Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,082)

Search Parameters:
Keywords = fertility status

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1176 KiB  
Article
Effect of Different Extenders on the Oxidative Status and Fertility of Sarda Ram Liquid Semen Stored at 15 °C
by Pasciu Valeria, Charbel Nassif, Maria Dattena, Sara Succu, Francesca Daniela Sotgiu, Antonello Cannas, Ignazio Cossu, Elena Baralla, Fabrizio Chessa, Fiammetta Berlinguer and Laura Mara
Antioxidants 2025, 14(8), 932; https://doi.org/10.3390/antiox14080932 - 30 Jul 2025
Viewed by 249
Abstract
Liquid storage is an important tool used to prolong fresh semen shelf-life while protecting spermatozoa from damage, conserving their overall functionality, and ensuring better fertility than frozen semen from sheep. The increased production of reactive oxygen species (ROS) during sperm storage leads to [...] Read more.
Liquid storage is an important tool used to prolong fresh semen shelf-life while protecting spermatozoa from damage, conserving their overall functionality, and ensuring better fertility than frozen semen from sheep. The increased production of reactive oxygen species (ROS) during sperm storage leads to a decline in sperm quality, particularly with regard to sperm nuclear DNA damage and mitochondrial membrane potential (MMP). This study evaluated the effect of storing Sarda ram semen at 15 °C for 7 h on its redox status, motility, morphology, acrosome integrity, ATP content, mitochondrial potential membrane, and in vivo fertility after artificial insemination. Two different extenders were compared: a lab-made skimmed milk (SM)-based extender and a commercial extender (OviXcell®, IMV-Technologies, France). Lower ROS levels in the SM (p < 0.001) indicated that its oxidative status was better maintained compared to the commercial extender (CE). Antioxidant defenses (total antioxidant capacity, TEAC; superoxide dismutase, SOD; total thiols) were higher in the SM (p < 0.01) than in the CE. SM also had higher MMP (p < 0.05), acrosome integrity (p < 0.05), ATP content (p < 0.01), and in vivo fertilizing capacity (p < 0.05) compared to the CE, which indicated higher semen quality. In conclusion, the SM extender, while maintaining a better oxidative/antioxidant balance, ensured higher semen quality after 7 h of storage at 15 °C in vitro compared to the CE. Full article
Show Figures

Figure 1

21 pages, 2004 KiB  
Review
Interplay of Oxidative Stress, Autophagy, and Rubicon in Ovarian Follicle Dynamics: Orchestrating Ovarian Aging
by Kiyotaka Yamada, Masami Ito, Haruka Nunomura, Takashi Nishigori, Atsushi Furuta, Mihoko Yoshida, Akemi Yamaki, Kanto Shozu, Ippei Yasuda, Sayaka Tsuda, Tomoko Shima and Akitoshi Nakashima
Antioxidants 2025, 14(8), 919; https://doi.org/10.3390/antiox14080919 - 27 Jul 2025
Viewed by 477
Abstract
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and [...] Read more.
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and tissue dysfunction. This review describes how granulosa cell autophagy supports follicular growth and oocyte selection and maturation by regulating cellular energy metabolism and protein quality control. We then introduce the role of selective autophagy, including mitophagy or lipophagy, in steroidogenesis and cellular remodeling during luteinization. In aged ovaries, Rubicon accumulation suppresses autophagic flux, leading to diminished oxidative-stress resilience and enhanced DNA damage. Moreover, impaired autophagy drives the accumulation of ATP citrate lyase, which correlates with poor oocyte quality and reduced ovarian reserve. Following fertilization, oocytes further upregulate autophagy to provide the energy required for blastocyst transition. Conversely, in infertility-related disorders, such as premature ovarian insufficiency, endometriosis, and polycystic ovary syndrome, either deficient or excessive autophagy contributes to disease pathogenesis. Both autophagy inhibitors (e.g., Rubicon) and activators (e.g., Beclin1) could be emerging as promising biomarkers for assessing ovarian autophagy status. Therapeutically, Rubicon inhibition by trehalose in aged ovaries and autophagy suppression by agents such as hydroxychloroquine in polycystic ovary syndrome and endometriosis hold potential. Establishing robust methods to evaluate ovarian autophagy will be essential for translating these insights into targeted treatments. Full article
Show Figures

Figure 1

27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 382
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Evaluation of Eutrophication in Small Reservoirs in Northern Agricultural Areas of China
by Qianyu Jing, Yang Shao, Xiyuan Bian, Minfang Sun, Zengfei Chen, Jiamin Han, Song Zhang, Shusheng Han and Haiming Qin
Diversity 2025, 17(8), 520; https://doi.org/10.3390/d17080520 - 26 Jul 2025
Viewed by 178
Abstract
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton [...] Read more.
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton were quantitatively collected from four small reservoirs in the Jiuxianshan agricultural area of Qufu, Shandong Province, in March and October 2023, respectively. The physical and chemical parameters in sampling points were determined simultaneously. Meanwhile, water samples were collected for nutrient salt analysis, and the eutrophication of water bodies in four reservoirs was evaluated using the comprehensive nutrient status index method. The research found that the species richness of zooplankton after farming (100 species) was significantly higher than that before farming (81 species) (p < 0.05). On the contrary, the dominant species of zooplankton after farming (7 species) were significantly fewer than those before farming (11 species). The estimation results of the standing stock of zooplankton indicated that the abundance and biomass of zooplankton after farming (92.72 ind./L, 0.13 mg/L) were significantly higher than those before farming (32.51 ind./L, 0.40 mg/L) (p < 0.05). Community similarity analysis based on zooplankton abundance (ANOSIM) indicated that there were significant differences in zooplankton communities before and after farming (R = 0.329, p = 0.001). The results of multi-dimensional non-metric sorting (NMDS) showed that the communities of zooplankton could be clearly divided into two: pre-farming communities and after farming communities. The Monte Carlo test results are as follows (p < 0.05). Transparency (Trans), pH, permanganate index (CODMn), electrical conductivity (Cond) and chlorophyll a (Chl-a) had significant effects on the community structure of zooplankton before farming. Total nitrogen (TN), total phosphorus (TP) and electrical conductivity (Cond) had significant effects on the community structure of zooplankton after farming. The co-linearity network analysis based on zooplankton abundance showed that the zooplankton community before farming was more stable than that after farming. The water evaluation results based on the comprehensive nutritional status index method indicated that the water conditions of the reservoirs before farming were mostly in a mild eutrophic state, while the water conditions of the reservoirs after farming were all in a moderate eutrophic state. The results show that the nutritional status of small reservoirs in agricultural areas is significantly affected by agricultural activities. The zooplankton communities in small reservoirs underwent significant changes driven by alterations in the reservoir water environment and nutritional status. Based on the main results of this study, we suggested that the use of fertilizers and pesticides should be appropriately reduced in future agricultural activities. In order to better protect the water quality and aquatic ecology of the water reservoirs in the agricultural area. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

18 pages, 2565 KiB  
Article
Agronomic and Physicochemical Quality of Broccoli Cultivated Under Different Fertilizers and Phosphorus Rates
by Dinamar Márcia da Silva Vieira, Reginaldo de Camargo, Miguel Henrique Rosa Franco, Valdeci Orioli Júnior, Cintia Cristina de Oliveira, Arcângelo Loss, Fausto Antônio Domingos Júnior, Maytê Maria Abreu Pires de Melo Silva and José Luiz Rodrigues Torres
Horticulturae 2025, 11(8), 873; https://doi.org/10.3390/horticulturae11080873 - 25 Jul 2025
Viewed by 349
Abstract
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in [...] Read more.
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in a split-plot scheme was employed, where three P sources—T1 = Conventional monoammonium phosphate (CMP); T2 = Polymerized monoammonium phosphate (PCMP); T3 = Granulated organomineral fertilizer (GOF)—along with four P2O5 rates—1–0 (No P); 2–50% (200 kg ha−1 P2O5); 3–75% (300 kg ha−1 P2O5); and 4–100% (400 kg ha−1 P2O5)—were assessed. Evaluations included the number of leaves (NL), head fresh (HFM) and dry mass (HDM), yield (YLD), soil fertility at harvest, plant nutritional status, and the physicochemical quality of the harvested broccoli. It was observed that GOF provided the best agronomic performance (HFM, HDM and YLD) of the broccoli and the greatest residual effect in the soil compared to PCMP and CMP. The moisture, ash, protein, lipid, total titratable acid and ascorbic acid contents were not significantly (p < 0.05) affected by the fertilizers used, on the other hand, total soluble solids and hydrogen potential showed the highest and lowest values, respectively, with CMP. The best agronomic performance, the highest phosphorus content in the soil and plant and the best physical–chemical quality of the broccoli occurred at a dose of 100% (400 kg ha−1 of P2O5) of the recommendation for the crop in all three fertilizers evaluated. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

23 pages, 2173 KiB  
Article
Evaluation of Soil Quality and Balancing of Nitrogen Application Effects in Summer Direct-Seeded Cotton Fields Based on Minimum Dataset
by Yukun Qin, Weina Feng, Cangsong Zheng, Junying Chen, Yuping Wang, Lijuan Zhang and Taili Nie
Agronomy 2025, 15(8), 1763; https://doi.org/10.3390/agronomy15081763 - 23 Jul 2025
Viewed by 229
Abstract
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the [...] Read more.
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the cotton field soil quality evaluation system and a lack of reports on constructing a minimum dataset to evaluate the soil quality status of cotton fields. We aim to accurately and efficiently evaluate soil quality in cotton fields and screen nitrogen application measures that synergistically improve soil quality, cotton yield, and nitrogen fertilizer utilization efficiency. Taking the summer live broadcast cotton field in Jiangxi Province as the research object, four treatments, including CK without nitrogen application, CF with conventional nitrogen application, N1 with nitrogen reduction, and N2 with nitrogen reduction and organic fertilizer application, were set up for three consecutive years from 2022 to 2024. A total of 15 physical, chemical, and biological indicators of the 0–20 cm plow layer soil were measured in each treatment. A minimum dataset model was constructed to evaluate and verify the soil quality status of different nitrogen application treatments and to explore the physiological mechanisms of nitrogen application on yield performance and stability from the perspectives of cotton source–sink relationship, nitrogen use efficiency, and soil quality. The minimum dataset for soil quality evaluation in cotton fields consisted of five indicators: soil bulk density, moisture content, total nitrogen, organic carbon, and carbon-to-nitrogen ratio, with a simplification rate of 66.67% for the evaluation indicators. The soil quality index calculated based on the minimum dataset (MDS) was significantly positively correlated with the soil quality index of the total dataset (TDS) (R2 = 0.904, p < 0.05). The model validation parameters RMSE was 0.0733, nRMSE was 13.8561%, and the d value was 0.9529, all indicating that the model simulation effect had reached a good level or above. The order of soil quality index based on MDS and TDS for CK, CF, N1, and N2 treatments was CK < N1 < CF < N2. The soil quality index of N2 treatment under MDS significantly increased by 16.70% and 26.16% compared to CF and N1 treatments, respectively. Compared with CF treatment, N2 treatment significantly increased nitrogen fertilizer partial productivity by 27.97%, 31.06%, and 21.77%, respectively, over a three-year period while maintaining the same biomass, yield level, yield stability, and yield sustainability. Meanwhile, N1 treatment had the risk of significantly reducing both boll density and seed cotton yield. Compared with N1 treatment, N2 treatment could significantly increase the biomass of reproductive organs during the flower and boll stage by 23.62~24.75% and the boll opening stage by 12.39~15.44%, respectively, laying a material foundation for the improvement in yield and yield stability. Under CF treatment, the cotton field soil showed a high degree of soil physical property barriers, while the N2 treatment reduced soil barriers in indicators such as bulk density, soil organic carbon content, and soil carbon-to-nitrogen ratio by 0.04, 0.04, 0.08, and 0.02, respectively, compared to CF treatment. In summary, the minimum dataset (MDS) retained only 33.3% of the original indicators while maintaining high accuracy, demonstrating the model’s efficiency. After reducing nitrogen by 20%, applying 10% total nitrogen organic fertilizer could substantially improve cotton biomass, cotton yield performance, yield stability, and nitrogen partial productivity while maintaining soil quality levels. This study also assessed yield stability and sustainability, not just productivity alone. The comprehensive nitrogen fertilizer management (reducing N + organic fertilizer) under the experimental conditions has high practical applicability in the intensive agricultural system in southern China. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

13 pages, 563 KiB  
Article
Validating Sperm Concentration in Rabbit Cryopreservation Protocol: Implications for Fertility, Litter Size, and Offspring Growth
by Michele Di Iorio, Giusy Rusco, Fabrizio Lauriola, Emanuele Antenucci, Alessandra Roncarati, Silvia Cerolini, Michele Schiavitto and Nicolaia Iaffaldano
Vet. Sci. 2025, 12(7), 678; https://doi.org/10.3390/vetsci12070678 - 18 Jul 2025
Viewed by 338
Abstract
The cryopreservation of rabbit semen is a valuable strategy for genetic resource preservation and efficient artificial insemination, but outcomes remain inconsistent, partly due to variations in sperm concentration per dose. This study aimed to evaluate the in vivo effects of different sperm concentrations [...] Read more.
The cryopreservation of rabbit semen is a valuable strategy for genetic resource preservation and efficient artificial insemination, but outcomes remain inconsistent, partly due to variations in sperm concentration per dose. This study aimed to evaluate the in vivo effects of different sperm concentrations (15, 25, 35, 55, and 75 million per straw) on fertility, prolificacy, and offspring growth in nulliparous and multiparous does. A total of 384 rabbit females were inseminated using frozen–thawed semen, and their reproductive performance was compared with fresh semen. Fertility and kindling rates varied with sperm concentration and parity: nulliparous does showed the highest fertility at 15 million sperm/straw (84.4%), while multiparous does reached peak values at 25–55 million/straw (78.1–81.3%). Litter size and live-born kits were consistently higher in multiparous than in nulliparous does. Offspring body weight at 19 and 60 days was influenced by both sperm concentration and maternal parity, with better growth generally observed in multiparous groups. Weaning success remained high across all groups. Our results indicate that sperm concentrations ranging from 15 to 35 × 106/straw are the most suitable for cryopreservation, as they maintain high fertility, prolificacy, and offspring growth, comparable to fresh semen. These results confirm that optimizing sperm concentration during cryopreservation improves reproductive efficiency and that tailoring insemination strategies to the physiological status of the female enhances outcomes. The results provide useful recommendations for improving cryopreservation techniques in rabbit breeding programs. Full article
Show Figures

Figure 1

17 pages, 2166 KiB  
Article
Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions
by Jialan Chen, Weisong Zhu, Yuanxi Liu, Gang Chen, Juncheng Han, Wenhao Zhang and Junwen Wu
Plants 2025, 14(14), 2221; https://doi.org/10.3390/plants14142221 - 18 Jul 2025
Viewed by 266
Abstract
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 [...] Read more.
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 g/plant), and F4 (1200 g/plant) of secondary macronutrient water-soluble fertilizer. Growth parameters and N-P-K stoichiometry were analyzed. Key results: (1) Height increased continuously with fertilizer dosage at both slopes, while DBH peaked and then declined. (2) At upper slopes (nutrient-poor soil), fertilization elevated leaf P but reduced branch N/K and increased root P/K. At lower slopes (nutrient-rich soil), late-stage leaf N increased significantly, with roots accumulating P/K via a “storage strategy”. Stoichiometric thresholds indicated N-K co-limitation (early-mid stage) shifting to P limitation (late stage) on upper slopes and persistent N-K co-limitation on lower slopes. (3) PCA identified F4 (1200 g/plant) and F1 (600 g/plant) as optimal for upper and lower slopes, respectively. This research provides a theoretical basis for precision fertilization in Ochroma lagopus plantations, emphasizing slope-specific nutrient status and element interactions for dosage optimization. Full article
Show Figures

Figure 1

23 pages, 3086 KiB  
Article
Comprehensive Analysis of Soil Physicochemical Properties and Optimization Strategies for “Yantai Fuji 3” Apple Orchards
by Zhantian Zhang, Zhihan Zhang, Zhaobo Fan, Weifeng Leng, Tianjing Yang, Jie Yao, Haining Chen and Baoyou Liu
Agriculture 2025, 15(14), 1520; https://doi.org/10.3390/agriculture15141520 - 14 Jul 2025
Viewed by 338
Abstract
Based on an integrated analysis, this study summarized the current status of soil quality in Yantai apple orchards, developed a multivariate regulation model for key soil physicochemical properties, and proposed optimized fertilization strategies to improve soil quality in the region. The study analyzed [...] Read more.
Based on an integrated analysis, this study summarized the current status of soil quality in Yantai apple orchards, developed a multivariate regulation model for key soil physicochemical properties, and proposed optimized fertilization strategies to improve soil quality in the region. The study analyzed the physicochemical properties of the topsoil (0–30 cm) in 19 representative apple orchards across Yantai, including indicators like pH, organic matter (OM), major nutrient ions, and salinity indicators, using standardized measurements and multivariate statistical methods, including descriptive statistics analysis, frequency distribution analysis, canonical correlation analysis, stepwise regression equation analysis, and regression fit model analysis. The results demonstrated that in apple orchards across the Yantai region, reductions in pH were significantly mitigated under the combined increased OM and exchangeable calcium (Ca). Exchangeable potassium (EK) rose in response to the joint elevation of OM and available nitrogen (AN), and AN was also positively influenced by EK, while OM also exhibited a promotive effect on Olsen phosphorus (OP). Furthermore, Ca increased with higher pH. AN and EK jointly contributed to the increases in electrical conductivity (EC) and chloride ions (Cl), while elevated exchangeable sodium (Na) and soluble salts (SS) were primarily driven by EK. Accordingly, enhancing organic and calcium source fertilizers is recommended to boost OM and Ca levels, reduce acidification, and maintain EC within optimal limits. By primarily reducing potassium’s application, followed by nitrogen and phosphorus source fertilizers, the supply of macronutrients can be optimized, and the accumulation of Na, Cl, and SS can be controlled. Collectively, the combined analysis of soil quality status and the multivariate regulation model clarified the optimized fertilization strategies, thereby establishing a solid theoretical and practical foundation for recognizing the necessity of soil testing and formula fertilization, the urgency of improving soil quality, and the scientific rationale for nutrient input management in Yantai apple orchards. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 287 KiB  
Article
Using Cholesterol-Loaded Cyclodextrin to Improve Cryo-Survivability and Reduce Capacitation-Like Changes in Gender-Ablated Jersey Semen
by Ahmed S. Aly, Kevin J. Rozeboom and John J. Parrish
Animals 2025, 15(14), 2038; https://doi.org/10.3390/ani15142038 - 11 Jul 2025
Viewed by 377
Abstract
Sexing procedures and subsequent freezing still impact sperm cells, leading to decreased fertility of gender-ablated semen. This study aimed to enhance cryo-survivability and reduce the capacitation-like change rate of gender-ablated semen by adding 2 mg of cholesterol-loaded cyclodextrin (CLC) per mL of extended [...] Read more.
Sexing procedures and subsequent freezing still impact sperm cells, leading to decreased fertility of gender-ablated semen. This study aimed to enhance cryo-survivability and reduce the capacitation-like change rate of gender-ablated semen by adding 2 mg of cholesterol-loaded cyclodextrin (CLC) per mL of extended semen containing 67 × 106 sperm cells. This marks the first use of CLC with gender-ablated semen. Semen from four Jersey bulls was used for this study. Viability, motility, and mitochondrial activity were evaluated and adjusted to account for the inactivation of undesired sex sperm cells during processing. Binding ability to oviduct cells, fertilizing ability, and acrosome status were also evaluated. Adding CLC did not increase sperm motility. The population with intact membranes and acrosomes was significantly increased (p < 0.05) from 28.9 ± 1.2% to 34.1 ± 1.2% in the CLC-treated group. Mitochondrial potential, capacitation status at the membrane, calcium levels, and binding ability to oviduct cells were maintained. CLC treatment did not delay capacitation while significantly improving fertilization rates after 8 and 12 h of co-incubation (77 ± 3% vs. 67 ± 3% and 82 ± 3% vs. 74 ± 3%, respectively; p < 0.05). In conclusion, CLC addition significantly improved gender-ablated post-thaw sperm viability, acrosome integrity, and fertilizing ability while preserving motility, capacitation progress, and binding ability to oviduct cells. Full article
(This article belongs to the Section Animal Reproduction)
31 pages, 6826 KiB  
Article
Machine Learning-Assisted NIR Spectroscopy for Dynamic Monitoring of Leaf Potassium in Korla Fragrant Pear
by Mingyang Yu, Weifan Fan, Junkai Zeng, Yang Li, Lanfei Wang, Hao Wang, Feng Han and Jianping Bao
Agronomy 2025, 15(7), 1672; https://doi.org/10.3390/agronomy15071672 - 10 Jul 2025
Viewed by 307
Abstract
Potassium (K), a critical macronutrient for the growth and development of Korla fragrant pear (Pyrus sinkiangensis Yu), plays a pivotal regulatory role in sugar-acid metabolism. Furthermore, K exhibits a highly specific response in near-infrared (NIR) spectroscopy compared to elements such as nitrogen (N) [...] Read more.
Potassium (K), a critical macronutrient for the growth and development of Korla fragrant pear (Pyrus sinkiangensis Yu), plays a pivotal regulatory role in sugar-acid metabolism. Furthermore, K exhibits a highly specific response in near-infrared (NIR) spectroscopy compared to elements such as nitrogen (N) and phosphorus (P). Given its fundamental impact on fruit quality parameters, the development of rapid and non-destructive techniques for K determination is of significant importance for precision fertilization management. By measuring leaf potassium content at the fruit setting, expansion, and maturity stages (decreasing from 1.60% at fruit setting to 1.14% at maturity), this study reveals its dynamic change pattern and establishes a high-precision prediction model by combining near-infrared spectroscopy (NIRS) with machine learning algorithms. “Near-infrared spectroscopy coupled with machine learning can enable accurate, non-destructive monitoring of potassium dynamics in Korla pear leaves, with prediction accuracy (R2) exceeding 0.86 under field conditions.” We systematically collected a total of 9000 leaf samples from Korla fragrant pear orchards and acquired spectral data using a benchtop near-infrared spectrometer. After preprocessing and feature extraction, we determined the optimal modeling method for prediction accuracy through comparative analysis of multiple models. Multiplicative scatter correction (MSC) and first derivative (FD) are synergistically employed for preprocessing to eliminate scattering interference and enhance the resolution of characteristic peaks. Competitive adaptive reweighted sampling (CARS) is then utilized to screen five potassium-sensitive bands, specifically in the regions of 4003.5–4034.35 nm, 4458.62–4562.75 nm, and 5145.15–5249.29 nm, among others, which are associated with O-H stretching vibration and changes in water status. A comparison between random forest (RF) and BP neural network indicates that the MSC + FD–CARS–BP model exhibits the optimal performance, achieving coefficients of determination (R2) of 0.96% and 0.86% for the training and validation sets, respectively, root mean square errors (RMSE) of 0.098% and 0.103%, a residual predictive deviation (RPD) greater than 3, and a ratio of performance to interquartile range (RPIQ) of 4.22. Parameter optimization revealed that the BPNN model achieved optimal stability with 10 neurons in the hidden layer. The model facilitates rapid and non-destructive detection of leaf potassium content throughout the entire growth period of Korla fragrant pears, supporting precision fertilization in orchards. Moreover, it elucidates the physiological mechanism by which potassium influences spectral response through the regulation of water metabolism. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 918 KiB  
Systematic Review
miRNA in Endometriosis—A New Hope or an Illusion?
by Anna Dryja-Brodowska, Bogdan Obrzut, Maciej Obrzut and Dorota Darmochwał-Kolarz
J. Clin. Med. 2025, 14(14), 4849; https://doi.org/10.3390/jcm14144849 - 8 Jul 2025
Viewed by 428
Abstract
Background: Endometriosis is a complex, estrogen-dependent condition that can significantly impact women’s quality of life and fertility. Current diagnostic strategies remain invasive and often prolonged, demonstrating the need for reliable, non-invasive biomarkers. In this context, microRNAs (miRNAs), due to their stability in blood [...] Read more.
Background: Endometriosis is a complex, estrogen-dependent condition that can significantly impact women’s quality of life and fertility. Current diagnostic strategies remain invasive and often prolonged, demonstrating the need for reliable, non-invasive biomarkers. In this context, microRNAs (miRNAs), due to their stability in blood and regulatory roles in inflammation and cell proliferation, have emerged as promising candidates. Methods: This review systematically analyzes 17 studies published between 2010 and 2025 that investigated the diagnostic utility of circulating and tissue-based miRNAs in endometriosis. Results: A wide range of dysregulated miRNAs was identified, with miR-125b-5p, miR-451a, and miR-3613-5p showing the most consistent alterations across studies. However, diagnostic performance varied considerably—largely due to methodological heterogeneity. Key differences were observed in sample type (serum, plasma, endometrium), patient selection, and control group definition. The menstrual cycle phase and hormonal status were often not matched or reported, limiting reproducibility. Conclusions: Despite encouraging findings, the current evidence base is weakened by inconsistent protocols and limited validation. Standardized, multicenter research with well-characterized patient cohorts is essential to the establishment of clinically applicable miRNA-based diagnostics. If validated, miRNAs may offer a transformative, non-invasive approach for earlier detection and improved management of endometriosis. Full article
Show Figures

Graphical abstract

25 pages, 5480 KiB  
Article
Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
by Jingyu Yao, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu and Mei Sun
Plants 2025, 14(13), 2072; https://doi.org/10.3390/plants14132072 - 7 Jul 2025
Viewed by 374
Abstract
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to [...] Read more.
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to the deterioration of water and soil environmental conditions, as its growth relies on high-quality water and soil. [Objective] Exploring the responses of B. schreberi to water and soil conditions from the perspective of functional traits is of great significance for understanding its endangered mechanisms and implementing effective conservation strategies. [Methods] This study was conducted in the Tengchong Beihai Wetland, which has the largest natural habitat of B. schreberi in China. By measuring the key functional traits of B. schreberi and detecting the water and soil parameters at the collecting sites, the responses of these functional traits to the water and soil conditions have been investigated. [Results] (1) The growth status of B. schreberi affects the expression of its functional traits. Compared with sporadic distribution, B. schreberi in continuous patches have significantly higher stomatal conductance, intercellular CO2 concentration, transpiration rate, and vein density, while these plants have significantly smaller leaf area and perimeter. (2) Good water quality directly promotes photosynthetic, morphological, and structural traits. However, high soil carbon, nitrogen, and phosphorus contents can inhibit the photosynthetic rate. The net photosynthetic rate is significantly positively correlated with dissolved oxygen content, pH value, ammonia nitrogen, and nitrate nitrogen contents in the water, as well as the magnesium, zinc, and silicon contents in the soil. In contrast, the net photosynthetic rate is significantly negatively correlated with the total phosphorus content in water and the total carbon, total nitrogen, and total phosphorus content in the soil. (3) Leaf area and perimeter show positive correlations with various water parameters, including the depth, temperature, pH value, dissolved oxygen content, ammonium nitrogen, and nitrate nitrogen content, yet they are negatively correlated with total phosphorus content, chemical oxygen demand, biological oxygen demand, and permanganate index of water. [Conclusions] This study supports the idea that B. schreberi thrives in oligotrophic water environments, while the notion that fertile soil is required for its growth still needs to be investigated more thoroughly. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

13 pages, 1218 KiB  
Article
Endothelial Protein Changes Indicative of Endometriosis in Unexplained Infertility, an Exploratory Study
by Heba Malik, Sirine Zamouri, Samir Akkawi, Siddh Mehra, Rana Mouaki, Thozhukat Sathyapalan, Manjula Nandakumar, Alexandra E. Butler and Stephen L. Atkin
Int. J. Mol. Sci. 2025, 26(13), 6485; https://doi.org/10.3390/ijms26136485 - 5 Jul 2025
Viewed by 467
Abstract
Previous research has linked both endothelial protein changes and vitamin D with infertility. This study was undertaken to investigate the association of proteins associated with endothelial function and vitamin D status in the luteal phase at day 21 in a group of non-obese [...] Read more.
Previous research has linked both endothelial protein changes and vitamin D with infertility. This study was undertaken to investigate the association of proteins associated with endothelial function and vitamin D status in the luteal phase at day 21 in a group of non-obese women prior to in vitro fertilization (IVF) with either unexplained infertility (UI) or male factor infertility (MFI). Twenty-five non-obese Caucasian women from a UK academic center with MFI (n = 14) and UI (n = 11) were recruited. Blood was withdrawn at day 21 of the menstrual cycle at the time of mock embryo transfer. Vitamin D parameters were measured by tandem mass spectroscopy. Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for 20 protein markers of endothelial dysfunction. Baseline demographics did not differ between groups and parameters of response following IVF did not differ. Vitamins D2 and D3, and 1,25 Vitamin D3 did not differ between groups. In UI, markers of endothelial activation/dysfunction were investigated; vascular cell adhesion molecule 1 (VCAM-1) decreased and this is associated with endothelial stress; vascular endothelial growth factor (VEGF) decreased and this may suggest impaired endometrial angiogenesis; while intercellular adhesion molecule 1 (ICAM-3) increased (p < 0.05) and is associated with increased immunological activity. A marker of vascular integrity, angiopoietin-1, increased while soluble angiopoietin-1 receptor (sTie-2) decreased (p < 0.05), suggesting increased vascular development. Endothelial markers of inflammation, coagulation, and endothelial progenitor cells were unchanged. Vitamin D and its metabolites show no relationship to UI, but endothelial activation/dysfunction and vascular integrity changes in VCAM-1, VEGF, sICAM-3, angiopoietin-1, and sTie-2 may contribute to UI, though the mechanisms through which they work require further evaluation; however, these protein changes have been associated with endometriosis, raising the suggestion that subclinical/undiagnosed endometriosis may have contributed to UI in these subjects. Full article
Show Figures

Figure 1

18 pages, 323 KiB  
Review
Social and Demographic Determinants of Consanguineous Marriage: Insights from a Literature Review
by Gabriela Popescu, Cristina Rusu, Alexandra Maștaleru, Andra Oancea, Carmen Marinela Cumpăt, Mihaela Cătălina Luca, Cristina Grosu and Maria Magdalena Leon
Genealogy 2025, 9(3), 69; https://doi.org/10.3390/genealogy9030069 - 4 Jul 2025
Viewed by 985
Abstract
Consanguinity is the marriage of two related persons. This type of marriage is one of the main pillars when it comes to recessive hereditary diseases, birth defects, infertility, miscarriages, abortion, and infant deaths. Intermarriage continues to be a common practice in various communities [...] Read more.
Consanguinity is the marriage of two related persons. This type of marriage is one of the main pillars when it comes to recessive hereditary diseases, birth defects, infertility, miscarriages, abortion, and infant deaths. Intermarriage continues to be a common practice in various communities in North Africa, the Middle East, and West and South Asia, as well as among migrants from Europe and North America, even though in more and more countries it has become illegal. Even if security and stability are some of the motivations for consanguineous marriage, studies show that women often suffer physical and verbal abuse from their husbands. However, because of the blood bond, tolerance for these habits is much higher. In addition, it seems that the divorce rate is much lower because separation would affect the entire state of the family. The choice of partner is significantly influenced by variables such as limited access to education and financial resources. Illiterate people coming from poor rural areas are much more likely to choose consanguineous marriage to maintain wealth in the family. The lack of medical knowledge about the negative effects of consanguinity leads to an increased rate of abortions, infant deaths, and births of children with congenital birth defects. Today, because of the process of urbanization and increased levels of knowledge, the younger generation is becoming increasingly less receptive to this particular form of marriage. In addition, as education has become more accessible to women, they have become more independent and eager to fulfill their own goals and not the wishes of the family. In conclusion, contrary to the many apparent advantages of consanguineous marriage, partners should put genetic risks first, as medical problems bring with them increased costs in the medical system and also within the family, leading to even lower economic status and consequently perpetuation of this type of marriage. Full article
(This article belongs to the Section Genealogical Communities: Community History, Myths, Cultures)
Show Figures

Graphical abstract

Back to TopTop