzed. This article provides preparation methods and test methods for the 83.4 nm EUV filter and conducts a detailed analysis of the spectral characteristics of the prepared optical filters, which hold significant value for space exploration applications. Full article
Show Figures

Figure 1

16 pages, 4352 KiB  
Article
Biodegradable Colorimetric Indicative Films Based on Kurugua (Sicana odorifera) Peel Powder
by Orlando Duarte, Germán Ayala Valencia, Omayra B. Ferreiro and Shirley Duarte
Polymers 2025, 17(9), 1167; https://doi.org/10.3390/polym17091167 - 25 Apr 2025
Viewed by 480
Abstract
Colorimetric films are helpful as indicators of the freshness of foods, changing color as their pH varies as they undergo decomposition reactions. Anthocyanins are an important group of bioactive compounds whose color varies depending on the pH of the medium, which is why [...] Read more.
Colorimetric films are helpful as indicators of the freshness of foods, changing color as their pH varies as they undergo decomposition reactions. Anthocyanins are an important group of bioactive compounds whose color varies depending on the pH of the medium, which is why they are used in this type of film. This work evaluated colorimetric indicator films based on the cassava starch and anthocyanins present in kurugua (Sicana odorifera) peel powder. The total anthocyanin content in the kurugua peel powder was quantified (12.13 ± 0.48 mgC3G/L of extract). Films were prepared by casting, based on starch without (PC) and with the addition of kurugua shell powder in low (PB) and high (PA) proportions. Adding kurugua peel powder affected the properties of the films, such as their thickness (0.08 to 0.13 mm), solubility (15 to 18%), humidity (21 to 23%), water contact angle (31 to 61°), density (0.17 to 0.33 g/cm3), and opacity (2.73 to 7.74 A600 nm/mm). Raman spectra showed characteristic peaks for starch and anthocyanins. Finally, the color change capacity of the colorimetric indicator films (PA and PB) was demonstrated, changing to green and yellow colorations at high pH values, as well as during their application in monitoring the freshness of chicken meat; thus, their suitability for use as active and intelligent indicators in the food industry was confirmed. Full article
(This article belongs to the Special Issue Advances in Natural Biodegradable Polymers)
Show Figures

Figure 1

28 pages, 6590 KiB  
Article
Pulse Sensors Based on Laser-Induced Graphene Transferred to Biocompatible Polyurethane Networks: Fabrication, Transfer Methods, Characterization, and Application
by Vanja Vojnović, Marko Spasenović, Ivan Pešić, Teodora Vićentić, Milena Rašljić Rafajilović, Stefan D. Ilić and Marija V. Pergal
Chemosensors 2025, 13(4), 122; https://doi.org/10.3390/chemosensors13040122 - 2 Apr 2025
Viewed by 1376
Abstract
Flexible, wearable biomedical sensors based on laser-induced graphene (LIG) have garnered significant attention due to a straightforward fabrication process and exceptional electrical and mechanical properties. However, most relevant studies rely on commercial polyimide precursors, which suffer from inadequate biocompatibility and weak adhesion between [...] Read more.
Flexible, wearable biomedical sensors based on laser-induced graphene (LIG) have garnered significant attention due to a straightforward fabrication process and exceptional electrical and mechanical properties. However, most relevant studies rely on commercial polyimide precursors, which suffer from inadequate biocompatibility and weak adhesion between the precursor material and the LIG layer. To address these challenges, we synthesized cross-linked polyurethanes (PUs) with good biocompatibility and used them as substrates for LIG-based wearable pulse sensors. During fabrication, we employed two methods of LIG transfer to achieve optimal transfer yield. We adjusted the thickness of PU films and tailored their mechanical and physicochemical properties by varying the soft segment content to achieve optimal sensor performance. Our findings demonstrate that the success of LIG transfer is strongly influenced by the structure and composition of the polymeric substrate. Tensile testing revealed that increasing the soft segment content in PU films significantly improved their tensile strength, elongation at break, and flexibility, with PU based on 50 wt.% soft segment content (PU-50) showing the best mechanical properties. LIG exhibited minimal sensitivity to humidity, while PU films maintained high transparency (>80% at 500 nm), and PU-50 was non-toxic, with less than 5% lactate dehydrogenase (LDH) release in endothelial cell cultures, confirming its biocompatibility. Adhesion tests demonstrated that LIG transferred onto PU-50 exhibited significantly stronger adhesion compared to other tested substrates, with only a 30% increase in electrical resistance after the Scotch tape test, ensuring stability for wearable sensors. The optimal substrate, a semicrystalline PU-50, yielded superior transfer efficiency. Among all tested sensors, the LIG/PU-50, featuring a 77 μm thick substrate with good mechanical properties and improved adhesion, exhibited the highest signal-to-noise ratio (SNR). This study showcases a skin-safe LIG/PU-based pulse sensor that has significant potential for applications as a wearable patch in medical and sports monitoring. Full article
Show Figures

Graphical abstract

32 pages, 2425 KiB  
Review
Development, Challenges, and Applications of Concrete Coating Technology: Exploring Paths to Enhance Durability and Standardization
by Hongbin Zhao, Qingzhou Wang, Ruipeng Shang and Shengkai Li
Coatings 2025, 15(4), 409; https://doi.org/10.3390/coatings15040409 - 30 Mar 2025
Cited by 2 | Viewed by 1087
Abstract
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, [...] Read more.
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, and sulfate corrosion. The applicability of existing testing methods and standard systems is also evaluated. This study shows that surface-film-forming coatings can create a dense barrier, reducing chloride ion diffusion coefficients by more than 50%, making them suitable for humid and high-chloride environments. Pore-sealing coatings fill capillary pores, improving the concrete’s impermeability and making them ideal for highly corrosive environments. Penetrating hydrophobic coatings form a water-repellent layer, reducing water absorption by over 75%, which is particularly beneficial for coastal and underwater concrete structures. Additionally, composite coating technology is becoming a key approach to addressing multi-environment adaptability challenges. Experimental results have indicated that combining penetrating hydrophobic coatings with surface-film-forming coatings can enhance concrete’s resistance to chloride ion penetration while ensuring weather resistance and wear resistance. However, this study also reveals that there are several challenges in the standardization, engineering application, and long-term performance assessment of coating technology. The lack of globally unified testing standards leads to difficulties in comparing the results obtained from different test methods, affecting the practical application of these coatings in engineering. Moreover, construction quality control and long-term service performance monitoring remain weak points in their use in engineering applications. Some engineering case studies indicate that coating failures are often related to an insufficient coating thickness, improper interface treatment, or lack of maintenance. To further improve the effectiveness and long-term durability of coatings, future research should focus on the following aspects: (1) developing intelligent coating materials with self-healing, high-temperature resistance, and chemical corrosion resistance capabilities; (2) optimizing multilayer composite coating system designs to enhance the synergistic protective capabilities of different coatings; and (3) promoting the creation of global concrete coating testing standards and establishing adaptability testing methods for various environments. This study provides theoretical support for the optimization and standardization of concrete coating technology, contributing to the durability and long-term service safety of infrastructure. Full article
(This article belongs to the Special Issue Recent Progress in Reinforced Concrete and Building Materials)
Show Figures

Figure 1

15 pages, 3565 KiB  
Article
pH Measurements Using Leaky Waveguides with Synthetic Hydrogel Films
by Victoria Wensley, Nicholas J. Goddard and Ruchi Gupta
Micromachines 2025, 16(2), 216; https://doi.org/10.3390/mi16020216 - 14 Feb 2025
Viewed by 801
Abstract
Leaky waveguides (LWs) are low-refractive-index films deposited on glass substrates. In these, light can travel in the film while leaking out at the film–substrate interface. The angle at which light can travel in the film is dependent on its refractive index and thickness, [...] Read more.
Leaky waveguides (LWs) are low-refractive-index films deposited on glass substrates. In these, light can travel in the film while leaking out at the film–substrate interface. The angle at which light can travel in the film is dependent on its refractive index and thickness, which can change with pH when the film is made of pH-responsive materials. Herein, we report an LW comprising a waveguide film made of a synthetic hydrogel containing the monomers acrylamide and N-[3-(dimethylamino)propyl]methacrylamide (DMA) and a bisacrylamide crosslinker for pH measurements between 4 and 8. The response of the LW pH sensor was reversible and the response times were 0.90 ± 0.14 and 2.38 ± 0.22 min when pH was changed from low to high and high to low, respectively. The reported LW pH sensor was largely insensitive to typical concentrations of common interferents, including sodium chloride, urea, aluminum sulfate, calcium chloride, and humic acid. Compared to a glass pH electrode, the measurement range is smaller but is close to the range required for monitoring the pH of drinking water. The pH resolution of the hydrogel sensor was ~0.004, compared to ~0.01 for the glass electrode. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

21 pages, 2637 KiB  
Article
Molecular Layer Doping ZnO Films as a Novel Approach to Resistive Oxygen Sensors
by Wojciech Bulowski, Robert P. Socha, Anna Drabczyk, Patryk Kasza, Piotr Panek and Marek Wojnicki
Electronics 2025, 14(3), 595; https://doi.org/10.3390/electronics14030595 - 2 Feb 2025
Cited by 1 | Viewed by 1450
Abstract
In the modern world, gas sensors play a crucial role in sectors such as high-tech industries, medicine, and environmental monitoring. Among these fields, oxygen sensors are the most important. There are several types of oxygen sensors, including optical, magnetic, Schottky diode, and resistive [...] Read more.
In the modern world, gas sensors play a crucial role in sectors such as high-tech industries, medicine, and environmental monitoring. Among these fields, oxygen sensors are the most important. There are several types of oxygen sensors, including optical, magnetic, Schottky diode, and resistive (or chemoresistive) ones. Currently, most oxygen-resistive sensors (ORSs) described in the literature are fabricated as thick layers, typically deposited via screen printing, and they operate at high temperatures, often exceeding 700 °C. This work presents a novel approach utilizing atomic layer deposition (ALD) to create very thin layers. Combined with appropriate doping, this method aims to reduce the energy consumption of the sensors by lowering both the mass requiring heating and the operating temperature. The device fabricated using the proposed process demonstrates a response of 88.21 at a relatively low temperature of 450 °C, highlighting its potential in ORS applications based on doped ALD thin films. Full article
Show Figures

Figure 1

Back to TopTop