Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,106)

Search Parameters:
Keywords = fertilizer management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1668 KB  
Article
Sustainable Greenhouse Grape-Tomato Production Implementing a High-Tech Vertical Aquaponic System
by Ioanna Chatzigeorgiou, Maria Ravani, Ioannis A. Giantsis, Athanasios Koukounaras, Aphrodite Tsaballa and Georgios K. Ntinas
Horticulturae 2026, 12(1), 100; https://doi.org/10.3390/horticulturae12010100 (registering DOI) - 17 Jan 2026
Abstract
Growing pressure on water resources and mineral fertilizer use calls for innovative and resource-efficient agri-food systems. Aquaponics, integrating aquaculture and hydroponics, represents a promising approach for sustainable greenhouse production. This study, aiming to explore alternative water and nutrient sources for greenhouse tomato production [...] Read more.
Growing pressure on water resources and mineral fertilizer use calls for innovative and resource-efficient agri-food systems. Aquaponics, integrating aquaculture and hydroponics, represents a promising approach for sustainable greenhouse production. This study, aiming to explore alternative water and nutrient sources for greenhouse tomato production without compromising plant adaptability or yield, evaluated the co-cultivation of grape tomato and rainbow trout in a vertical decoupled aquaponic system under controlled greenhouse conditions. Two aquaponic nutrient strategies were tested: unmodified aquaponic water (AP) and complemented aquaponic water (CAP), with conventional hydroponics (HP) as a control, in a Deep Water Culture hydroponic system. Plant performance was assessed through marketable yield and physiological parameters, while system performance was evaluated using combined-biomass Energy Use Efficiency (EUE), Freshwater Use Efficiency (fWUE) and Nitrogen Use Efficiency (NUE), accounting for both plant and fish production. CAP significantly improved tomato yield (9.86 kg m−2) compared to AP (2.40 kg m−2), although it remained lower than HP (12.14 kg m−2). Fresh WUE was comparable between CAP and HP (9.22 vs. 9.24 g L−1), demonstrating effective water reuse. In contrast, EUE and NUE were lower in CAP, reflecting the additional energy demand of the recirculating aquaculture system and nutrient limitations of fish wastewater. These results highlight aquaponics as a water-efficient production system while emphasizing that optimized nutrient management and energy strategies are critical for improving its overall sustainability and performance. Full article
36 pages, 936 KB  
Article
Contribution of Biological Nitrogen Fixation and Ratoon Rice Growth to Paddy Soil Fertility: Analyses via Field Monitoring and Modeling
by Tamon Fumoto, Satoshi Kumagai, Yu Okashita, Norimasa Tanikawa, Masaya Kuribayashi, Ryotaro Hirose, Hiroyuki Hasukawa, Rie Kusuda, Keisuke Ono, Nobuko Katayanagi and Yusuke Takata
Agriculture 2026, 16(2), 239; https://doi.org/10.3390/agriculture16020239 (registering DOI) - 17 Jan 2026
Abstract
Biological N2 fixation (BNF) and ratoon rice growth are biological processes that mediate N and C cycling in rice paddy ecosystems, but their contributions to paddy soil fertility have rarely been evaluated in a quantitative and unified manner. In this study, we [...] Read more.
Biological N2 fixation (BNF) and ratoon rice growth are biological processes that mediate N and C cycling in rice paddy ecosystems, but their contributions to paddy soil fertility have rarely been evaluated in a quantitative and unified manner. In this study, we analyzed the contribution of BNF and ratoon rice growth to soil N fertility at six rice paddy sites in four prefectures of Japan, combining 2-year field monitoring and simulation using the DNDC-Rice biogeochemistry model. Across the sites and years, ratoon rice was found to accumulate up to 30 kg N ha−1 without fertilization and irrigation after main rice harvest. BNF was not measured but estimated to be 33–63 kg N ha−1 yr−1 at the six sites, by applying a newly built BNF model after calibration against a literature dataset. Based on the simulations using DNDC-Rice under typical local management strategies, we estimated the following contributions of BNF and ratoon rice to soil N fertility, with variations based on the climate, soil properties, and management, as follows: (a) BNF and ratoon rice contributed 4–33% and 3–23% of the N supply from soil during the main rice season, respectively. (b) While BNF contributed 3–29% of the main rice N uptake, that from ratoon rice was much lower (6% or less), presumably because the decomposition of ratoon rice residue induced N immobilization during the main rice season. (c) Although the major part of N gain by BNF was being lost via denitrification and N leaching, BNF was contributing up to 6.6% of the organic N pool at the 0–30 cm soil layer. Ratoon rice was working to save N loss by reducing N leaching, consequently contributing up to 3.3% of the soil N pool. These findings provide quantitative insights into what roles BNF and ratoon rice play in paddy soil fertility. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
21 pages, 647 KB  
Review
A Critical Analysis of Agricultural Greenhouse Gas Emission Drivers and Mitigation Approaches
by Yezheng Zhu, Yixuan Zhang, Jiangbo Li, Yiting Liu, Chenghao Li, Dandong Cheng and Caiqing Qin
Atmosphere 2026, 17(1), 97; https://doi.org/10.3390/atmos17010097 (registering DOI) - 17 Jan 2026
Abstract
Agricultural activities are major contributors to global greenhouse gas (GHG) emissions, with methane (CH4) and nitrous oxide (N2O) emissions accounting for 40% and 60% of total agricultural emissions, respectively. Therefore, developing effective emission reduction pathways in agriculture is crucial [...] Read more.
Agricultural activities are major contributors to global greenhouse gas (GHG) emissions, with methane (CH4) and nitrous oxide (N2O) emissions accounting for 40% and 60% of total agricultural emissions, respectively. Therefore, developing effective emission reduction pathways in agriculture is crucial for achieving carbon budget balance. This article synthesizes the impact of farmland management practices on GHG emissions, evaluates prevalent accounting methods and their applicable scenarios, and proposes mitigation strategies based on systematic analysis. The present review (2000-2025) indicates that fertilizer management dominates research focus (accounting for over 50%), followed by water management (approximately 18%) and tillage practices (approximately 14%). Critically, the effects of these practices extend beyond GHG emissions, necessitating concurrent consideration of crop yields, soil health, and ecosystem resilience. Therefore, it is necessary to conduct joint research by integrating multiple approaches such as water-saving irrigation, conservation tillage and intercropping of leguminous crops, so as to enhance productivity and soil quality while reducing emissions. The GHG accounting framework and three primary accounting methods (In situ measurement, Satellite remote sensing, and Model simulation) each exhibit distinct advantages and limitations, requiring scenario-specific selection. Further refinement of these methodologies is imperative to optimize agricultural practices and achieve meaningful GHG reductions. Full article
(This article belongs to the Special Issue Gas Emissions from Soil)
26 pages, 3652 KB  
Article
Enhancing Resilience in Semi-Arid Smallholder Systems: Synergies Between Irrigation Practices and Organic Soil Amendments in Kenya
by Deborah M. Onyancha, Stephen M. Mureithi, Nancy Karanja, Richard N. Onwong’a and Frederick Baijukya
Sustainability 2026, 18(2), 955; https://doi.org/10.3390/su18020955 (registering DOI) - 17 Jan 2026
Abstract
Smallholder farmers in semi-arid regions worldwide face persistent water scarcity, declining soil fertility, and increasing climate variability, which constrain food production. This study investigated soil and water management practices and their effects on soil health, crop productivity, and adoption among smallholder vegetable farmers [...] Read more.
Smallholder farmers in semi-arid regions worldwide face persistent water scarcity, declining soil fertility, and increasing climate variability, which constrain food production. This study investigated soil and water management practices and their effects on soil health, crop productivity, and adoption among smallholder vegetable farmers in a semi-arid area in Kenya. A mixed-methods approach was employed, combining survey data from 397 farmers with a randomized field experiment. Results showed that hand watering (88.7%) and manure application (95.5%) were prevalent, while only 5.7% of farmers used drip irrigation. Compost and mulch treatments significantly improved soil organic carbon (p = 0.03), available water capacity (p = 0.01), and gravimetric moisture content (p = 0.02), with soil moisture conservation practices strongly correlated with higher yields in leafy green vegetables (R = 0.62). Despite these benefits, adoption was hindered by high water costs (42.6%) and unreliable sources (25.7%). Encouragingly, 96.2% of respondents expressed willingness to pay for improved water systems if affordable and dependable. The findings stress the need for integrated water–soil strategies supported by inclusive policy, infrastructure investment, and gender-responsive training to enhance resilience and productivity in smallholder farming under water-scarce conditions across sub-Saharan Africa and other regions globally, contributing to global sustainability targets such as SDG 6, 12 and 15. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

25 pages, 2024 KB  
Article
Nitrogen Dynamics and Environmental Sustainability in Rice–Crab Co-Culture System: Optimal Fertilization for Sustainable Productivity
by Hao Li, Shuxia Wu, Yang Xu, Weijing Li, Xiushuang Zhang, Siqi Ma, Wentao Sun, Bo Li, Bingqian Fan, Qiuliang Lei and Hongbin Liu
AgriEngineering 2026, 8(1), 34; https://doi.org/10.3390/agriengineering8010034 (registering DOI) - 16 Jan 2026
Abstract
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm [...] Read more.
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm−2), assessing N dynamics in field water and N distribution in soil. The results showed that field water ammonium nitrogen (NH4+-N) concentrations increased nonlinearly, showing sharp increases beyond 210 kg N·hm−2. Notably, crab activity in the RC altered the N transformation and transport processes, leading to a prolonged presence of nitrate nitrogen (NO3-N) in field water for two additional days after tillering fertilization compared to RM. This indicates a critical window for potential nitrogen loss risk, rather than enhanced retention, 15 days after basal fertilizer application. Compared to RM, RC exhibited enhanced nitrogen retention capacity, with NO3-N concentrations remaining elevated for an additional two days following tillering fertilization, suggesting a potential critical period for nitrogen loss risk. Post-harvest soil analysis revealed contrasting nitrogen distribution patterns: RC showed enhanced NH4+-N accumulation in surface layers (0–2 cm) with minimal vertical NO3-N redistribution, while RM exhibited progressive NO3-N increases in subsurface layers (2–10 cm) with increasing fertilizer rates. The 210 kg N·hm−2 rate proved optimal for the RC, producing a rice yield 12.08% higher than that of RM and sustaining high crab yields, while avoiding the excessive aqueous N levels seen at higher rates. It is important to note that these findings are based on a single-site, single-growing season field experiment conducted in Panjin, Liaoning Province, and thus the general applicability of the optimal nitrogen rate may require further validation across diverse environments. We conclude that a fertilization rate of 210 kg N·hm−2 is the optimal strategy for RC, effectively balancing productivity and environmental sustainability. This finding provides a clear, quantitative guideline for precise N management in integrated aquaculture systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
22 pages, 1464 KB  
Article
Optimal Recycling Ratio of Biodried Product at 12% Enhances Digestate Valorization: Synergistic Acceleration of Drying Kinetics, Nutrient Enrichment, and Energy Recovery
by Xiandong Hou, Hangxi Liao, Bingyan Wu, Nan An, Yuanyuan Zhang and Yangyang Li
Bioengineering 2026, 13(1), 109; https://doi.org/10.3390/bioengineering13010109 - 16 Jan 2026
Abstract
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), [...] Read more.
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), six BDP treatments were tested in 60 L bioreactors. Metrics included drying kinetics, product properties, and environmental–economic trade-offs. The results showed that 12% BDP achieved a peak temperature integral (514.13 °C·d), an optimal biodrying index (3.67), and shortened the cycle to 12 days. Furthermore, 12% BDP yielded total nutrients (N + P2O5 + K2O) of 4.19%, meeting the NY 525-2021 standard in China, while ≤3% BDP maximized fuel suitability with LHV > 5000 kJ·kg−1, compliant with CEN/TC 343 RDF standards. BDP recycling reduced global warming potential by 27.3% and eliminated leachate generation, mitigating groundwater contamination risks. The RDF pathway (12% BDP) achieved the highest NPV (USD 716,725), whereas organic fertilizer required farmland subsidies (28.57/ton) to offset its low market value. A 12% BDP recycling ratio optimally balances technical feasibility, environmental safety, and economic returns, offering a closed-loop solution for global food waste valorization. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Graphical abstract

20 pages, 2354 KB  
Article
Combined Effects of Vegetable Oil-, Micronutrient-, and Activated Flavonoid-Based Biostimulants on Photosynthesis, Nematode Suppression, and Fruit Quality of Cucumber (Cucumis sativus L.)
by Georgia Ouzounidou, Niki-Sophia Antaraki, Antonios Anagnostou, George Daskas and Ioannis-Dimosthenis Adamakis
Plants 2026, 15(2), 274; https://doi.org/10.3390/plants15020274 - 16 Jan 2026
Abstract
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield [...] Read more.
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield losses worldwide, underscoring the need for sustainable alternatives to conventional fertilization and pest management. Under greenhouse conditions, a four-month cultivation trial evaluated vegetable oil-, micronutrient-, and activated flavonoid-based biostimulants, applying Key Eco Oil® (Miami, USA) via soil drench (every 15 days) combined with foliar sprays of CropBioLife® (Victoria, Australia) and KeyPlex 120® (Miami, USA) (every 7 days). Results showed reduced parasitic nematodes by 66% in soil and decreased gall formation by 41% in roots. Chlorophyll fluorescence and infrared gas analysis revealed higher oxygen-evolving complex efficiency (38%), increased PSII electron transport, improved the fluorescence decrease ratio, also known as the vitality index (Rfd), and higher CO2 assimilation compared to conventional treatments. Processed cucumbers showed higher sugar and nearly double ascorbic acid content, with improved flesh consistency and color. Therefore, the application of these bioactive products significantly reduced nematode infestation while enhancing plant growth and physiological performance, underscoring their potential as sustainable tools for crop cultivation and protection. These results provide evidence that sustainable bioactive biostimulants improve plant resilience, productivity, and nutritional quality, offering also an environmentally sound approach to pest management. Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

28 pages, 765 KB  
Article
Long-Term Effects of Organo-Mineral Fertilization on Floristic Composition and Biodiversity in High Nature Value Mountain Grasslands of the Apuseni Mountains (Romania)
by Ioana Ghețe, Claudiu Șerban and Alexandru Ghețe
Plants 2026, 15(2), 271; https://doi.org/10.3390/plants15020271 - 16 Jan 2026
Abstract
This study evaluated the long-term effects of organo-mineral fertilization on floristic diversity, species diversity, and vegetation structure in an HNV grasslands of the Apuseni Mountains. The experiment included five fertilization variants (control, organic, organo-mineral, mineral, and intensive organo-mineral), applied over a period of [...] Read more.
This study evaluated the long-term effects of organo-mineral fertilization on floristic diversity, species diversity, and vegetation structure in an HNV grasslands of the Apuseni Mountains. The experiment included five fertilization variants (control, organic, organo-mineral, mineral, and intensive organo-mineral), applied over a period of more than 15 years. Floristic diversity was assessed using a modified Braun–Blanquet method and multivariate methods—cluster analysis, principal coordinate analysis (PCoA), MRPP procedure, and indicator species analysis (ISA). Our analysis showed a trophic gradient, from oligotrophic Festuca rubra grasslands to mesotrophic (Agrostis capillaris–Trisetum flavescens) and eutrophic (Agrostis capillaris–Centaurea pseudophrygia) communities, depending on the intensity of organo-mineral fertilization applied. Moderate organo-mineral fertilization maintained a balanced floristic diversity and higher Shannon and Simpson indices compared to variants fertilized only with mineral inputs. Organo-mineral inputs improved soil fertility and ecosystem resilience, supporting soil microbiota activity and reducing nutrient losses. Intensive mineral fertilization led to a reduction in floristic richness and the dominance of nitrophilic species. This study demonstrates that moderate organo-mineral fertilization (≤10 t ha−1 manure combined with N50P25K25) provides an optimal balance between grassland productivity and biodiversity conservation, offering practical guidance for the sustainable management of High Nature Value mountain grasslands. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

22 pages, 1399 KB  
Review
Nature-Based Solutions for Resilience: A Global Review of Ecosystem Services from Urban Forests and Cover Crops
by Anastasia Ivanova, Reena Randhir and Timothy O. Randhir
Diversity 2026, 18(1), 47; https://doi.org/10.3390/d18010047 - 15 Jan 2026
Abstract
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. [...] Read more.
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. However, their benefits are often viewed separately. This review combines 20 years of research to explore how these strategies, together, improve provisioning, regulating, supporting, and cultural ecosystem services across various landscapes. Urban forests help reduce urban heat islands, improve air quality, manage stormwater, and offer cultural and health benefits. Cover crops increase soil fertility, regulate water, support nutrient cycling, and enhance crop yields, with potential for carbon sequestration and biofuel production. We identify opportunities and challenges, highlight barriers to adopting these strategies, and suggest integrated frameworks—including spatial decision-support tools, incentive programs, and education—to encourage broader use. By connecting urban and rural systems, this review underscores vegetation as a versatile tool for resilience, essential for reaching global sustainability goals. Full article
(This article belongs to the Special Issue 2026 Feature Papers by Diversity's Editorial Board Members)
Show Figures

Graphical abstract

23 pages, 1735 KB  
Article
Iron Nanoparticles Derived from Olive Mill Wastewater for Sustainable Soil Remediation
by Mar Gil-Díaz, Carolina Mancho, Rosa Ana Pérez, Juan Alonso, Sergio Diez-Pascual, Beatriz Albero and M. Carmen Lobo
Nanomaterials 2026, 16(2), 118; https://doi.org/10.3390/nano16020118 - 15 Jan 2026
Abstract
There is an urgent need to develop sustainable approaches for the remediation of contaminated soil as well as to promote sustainable practices for waste management. Here, we provide the first evaluation of the performance of two types of iron nanoparticles (NA and NH) [...] Read more.
There is an urgent need to develop sustainable approaches for the remediation of contaminated soil as well as to promote sustainable practices for waste management. Here, we provide the first evaluation of the performance of two types of iron nanoparticles (NA and NH) obtained from olive mill wastewater for the remediation of an acidic multi-contaminated soil, including metal(loid)s, PCBs, and a flame retardant (TCPP). Their efficiency was then compared against that of a commercial nanoscale zero-valent iron (NS) through a one-month microcosm experiment employing two doses of each nanomaterial. The impact of the treatments on key soil physicochemical properties, metal(loid) availability, PCB and TCPP concentrations, and soil phytotoxicity was assessed. All treatments reduced soil acidity. Regarding organic contaminants, bioremediation of TCPP was enhanced by all nanomaterials, particularly NH, whereas NA was the only treatment that significantly reduced PCB concentration under the tested conditions. NS achieved the highest rates of metal(loid) immobilization (63–100%); NH was most beneficial for soil fertility and immobilized As, Ni, and Pb (100, 38, and 53%, respectively), whereas NA was only effective for Pb (21–49%). The low dose of both NA and NH improved the germination index (66 and 61%, respectively), reducing soil phytotoxicity. These results highlight the potential of valorizing olive mill wastewater for soil remediation, thereby contributing to the principles of the Circular Economy. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

30 pages, 7257 KB  
Article
Water Surface Ratio and Inflow Rate of Paddy Polder Under the Stella Nitrogen Cycle Model
by Yushan Jiang, Junyu Hou, Fanyu Zeng, Jilin Cheng and Liang Wang
Sustainability 2026, 18(2), 897; https://doi.org/10.3390/su18020897 - 15 Jan 2026
Viewed by 23
Abstract
To address the challenge of optimizing hydrological parameters for nitrogen pollution control in paddy polders, this study coupled the Stella eco-dynamics model with an external optimization algorithm and developed a nonlinear programming framework using the water surface ratio and inflow rate as decision [...] Read more.
To address the challenge of optimizing hydrological parameters for nitrogen pollution control in paddy polders, this study coupled the Stella eco-dynamics model with an external optimization algorithm and developed a nonlinear programming framework using the water surface ratio and inflow rate as decision variables and the maximum nitrogen removal rate as the objective function. The simulation and optimization conducted for the Hongze Lake polder area indicated that the model exhibited strong robustness, as verified through Monte Carlo uncertainty analysis, with coefficients of variation (CV) of nitrogen outlet concentrations all below 3%. Under the optimal regulation scheme, the maximum nitrogen removal rates (η1, η2, and η4) during the soaking, tillering, and grain-filling periods reached 98.86%, 98.74%, and 96.26%, respectively. The corresponding optimal inflow rates (Q*) were aligned with the lower threshold limits of each growth period (1.20, 0.80, and 0.50 m3/s). The optimal channel water surface ratios (A1*) were 3.81%, 3.51%, and 3.34%, respectively, while the optimal pond water surface ratios (A2*) were 19.94%, 16.30%, and 17.54%, respectively. Owing to the agronomic conflict between “water retention without drainage” and concentrated fertilization during the heading period, the maximum nitrogen removal rate (η3) during this stage was only 37.34%. The optimal channel water surface ratio (A1*) was 2.37%, the pond water surface ratio (A2*) was 19.04%, and the outlet total nitrogen load increased to 8.39 mg/L. Morphological analysis demonstrated that nitrate nitrogen and organic nitrogen dominated the outlet water body. The “simulation–optimization” coupled framework established in this study can provides quantifiable decision-making tools and methodological support for the precise control and sustainable management of agricultural non-point source pollution in the floodplain area. Full article
14 pages, 611 KB  
Article
Mechanically Deep-Placed Nitrogen Fertilizer Modulates Rice Yield and Nitrogen Recovery Efficiency in South China
by Hanyue Guo, Longfei Xia, Siying Yang, Yifei Wang, Haidong Liu, Ming Jiang, Jianying Qi, Zhaowen Mo and Shenggang Pan
Agronomy 2026, 16(2), 213; https://doi.org/10.3390/agronomy16020213 - 15 Jan 2026
Viewed by 67
Abstract
Mechanical deep fertilization is an efficient fertilization method. However, the effects of different types of nitrogen fertilizer on rice grain yield and nitrogen use efficiency under deep-application conditions remain unclear. In this study, field experiments were carried out in 2021 and 2022. The [...] Read more.
Mechanical deep fertilization is an efficient fertilization method. However, the effects of different types of nitrogen fertilizer on rice grain yield and nitrogen use efficiency under deep-application conditions remain unclear. In this study, field experiments were carried out in 2021 and 2022. The experimental treatments consisted of three types of nitrogen fertilizer, i.e., urea (T1), slow/controlled-release fertilizer (T2), and super rice special fertilizer (T3), applied at a rate of 150 kg N ha−1 via mechanical deep placement using Meixiangzhan 2 (MX) and Y liangyou 1378 (YL) as experimental materials. No fertilizer application was used as a control (T0) to calculate nitrogen use efficiency. The T2 treatment produced 29.03% and 25.52% higher grain yield for MX and YL because of the increase in productive panicles per ha and spikelet number per panicle, 21.20% and 13.68% higher nitrogen recovery efficiency, and 24.57% and 23.29% higher nitrogen agronomy efficiency than T1, respectively. In addition, the T2 treatment significantly improved the leaf area index and total aboveground biomass at the panicle initiation and heading stages. We also found that the POD, CAT, NR, and GOGAT of T2 for MX and YL at the heading stage were significantly enhanced compared to other treatments. Significant interaction was also observed in spikelet per panicle and 1000-grain weight between rice variety and nitrogen fertilizer type. Therefore, slow/controlled-release fertilizer application at the rate of 150 kg N per ha is a more feasible nitrogen fertilizer management strategy under mechanical deep placement, with the merit of increasing grain yield and improving nitrogen use efficiency in South China. Full article
(This article belongs to the Special Issue Crop Productivity and Management in Agricultural Systems)
Show Figures

Figure 1

33 pages, 4147 KB  
Article
Effects of Management and Climatic Variability on Indicator Species and Biomass Production in Carpathian Mountain Grasslands
by Ioana Ghețe, Borlea Mihaela, Claudiu Șerban and Alexandru Ghețe
Plants 2026, 15(2), 269; https://doi.org/10.3390/plants15020269 - 15 Jan 2026
Viewed by 27
Abstract
Carpathian mountain grasslands are increasingly affected by management intensification and climatic variability, with consequences for species composition and ecosystem functioning. This study assessed the long-term effects of a mineral fertilization gradient and interannual climatic variability on indicator species dynamics and biomass production in [...] Read more.
Carpathian mountain grasslands are increasingly affected by management intensification and climatic variability, with consequences for species composition and ecosystem functioning. This study assessed the long-term effects of a mineral fertilization gradient and interannual climatic variability on indicator species dynamics and biomass production in a semi-natural high-nature-value (HNV) grassland in the Apuseni Mountains, based on a 17-year field experiment. Increasing fertilization intensity promoted a clear shift from species-rich oligotrophic communities toward simplified mesotrophic and eutrophic grassland types, accompanied by a decline in indicator species richness and the increasing dominance of competitive grasses. Biomass production increased consistently along the fertilization gradient. Climate-driven effects were assessed using unfertilized control plots, allowing management effects to be disentangled from interannual climatic variability. Variations in temperature and precipitation influenced floristic composition and productivity across the years, highlighting the sensitivity of mountain grasslands to short-term climatic fluctuations. Multivariate analyses revealed increasing vegetation homogenization under high fertilization and distinct year-to-year shifts in species composition under unfertilized conditions. These results emphasize the vulnerability of Carpathian HNV grasslands to both nutrient enrichment and climatic variability, and underline the need for climate-adaptive, biodiversity-oriented management strategies. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

18 pages, 5328 KB  
Article
Responses of Leaf Nutrient Dynamics, Soil Nutrients, and Microbial Community Composition to Different Trichosanthes kirilowii Maxim. Varieties
by Fengyun Xiang, Tianya Liu, Mengchen Yang, Zheng Zhang, Qian Yang and Jifu Li
Horticulturae 2026, 12(1), 91; https://doi.org/10.3390/horticulturae12010091 - 15 Jan 2026
Viewed by 45
Abstract
To investigate the effects of different Trichosanthes kirilowii Maxim. varieties on leaf nutrients, soil nutrients, and microbial community composition, this study selected Yuelou No. 3 and Huiji No. 2, two major cultivars from the primary production area of Shishou City. The two varieties [...] Read more.
To investigate the effects of different Trichosanthes kirilowii Maxim. varieties on leaf nutrients, soil nutrients, and microbial community composition, this study selected Yuelou No. 3 and Huiji No. 2, two major cultivars from the primary production area of Shishou City. The two varieties were cultivated at different locations under standardized agronomic management practices, and a systematic comparative analysis was carried out over a 10-month sampling period from March to December 2024. The analysis encompassed their leaf nutrients (total nitrogen, total phosphorus, total potassium, and relative chlorophyll content), soil nutrients (organic matter, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium), and microbial community characteristics. The results revealed significant varietal differences in leaf nutrient content: the average total phosphorus content of Yuelou No. 3 (0.44%) was higher than that of Huiji No. 2 (0.39%), while Huiji No. 2 exhibited higher total nitrogen (3.73%), total potassium (3.86%), and SPAD (44.72). Leaf nutrient content in both varieties followed a pattern of nitrogen > potassium > phosphorus, with peak phosphorus and potassium demand occurring earlier in Yuelou No. 3. Additionally, Yuelou No. 3 contained higher organic matter (12.73 g/kg) and alkali-hydrolyzable nitrogen (103.02 mg/kg), while Huiji No. 2 showed enhanced soil pH (7.02), available phosphorus (6.96 mg/kg), and available potassium (180.00 mg/kg). Soil available nutrient dynamics displayed a pattern of slow change during the early stage, a rapid increase during the middle stage, and stabilization in the later stage. Microbial analysis revealed no significant differences in alpha diversity between the two varieties, although Yuelou No. 3 showed marginally higher diversity indices during early to mid-growth stages. In contrast, beta diversity showed significant separation in PCoA space. Proteobacteria, Acidobacteria, and Ascomycota were the dominant microbial phyla. Dominant genera included Kaistobacter, Mortierella, and Neocosmospora, among others, with variety-specific relative abundances. Redundancy analysis further supported the variety-specific influence of soil physicochemical properties on microbial community structure, with available phosphorus, available potassium, and alkali-hydrolyzable nitrogen identified as key factors shaping community composition. This study provides a theoretical basis for understanding the impact of different Trichosanthes kirilowii Maxim. varieties on soil–plant–microbe interactions and suggests potential directions for future research on fertilization and management strategies tailored to varietal differences. Full article
Show Figures

Figure 1

20 pages, 7204 KB  
Article
Climate-Based Natural Suitability Index (CNSI) for Blueberry Cultivation in China: Spatiotemporal Evolution and Influencing Factors
by Yixuan Feng, Jing Chen, Jiayi Liu, Xinchun Wang, Jinying Li, Ying Wang, Junnan Wu, Lin Wu and Yanan Li
Agronomy 2026, 16(2), 211; https://doi.org/10.3390/agronomy16020211 - 15 Jan 2026
Viewed by 104
Abstract
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector [...] Read more.
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector analysis, this study examines the spatiotemporal evolution and driving mechanisms of blueberry climatic suitability realization in 19 major producing provinces in China during 2008–2023. Results show that CNSI exhibits a stable and moderately right-skewed distribution, with partial convergence and a narrowing interprovincial gap. Suitability realization is highest in the middle and lower Yangtze River rice-growing belt, whereas the northern dryland belt and the southern subtropical mountainous belt show persistent mismatches between climatic potential and production advantages. Markov results reveal path dependence and moderate mobility, with “low–low lock-in” and “high–high club” phenomena reinforced under neighborhood effects. GeoDetector results indicate that effective facility irrigation and fertilizer input are dominant factors explaining spatial variation in CNSI, while comprehensive transportation accessibility and agricultural labor act as stable complements. Interaction analysis suggests that multi-factor synergies, particularly irrigation-centered combinations, yield strong dual-factor enhancement and near-nonlinear enhancement. These findings highlight the importance of aligning climatic suitability with adaptive infrastructure investment and region-specific management to promote sustainable production-share advantages in China’s blueberry industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

Back to TopTop