Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = field joint observation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 347 KiB  
Article
Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies
by Marlis Ontivero-Ortega, Gorana Mijatovic, Luca Faes, Fernando E. Rosas, Daniele Marinazzo and Sebastiano Stramaglia
Entropy 2025, 27(8), 820; https://doi.org/10.3390/e27080820 (registering DOI) - 1 Aug 2025
Viewed by 299
Abstract
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is [...] Read more.
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is often joint and synergistic. We propose to quantify the synergy of the joint influence of factors on the observed variables using O-information, a recently introduced metric to assess high-order dependencies in complex systems; in the proposed framework, latent factors and observed variables are jointly analyzed in terms of their joint informational character. Two case studies are reported: analyzing resting fMRI data, we find that DMN and FP networks show the highest synergy, consistent with their crucial role in higher cognitive functions; concerning HeLa cells, we find that the most synergistic gene is STK-12 (AURKB), suggesting that this gene is involved in controlling the HeLa cell cycle. We believe that our approach, representing a bridge between factor analysis and the field of high-order interactions, will find wide application across several domains. Full article
(This article belongs to the Special Issue Entropy in Biomedical Engineering, 3rd Edition)
Show Figures

Figure 1

23 pages, 3556 KiB  
Article
Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages
by Boyin Qiu, Dazhong Li, Qianrong Zhang, Hui Lin, Yongping Li, Qingfang Wen and Haisheng Zhu
Plants 2025, 14(14), 2248; https://doi.org/10.3390/plants14142248 - 21 Jul 2025
Viewed by 353
Abstract
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, [...] Read more.
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, metabolomic and transcriptomic analyses, and differential gene expression patterns, along with a correlation analysis, were conducted in different stages of fruit growth and development. The results revealed that the growth rate of fruit’s fresh weight, length, diameter, and flesh thickness during the first seven days was slow, and that it then rapidly increased after the seventh day, and finally slowed once more after 17 days, indicating that the overall process followed a “slow–fast–slow” pattern. Transcriptomic and metabolomic analyses identified several differentially expressed genes and metabolites, and joint analyses revealed that each of the glycolysis/gluconeogenesis, fructose and mannose metabolism and flavonoid biosynthesis pathways individually play significant roles in the dynamic regulation of fruit growth and development during the early, middle, and late stages. Among these, 53 differentially expressed genes (DEGs) and 12 differentially expressed metabolites (DEMs) were found in these pathways. A total of 12 randomly selected DEGs were analyzed using quantitative PCR, and the results showed that gene expression levels were generally consistent with transcriptomic sequencing results, exhibiting dynamic changes with varying expression levels. Correlation analysis revealed that 11 DEMs were positively correlated with four traits except for arbutin, while eight DEGs were related to all traits, including six significantly positive and two significantly negative correlations. These findings enhance our understanding of the regulatory network governing yield and quality and provide substantial evidence to support improvements in breeding programs. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 41092 KiB  
Article
UAV as a Bridge: Mapping Key Rice Growth Stage with Sentinel-2 Imagery and Novel Vegetation Indices
by Jianping Zhang, Rundong Zhang, Qi Meng, Yanying Chen, Jie Deng and Bingtai Chen
Remote Sens. 2025, 17(13), 2180; https://doi.org/10.3390/rs17132180 - 25 Jun 2025
Viewed by 436
Abstract
Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring [...] Read more.
Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages using satellite imagery, traditionally achieved through labor-intensive field surveys. Here, we propose utilizing UAVs as an alternative means to collect spatially continuous ground reference data across larger areas, thereby enhancing the efficiency and scalability of training and validation processes for rice growth stage mapping products. The UAV data collection involved the Nanchuan, Yongchuan, Tongnan, and Kaizhou districts of Chongqing City, encompassing a total area of 377.5 hectares. After visual interpretation, centimeter-level high-resolution labels of the key rice growth stages were constructed. These labels were then mapped to Sentinel-2 imagery through spatiotemporal matching and scale conversion, resulting in a reference dataset of Sentinel 2 data that covered growth stages such as jointing and heading. Furthermore, we employed 30 vegetation index calculation methods to explore 48,600 spectral band combinations derived from 10 Sentinel-2 spectral bands, thereby constructing a series of novel vegetation indices. Based on the maximum relevance minimum redundancy (mRMR) algorithm, we identified an optimal subset of features that were both highly correlated with rice growth stages and mutually complementary. The results demonstrate that multi-feature modeling significantly enhanced classification performance. The optimal model, incorporating 300 features, achieved an F1 score of 0.864, representing a 2.5% improvement over models based on original spectral bands and a 38.8% improvement over models using a single feature. Notably, a model utilizing only 12 features maintained a high classification accuracy (F1 = 0.855) while substantially reducing computational costs. Compared with existing methods, this study constructed a large-scale ground-truth reference dataset for satellite imagery based on UAV observations, demonstrating its potential as an effective technical framework and providing an effective technical framework for the large-scale mapping of rice growth stages using satellite data. Full article
(This article belongs to the Special Issue Recent Progress in UAV-AI Remote Sensing II)
Show Figures

Figure 1

26 pages, 5240 KiB  
Article
A Linear Strong Constraint Joint Solution Method Based on Angle Information Enhancement
by Zhongliang Deng, Ziyao Ma, Xiangchuan Gao, Peijia Liu and Kun Yang
Appl. Sci. 2025, 15(12), 6808; https://doi.org/10.3390/app15126808 - 17 Jun 2025
Viewed by 232
Abstract
High-precision indoor positioning technology is increasingly prominent in its application value in emerging fields such as the Industrial Internet of Things, smart cities, and autonomous driving. 5G networks can transmit large-bandwidth signals and have the capability to transmit and receive signals with multiple [...] Read more.
High-precision indoor positioning technology is increasingly prominent in its application value in emerging fields such as the Industrial Internet of Things, smart cities, and autonomous driving. 5G networks can transmit large-bandwidth signals and have the capability to transmit and receive signals with multiple antennas, enabling the simultaneous acquisition of angle and distance observation information, providing a solution for high-precision positioning. Differences in the types and quantities of observation information in complex environments lead to positioning scenarios having a multimodal nature; how to propose an effective observation model that covers multimodal scenarios for high-precision robust positioning is an urgent problem to be solved. This paper proposes a three-stage time–frequency synchronization method based on group peak time sequence tracing. Timing coarse synchronization is performed through a group peak accumulation timing coarse synchronization algorithm for multi-window joint estimation, frequency offset estimation is based on cyclic prefixes, and finally, fine timing synchronization based on the primary synchronization signal (PSS) sliding cross-correlation is used to synchronize 5G signals to chip-level accuracy. Then, a tracking loop is used to track the Positioning Reference Signal (PRS) to within-chip accuracy, obtaining accurate distance information. After obtaining distance and angle information, a high-precision positioning method for multimodal scenarios based on 5G heterogeneous measurement combination is proposed. Using high-precision angle observation values as intermediate variables, this algorithm can still solve a closed-form positioning solution under sparse observation conditions, enabling the positioning system to achieve good positioning performance even with limited redundant observation information. Full article
(This article belongs to the Special Issue 5G/6G Mechanisms, Services, and Applications)
Show Figures

Figure 1

18 pages, 4050 KiB  
Article
Novel Pulsed Electromagnetic Field Device for Rapid Structural Health Monitoring: Enhanced Joint Integrity Assessment in Steel Structures
by Viktors Mironovs, Yulia Usherenko, Vjaceslavs Zemcenkovs, Viktors Kurtenoks, Vjaceslavs Lapkovskis, Dmitrijs Serdjuks and Pavels Stankevics
Materials 2025, 18(12), 2831; https://doi.org/10.3390/ma18122831 - 16 Jun 2025
Viewed by 388
Abstract
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. [...] Read more.
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. Experiments were conducted on a model steel stand with two joint configurations, using steel plates of 4 mm and 8 mm thickness. The device’s efficacy was evaluated through oscillation pattern analysis and spectral characteristics. Results demonstrate the device’s ability to differentiate between joint states, with the 4 mm plate configuration showing a 15% reduction in high-frequency components compared to the 8 mm plate. Fundamental resonant frequencies of 3D-printed specimens were observed near 5100 Hz, with Q-factors ranging between 200 and 300. The study also found that a 10% increase in volumetric porosity led to a 7% downward shift in resonant frequencies. The developed PEMF device, operating at 50–230 V and delivering 1–5 pulses per minute, shows promise for rapid, non-destructive monitoring of structural joints. When combined with the coaxial correlation method, the system demonstrates enhanced sensitivity in detecting structural changes, utilising an electrodynamic actuator (10 Hz to 2000 Hz range). This integrated approach offers a 30% improvement in early-stage degradation detection compared to traditional methods. Full article
Show Figures

Figure 1

13 pages, 3247 KiB  
Article
Multiscale Water Cycle Mechanisms and Return Flow Utilization in Paddy Fields of Plain Irrigation Districts
by Jie Zhang, Yujiang Xiong, Peihua Jiang, Niannian Yuan and Fengli Liu
Agriculture 2025, 15(11), 1178; https://doi.org/10.3390/agriculture15111178 - 29 May 2025
Viewed by 345
Abstract
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management [...] Read more.
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management and improving water use efficiency. Subsequent investigations during the 2021–2022 double-cropping rice seasons revealed that the tillering stage emerged as a critical drainage period, with 49.5% and 52.2% of total drainage occurring during this phase in early and late rice, respectively. Multiscale drainage heterogeneity displayed distinct patterns, with early rice following a “decrease-increase” trend while late rice exhibited “decrease-peak-decline” dynamics. Smaller scales (field and lateral canal) produced 37.1% higher drainage than larger scales (main canal and small watershed) during the reviving stage. In contrast, post-jointing-booting stages showed 103.6% higher drainage at larger scales. Return flow utilization peaked at the field-lateral canal scales, while dynamic regulation of Fangxi Lake’s storage capacity achieved 60% reuse efficiency at the watershed scale. We propose an integrated optimization strategy combining tillering-stage irrigation/drainage control, multiscale hydraulic interception (control gates and pond weirs), and dynamic watershed storage scheduling. This framework provides theoretical and practical insights for enhancing water use efficiency and mitigating non-point source pollution in plain irrigation districts. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

21 pages, 14054 KiB  
Article
A Novel Approach to Generate Large-Scale InSAR-Derived Velocity Fields: Enhanced Mosaicking of Overlapping InSAR Data
by Xupeng Liu, Guangyu Xu, Yaning Yi, Tengxu Zhang and Yuanping Xia
Remote Sens. 2025, 17(11), 1804; https://doi.org/10.3390/rs17111804 - 22 May 2025
Viewed by 512
Abstract
Large-scale deformation fields are crucial for monitoring seismic activity, landslides, and other geological hazards. Traditionally, the acquisition of large-area, three-dimensional deformation fields has relied on GNSS data; however, the inherent sparsity of these data poses significant limitations. The emergence of Interferometric Synthetic Aperture [...] Read more.
Large-scale deformation fields are crucial for monitoring seismic activity, landslides, and other geological hazards. Traditionally, the acquisition of large-area, three-dimensional deformation fields has relied on GNSS data; however, the inherent sparsity of these data poses significant limitations. The emergence of Interferometric Synthetic Aperture Radar (InSAR) data offers an alternative, enabling the retrieval of large-area, high-resolution deformation velocity fields. Nonetheless, the processing of InSAR data is often complex, time-consuming, and requires substantial storage capacity. To address these challenges, various research institutions have developed online InSAR processing platforms. For instance, the LiCSAR processing platform provides interferometric images covering approximately 250 km × 250 km, facilitating scientific applications of InSAR data. However, the transition from individual interferograms to large-scale, three-dimensional deformation fields often requires additional processing steps, including ramp correction within the images, mosaicking between adjacent images, and the joint inversion of InSAR observations from different viewing angles. In this paper, we propose a novel method for splicing several individual InSAR velocity fields into continent-scale InSAR velocity maps, which takes along-track and cross-track mosaicking into consideration. This method integrates GNSS data with InSAR data and also considers the additional constraint of data overlap region. The efficacy of this methodology is substantiated through its implementation in InSAR observations of the eastern Tibetan Plateau. In some tracks, there are overlapping areas on the east and west sides, and the line-of-sight (LOS) value can be effectively corrected by using these overlapping areas with similar size for two cross-track mosaics. The root mean square error (RMSE) of these tracks was reduced by about 4% to 8% on average when verified using true values of GNSS data compared to no cross-track mosaic. In addition, a significant improvement of 30% in RMSE reduction was achieved for some tracks. Full article
Show Figures

Figure 1

20 pages, 6056 KiB  
Article
Inter-Element Phase Error Compensated Calibration Method for USBL Arrays
by Dejinxuan Zhang, Guangpu Zhang, Xu Zhao, Nan Zou, Jin Fu and Yuanxin Bai
J. Mar. Sci. Eng. 2025, 13(5), 877; https://doi.org/10.3390/jmse13050877 - 28 Apr 2025
Viewed by 322
Abstract
This study addresses the critical limitation of existing Ultra-Short Baseline (USBL) calibration algorithms in handling transducer positional errors and inter-element phase errors. We propose a novel positioning-calibration model based on vector projection theorem. The model achieves two key innovations: it eliminates the influence [...] Read more.
This study addresses the critical limitation of existing Ultra-Short Baseline (USBL) calibration algorithms in handling transducer positional errors and inter-element phase errors. We propose a novel positioning-calibration model based on vector projection theorem. The model achieves two key innovations: it eliminates the influence of inter-element positional errors through its structural design, and, for the first time, incorporates inter-element phase errors from acoustic array measurements as observational parameters to establish joint estimation equations for system installation angle errors and inter-element phase errors. The estimation process is implemented using an unscented Kalman filter (UKF). Simulation results demonstrate that the UKF outperforms the Gauss–Newton method (GNM), achieving estimation errors for installation angles and phase errors within 0.05°. Comparative evaluations confirm the model’s superiority over conventional calibration methods in accurately estimating installation angles under transducer positional errors. Field experiments further validate the algorithm’s effectiveness in real-world marine environments, successfully estimating system installation angle errors and inter-element phase errors to enhance final target positioning accuracy. This approach provides a practical solution to persistent calibration challenges in USBL systems. Full article
Show Figures

Figure 1

17 pages, 10116 KiB  
Article
Effects of Pig Slurry Coupled with Straw Mulching on Soil Nitrogen Dynamics and Maize Growth
by Yali Yang, Dengchao Lei, Yulan Zhang, Zhe Zhao, Hongtu Xie, Fangbo Deng, Xuelian Bao, Xudong Zhang and Hongbo He
Agronomy 2025, 15(5), 1062; https://doi.org/10.3390/agronomy15051062 - 27 Apr 2025
Viewed by 431
Abstract
The balanced application of organic and chemical fertilizers is essential for maintaining soil fertility and crop productivity. To optimize nitrogen (N) balance and maize yield through integrated pig slurry and straw mulching management, a split-plot field experiment was conducted in Northeast China. The [...] Read more.
The balanced application of organic and chemical fertilizers is essential for maintaining soil fertility and crop productivity. To optimize nitrogen (N) balance and maize yield through integrated pig slurry and straw mulching management, a split-plot field experiment was conducted in Northeast China. The study included two straw treatments (straw mulching, S; no straw, NS) and three substitution levels of pig slurry for chemical fertilizer (0%, 20%, and 40%; denoted as M0, M20, and M40). Parameters evaluated included N balance, maize biomass, soil available N, and the mineral N to TN ratio (mineral-N/TN), measured across 0–100 cm at key maize growth stages. Results showed that pig slurry substitution significantly increased soil DON, mineral N, and mineral-N/TN in the topsoil (0–20 cm) at the maize seeding stage and decreased mineral-N/TN at the maize milk (10–40 cm) and maturity (80–100 cm) stages. Meanwhile, straw mulching reduced NH4+-N accumulation in the 0–10 cm of topsoil at the seeding stage, decreased NO3-N in the 0–40 cm soil layer from the jointing to maturity stages, and lowered the mineral-N/TN ratio in the topsoil, thereby mitigating the risk of N leaching. Notably, the combination of pig slurry substitution and straw mulching slightly increased DON and NO3-N in the topsoil while significantly reducing the mineral-N/TN in the deep soil layer at the seeding and milk stages. Pig slurry substitution significantly improved maize yield, N uptake, and N use efficiency (NUE). The highest maize yield (14,628 kg ha1) was observed in the S-M20 treatment, representing a 19% increase compared to NS-M0. N balance analysis indicated that pig slurry substitution alone increased maize yield and N uptake but depleted soil N, whereas straw mulching maintained N surplus. The findings highlight that combining pig slurry with straw mulching optimizes soil N availability and improves sustainable N management and crop productivity in agroecosystems. Full article
Show Figures

Figure 1

20 pages, 5619 KiB  
Article
Effects of Water–Nitrogen Coupling on Root Distribution and Yield of Summer Maize at Different Growth Stages
by Yanbin Li, Qian Wang, Shikai Gao, Xiaomeng Wang, Aofeng He and Pengcheng He
Plants 2025, 14(9), 1278; https://doi.org/10.3390/plants14091278 - 22 Apr 2025
Viewed by 629
Abstract
This research investigates the influence of water–nitrogen coupling on soil water content, nitrogen dynamics, and root distribution in farmland, along with the interactions among soil water, nitrogen transport, root distribution, and crop yield. A field experiment was conducted under moderate drought stress (50–60% [...] Read more.
This research investigates the influence of water–nitrogen coupling on soil water content, nitrogen dynamics, and root distribution in farmland, along with the interactions among soil water, nitrogen transport, root distribution, and crop yield. A field experiment was conducted under moderate drought stress (50–60% of field capacity) and three nitrogen application rates (100, 200, and 300 kg·ha−1, split-applied at 50% during sowing and 50% at the jointing stage, labeled as N1, N2, and N3) at the two critical growth stages (jointing stage P1 and tasseling-silking stage P2) of maize (Denghai 605). The results demonstrated that maize root morphological parameters exhibited the trend N2 > N1 > N3 under different nitrogen treatments. Compared to N2, low nitrogen (N1) decreased root morphological parameters by 35.01–49.60% on average, whereas high nitrogen (N3) led to a reduction of 49.93–61.37%. The N2 treatment consistently maintained greater water uptake, with the highest yield of 13,336 kg·ha−1 observed under the CKN2 treatment, representing increases of 16.1% and 9.2% compared to the P1N2 and P2N2 treatments, respectively. Drought stress at the jointing stage (P1) inhibited root development more severely than at the tasseling-silking stage (P2), demonstrating a bidirectional adaptation strategy characterized by deeper vertical penetration under water stress and increased horizontal expansion under nitrogen imbalance. Correlation analysis revealed a positive correlation between soil nutrient content and maize yield indicators. At the same time, root characteristic values were significantly negatively correlated with yield (p < 0.05). Appropriate water–nitrogen management effectively stimulated root growth, mitigated nitrogen leaching risks, and improved yield. These findings offer a theoretical foundation for optimizing water and nitrogen management in maize production within the Yellow River Basin. Full article
Show Figures

Figure 1

20 pages, 37059 KiB  
Article
Influence of Variation in Hind Leg Structure of Auchenorrhyncha on Their Jumping Performance
by Yifei Xu, Christopher H. Dietrich and Wu Dai
Biology 2025, 14(4), 418; https://doi.org/10.3390/biology14040418 - 13 Apr 2025
Viewed by 537
Abstract
Four species representing four different families of the hemipteran insect suborder Auchenorrhyncha, Lepyronia coleoptrata (Aphrophoridae), Euricania ocellus (Ricaniidae), Kolla sp. (Cicadellidae) and Tricentrus sp. (Membracidae) were investigated using high-speed photography and scanning electron microscopy to identify hind leg structures that may influence jumping [...] Read more.
Four species representing four different families of the hemipteran insect suborder Auchenorrhyncha, Lepyronia coleoptrata (Aphrophoridae), Euricania ocellus (Ricaniidae), Kolla sp. (Cicadellidae) and Tricentrus sp. (Membracidae) were investigated using high-speed photography and scanning electron microscopy to identify hind leg structures that may influence jumping performance. The coxa–trochanteral joint, femur and tibia were found to have distinct structural adaptations that vary among these jumping insects. Froghoppers and planthoppers possess a coxal protrusion which is absent in leafhoppers and treehoppers, the latter featuring a more recessed coxal fossa. The medial coxae of these insects exhibit fields of microtrichia that vary in density and fine structure. Medial gears on the trochanters of Tricentrus sp. are implicated in the storage of energy prior to their jumps. These structural differences manifest in the insects’ jumping performance. The study demonstrated a correlation between the robustness of the microtrichia field interaction and the insect’s jumping capability. Specifically, leafhoppers, equipped with a pair of rivet-like structures connecting the hind coxae, were observed to achieve quicker and more stable take-offs. The study reveals that structural variations in the hind legs of Auchenorrhyncha species significantly influence their jumping performance, with implications for both efficiency and stability. Full article
Show Figures

Figure 1

18 pages, 4842 KiB  
Article
Impact of Split Nitrogen Topdressing on Rhizobacteria Community of Winter Wheat
by Yu An, Yang Wang, Shuangshuang Liu, Wei Wu, Weiming Wang, Mengmeng Liu, Hui Xiao, Jing Dong, Hongjie Ren, Huasen Xu and Cheng Xue
Agriculture 2025, 15(7), 794; https://doi.org/10.3390/agriculture15070794 - 7 Apr 2025
Cited by 1 | Viewed by 458
Abstract
Previous research on soil bacteria focused on refining the nitrogen (N) rates during the wheat (Triticum aestivum L.) growth cycle. Studies concerning how additional and split N topdressing applications can affect wheat rhizobacteria are limited. To address this, a two-year field experiment [...] Read more.
Previous research on soil bacteria focused on refining the nitrogen (N) rates during the wheat (Triticum aestivum L.) growth cycle. Studies concerning how additional and split N topdressing applications can affect wheat rhizobacteria are limited. To address this, a two-year field experiment took the cultivar ‘Gaoyou 2018’ of winter wheat as the experimental material from October 2020 to June 2022. Six nitrogen application regimes were established, including no nitrogen application (T1), single topdressing applications of 120 kg ha−1 (T2) and 80 kg ha−1 (T3) at the jointing stage, and split topdressing applications combining 80 kg ha−1 at jointing with 40 kg ha−1 at the booting stage (T4), the flowering stage (T5), and 10th day post-anthesis (T6). The delayed impacts of the split topdressing time on the rhizobacteria diversity were observed in the second year, with T4 exhibiting a 10.5% higher Chao1 index and 2% greater Shannon diversity than T6. Results from both years indicated that the dominant bacterial phylum compositions in the winter wheat rhizosphere were similar across the nitrogen treatments. The additional N treatments fostered 22.9–27.9% Bacteroidita abundance but diminished 24.0–35.9% Planctomycetota, compared to the thenon-fertilized control (T1). T6 increased the α-Proteobacteria abundance by 15.7–22.0% versus T4, while the N topdressing redistribution to the booting stage increased the MND1 genus abundance in Proteobacteria by 31.3–62.5% compared to T2. Redundancy analysis identified that the rhizosphere pH and soil moisture content were the predominant environmental drivers shaping the winter wheat rhizobacteria. Preliminary findings revealed that split nitrogen application during the jointing and booting stages of winter wheat improved the edaphic micro-environment and modulated the proliferation of beneficial rhizobacteria. However, this change was not transmitted to the yield variation. These results suggest that short-term N management strategies may enhance ecological benefits by intensifying soil–plant–microbe interactions, yet they lack direct agronomic yield advantages. Long-term trials are required to establish causality between rhizosphere microbial community dynamics and crop productivity under split N management regimes. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

12 pages, 1084 KiB  
Article
Predicting the Hamstring Graft Size for ACL Reconstruction Using a 3D Tendon Model in Preoperative MRI
by Andreas Frodl, Moritz Mayr, Markus Siegel, Hans Meine, Elham Taghizadeh, Sebastian Bendak, Hagen Schmal and Kaywan Izadpanah
J. Clin. Med. 2025, 14(6), 2128; https://doi.org/10.3390/jcm14062128 - 20 Mar 2025
Cited by 1 | Viewed by 611
Abstract
Background: Rupture of the ACL is a common injury among men and women athletes. While planning the surgical ACL reconstruction procedure, the eventual graft’s diameter is extremely important. Many parameters are therefore evaluated pre-surgery to ensure access to reliable data for estimating the [...] Read more.
Background: Rupture of the ACL is a common injury among men and women athletes. While planning the surgical ACL reconstruction procedure, the eventual graft’s diameter is extremely important. Many parameters are therefore evaluated pre-surgery to ensure access to reliable data for estimating the graft diameter. Considering this, magnetic resonance imaging (MRI), particularly qualitative analyses of the hamstring tendons, offers a promising approach. Methods: In a retrospective analysis, we carried out 3D segmentation of the gracilis (GT) and semitendinosus tendon (ST) utilizing MRI with varying slice thicknesses and field strengths. The cross-sectional area (CSA) was calculated on different levels (by relying on the models we had thus created) to generate a mean of CSA with six specific segments. We then correlated the mean CSA with the diameter of the graft measured during surgery. Results: A total of 32 patients were included (12 female, 20 male) in this retrospective analysis. We observed the largest CSA in segment 10 mm–0 (16.8 ± 6.1) with differences between men and women. The graft size and tendon diameter correlated significantly in all segments throughout our study cohort. The strongest correlation was apparent in the segment 10 mm–0 (r = 0.552). Conclusions: MRI-based 3D segmentation and the STGT CSA represent a reliable method for estimating preoperatively a quadrupled hamstring graft diameter. The 10 mm–0 mm segment above the joint line showed a strong correlation, making it an ideal reference for graft planning. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

17 pages, 3641 KiB  
Article
Study on the Influence of Laser Welding Residual Stress on the Fatigue Strength of a TC4 Thin Sheet Butt Joint
by Yingxuan Liang, Yu Liu, Yang Yu, Jun Zhou and Chongli Huang
Crystals 2025, 15(3), 230; https://doi.org/10.3390/cryst15030230 - 27 Feb 2025
Cited by 1 | Viewed by 743
Abstract
In order to further study the effect of welding residual stress on the fatigue strength of a TC4 titanium alloy sheet during laser welding, a laser welding butt joint model for TC4 titanium alloy sheets was established using ABAQUS (2022) software. The temperature [...] Read more.
In order to further study the effect of welding residual stress on the fatigue strength of a TC4 titanium alloy sheet during laser welding, a laser welding butt joint model for TC4 titanium alloy sheets was established using ABAQUS (2022) software. The temperature and residual stress fields generated during the welding process were comprehensively simulated, and the melt pool shape and residual stress magnitudes were experimentally verified. The experimental parameters included a laser power range of 900–1200 W, welding speeds of 12.5 and 25 mm/s, and a double-sided welding approach with a cooling interval of 20 s between passes. The findings indicate that welding residual stress is primarily concentrated around the weld and the heat-affected zone, predominantly as tensile stress, with the maximum value observed at the weld’s initiation point, reaching 920 MPa—close to the material’s tensile strength limit. Under ideal conditions (without considering welding residual stress), the fatigue life at the weld area is estimated to reach 188,799 cycles, while the fatigue life of the base material without welding is calculated to be 167,109 cycles. However, when accounting for welding residual stress, the fatigue strength of the sheet decreases significantly, with the minimum fatigue life occurring at the weld toe, measured at 10,471 cycles. This study demonstrates that welding residual stress has a substantial impact on the fatigue life of TC4 titanium alloy sheets, particularly in the heat-affected zone, where the fatigue life is reduced by nearly 94% compared to the ideal condition. These results provide critical insights for improving the fatigue performance of laser-welded TC4 titanium alloy components in engineering applications. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

18 pages, 14465 KiB  
Article
Environmentally Friendly Sampling and Observation System for Exploration of Antarctic Subglacial Lakes
by Zhipeng Deng, Youhong Sun, Xiaopeng Fan, Pavel Talalay, Bing Li, Ting Wang, Yazhou Li, Haibin Yu, Dongliang Wang, Jing Xu, Liping Xu, Chunlei An, Shilin Peng, Nan Zhang, Zhiyong Chang, Yanji Chen, Yunchen Liu, Xiao Yang, Yu Wang, Xianzhe Wei, Rusheng Wang, Zhigang Wang, Xiaokang Ni, Wei Wu and Da Gongadd Show full author list remove Hide full author list
Water 2025, 17(5), 696; https://doi.org/10.3390/w17050696 - 27 Feb 2025
Viewed by 855
Abstract
The sampling and observation of subglacial lakes play a vital role in studying the physical and chemical properties as well as the microbial characteristics of water within these Antarctic subglacial lakes. Compared to existing techniques, such as deep ice core drilling and clean [...] Read more.
The sampling and observation of subglacial lakes play a vital role in studying the physical and chemical properties as well as the microbial characteristics of water within these Antarctic subglacial lakes. Compared to existing techniques, such as deep ice core drilling and clean hot water drilling, recoverable autonomous sondes, inspired by the spinning and reeling silk behavior of spiders, offer several advantages, including lightweight design, low power consumption, and minimal external pollution. Over the past six years, Jilin University, with support from the Ministry of Science and Technology of China, has developed an environmentally friendly sampling and observation system for Antarctic subglacial lakes, utilizing a recoverable autonomous sonde. The whole system includes a melting sonde, detection and control unit, scientific load platform, and ice surface auxiliaries. Extensive laboratory and joint system tests were conducted, both on key components and the complete system, including field tests in ice lakes. The results of these tests validated the feasibility of the underlying principles, the long-term reliability of the system operation, and the cleanliness of the drilling process. Ice penetration speed up to 2.14 m/h was reached with 6~6.5 kW melting tip power and a 660 mL lake water sample was collected. The relevant design concepts and technologies of the system are expected to play an important role in the clean detection and sampling of subglacial lakes in Antarctica, Greenland, and other regions. Full article
Show Figures

Figure 1

Back to TopTop