Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = ferric thiocyanate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6072 KiB  
Article
Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole–Iron Thiocyanate Complex
by Yang Liu, Adila Abuduheni, Fang Yang, Hongzhi Hu and Zunqi Liu
Int. J. Mol. Sci. 2024, 25(16), 9064; https://doi.org/10.3390/ijms25169064 - 21 Aug 2024
Viewed by 1086
Abstract
By introducing disordered molecules into a crystal structure, the motion of the disordered molecules easily induces the formation of multidimensional frameworks in functional crystal materials, allowing for structural phase transitions and the realization of various dielectric properties within a certain temperature range. Here, [...] Read more.
By introducing disordered molecules into a crystal structure, the motion of the disordered molecules easily induces the formation of multidimensional frameworks in functional crystal materials, allowing for structural phase transitions and the realization of various dielectric properties within a certain temperature range. Here, we prepared a novel ionic complex [C7H8N3]3[Fe(NCS)6]·H2O (1) between 2-aminobenzimidazole and ferric isothiocyanate from ferric chloride hexahydrate, ammonium thiocyanate, and 2-aminobenzimidazole using the evaporation of the solvent method. The main components, the single-crystal structure, and the thermal and dielectric properties of the complex were characterized using infrared spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder XRD, thermogravimetric analysis, differential scanning calorimetry, variable-temperature and variable-frequency dielectric constant tests, etc. The analysis results indicated that compound 1 belongs to the P21/n space group. Within the crystal structure, the [Fe(NCS)6]3− anion formed a two-dimensional hydrogen-bonded network with the organic cation through S···S interactions and hydrogen bonding. The disorder–order motion of the anions and cations within the crystal and the deformation of the crystal frameworks lead to a significant reversible isostructural phase transition and multiaxial dielectric anomalies of compound 1 at approximately 240 K. Full article
Show Figures

Figure 1

16 pages, 3384 KiB  
Article
Clinical Efficacy in Skin Hydration and Reducing Wrinkles of Nanoemulsions Containing Macadamia integrifolia Seed Oil
by Suvimol Somwongin and Wantida Chaiyana
Nanomaterials 2024, 14(8), 724; https://doi.org/10.3390/nano14080724 - 20 Apr 2024
Cited by 5 | Viewed by 2684
Abstract
This study aimed to assess natural oils for their antioxidant and anti-hyaluronidase properties and select the most effective candidate for development into nanoemulsions (NE) for clinical evaluations. The oils were assessed using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) and ferric thiocyanate assays for antioxidant [...] Read more.
This study aimed to assess natural oils for their antioxidant and anti-hyaluronidase properties and select the most effective candidate for development into nanoemulsions (NE) for clinical evaluations. The oils were assessed using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) and ferric thiocyanate assays for antioxidant properties and an enzyme-substrate reaction assay for anti-hyaluronidase activity. The most potent oil was formulated into conventional emulsions (CE) and NE, which were characterized and evaluated for their stability, both in accelerated and long-term conditions. The irritation potential was assessed using both the hen’s eggs chorioallantoic membrane test and a clinical trial. Skin hydration enhancement and skin wrinkle reduction efficacy were clinically assessed. Macadamia integrifolia oil exhibited significant potency as an ABTS•+ radical scavenger, lipid peroxidation inhibitor, and hyaluronidase inhibitor (p < 0.05). Both the CE and NE, comprising 15% w/w oil, 5% w/w Tween® 80 and Span® 80, and 80% w/w DI water, were found to be optimal. NE with an internal droplet size of 112.4 ± 0.8 nm, polydispersity index of 0.17 ± 0.01, and zeta potential of −31.5 ± 1.0 mV, had good stability and induced no irritation. Both CE and NE enhanced skin hydration and reduced skin wrinkles in human volunteers, while NE was outstanding in skin hydration enhancement. Full article
(This article belongs to the Special Issue Micro and Nanomaterials in Cosmetics)
Show Figures

Figure 1

16 pages, 3644 KiB  
Article
Development of Essential Oil-Loaded Polymeric Nanocapsules as Skin Delivery Systems: Biophysical Parameters and Dermatokinetics Ex Vivo Evaluation
by Perla Giovanna Silva-Flores, Sergio Arturo Galindo-Rodríguez, Luis Alejandro Pérez-López and Rocío Álvarez-Román
Molecules 2023, 28(20), 7142; https://doi.org/10.3390/molecules28207142 - 18 Oct 2023
Cited by 8 | Viewed by 2165
Abstract
Essential oils (EOs) are natural antioxidant alternatives that reduce skin damage. However, EOs are highly volatile; therefore, their nanoencapsulation represents a feasible alternative to increase their stability and favor their residence time on the skin to guarantee their effect. In this study, EOs [...] Read more.
Essential oils (EOs) are natural antioxidant alternatives that reduce skin damage. However, EOs are highly volatile; therefore, their nanoencapsulation represents a feasible alternative to increase their stability and favor their residence time on the skin to guarantee their effect. In this study, EOs of Rosmarinus officinalis and Lavandula dentata were nanoencapsulated and evaluated as skin delivery systems with potential antioxidant activity. The EOs were characterized and incorporated into polymeric nanocapsules (NC-EOs) using nanoprecipitation. The antioxidant activity was evaluated using the ferric thiocyanate method. The ex vivo effects on pig skin were evaluated based on biophysical parameters using bioengineering techniques. An ex vivo dermatokinetic evaluation on pig skin was performed using modified Franz cells and the tape-stripping technique. The results showed that the EOs had good antioxidant activity (>65%), which was maintained after nanoencapsulation and purification. The nanoencapsulation of the EOs favored its deposition in the stratum corneum compared to free EOs; the highest deposition rate was obtained for 1,8-cineole, a major component of L. dentata, at 1 h contact time, compared to R. officinalis with a major deposition of the camphor component. In conclusion, NC-EOs can be used as an alternative antioxidant for skin care. Full article
(This article belongs to the Special Issue Essential Oils: From Extraction to Application)
Show Figures

Graphical abstract

10 pages, 1414 KiB  
Review
Recent Advances in Detection, Isolation, and Imaging Techniques for Sulfane Sulfur-Containing Biomolecules
by Honami Echizen, Eita Sasaki and Kenjiro Hanaoka
Biomolecules 2021, 11(11), 1553; https://doi.org/10.3390/biom11111553 - 20 Oct 2021
Cited by 7 | Viewed by 3249
Abstract
Hydrogen sulfide and its oxidation products are involved in many biological processes, and sulfane sulfur compounds, which contain sulfur atoms bonded to other sulfur atom(s), as found in hydropersulfides (R-S-SH), polysulfides (R-S-Sn-S-R), hydrogen polysulfides (H2Sn), etc., have [...] Read more.
Hydrogen sulfide and its oxidation products are involved in many biological processes, and sulfane sulfur compounds, which contain sulfur atoms bonded to other sulfur atom(s), as found in hydropersulfides (R-S-SH), polysulfides (R-S-Sn-S-R), hydrogen polysulfides (H2Sn), etc., have attracted increasing interest. To characterize their physiological and pathophysiological roles, selective detection techniques are required. Classically, sulfane sulfur compounds can be detected by cyanolysis, involving nucleophilic attack by cyanide ion to cleave the sulfur–sulfur bonds. The generated thiocyanate reacts with ferric ion, and the resulting ferric thiocyanate complex can be easily detected by absorption spectroscopy. Recent exploration of the properties of sulfane sulfur compounds as both nucleophiles and electrophiles has led to the development of various chemical techniques for detection, isolation, and bioimaging of sulfane sulfur compounds in biological samples. These include tag-switch techniques, LC-MS/MS, Raman spectroscopy, and fluorescent probes. Herein, we present an overview of the techniques available for specific detection of sulfane sulfur species in biological contexts. Full article
Show Figures

Figure 1

18 pages, 3592 KiB  
Article
Evaluation of Fatty Acid Compositions, Antioxidant, and Pharmacological Activities of Pumpkin (Cucurbita moschata) Seed Oil from Aqueous Enzymatic Extraction
by Adchara Prommaban, Ratthida Kuanchoom, Natthidaporn Seepuan and Wantida Chaiyana
Plants 2021, 10(8), 1582; https://doi.org/10.3390/plants10081582 - 31 Jul 2021
Cited by 41 | Viewed by 7118
Abstract
Pumpkin seed oil is a by-product, abundant in nutrients and bioactive components that promote several health benefits. This study aimed to compare chemical compositions, antioxidant, and pharmacological activities of pumpkin seed oils extracted from Cucurbita moschata Duch. Ex Poir. (PSO1) and Cucurbita moschata [...] Read more.
Pumpkin seed oil is a by-product, abundant in nutrients and bioactive components that promote several health benefits. This study aimed to compare chemical compositions, antioxidant, and pharmacological activities of pumpkin seed oils extracted from Cucurbita moschata Duch. Ex Poir. (PSO1) and Cucurbita moschata (Japanese pumpkin) (PSO2) by aqueous enzymatic extraction. An enzyme mixture consisting of pectinase, cellulase, and protease (1:1:1) was used in the enzymatic extraction process. Fatty acid composition of the oils was determined using fatty acid methyl ester/gas chromatographic-mass spectrometry. Antioxidant activity assays were measured by using stable free radical diphenylpicrylhydrazyl, radical cation 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate, ferric reducing/antioxidant power, and ferric thiocyanate assay. Inhibition of enzymes involving skin aging and whitening process was investigated. Linoleic acid was a major component of all pumpkin seed oils. Additionally, there was also a significant amount of oleic acid, palmitic acid, and stearic acid detected. PSO2 possessed the highest antioxidant activities compared to PSO1 and commercial pumpkin seed oils (COM1 and COM2). Both PSO1 and PSO2 exhibited higher inhibitory effects on hyaluronidase, collagenase, and tyrosinase than the commercials. Therefore, aqueous enzymatic extraction could yield pumpkin seed oils with higher antioxidant, anti-aging, and whitening activities. This is beneficial for further pharmacological studies and can be used as a functional food for skin benefits. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants II)
Show Figures

Graphical abstract

14 pages, 1120 KiB  
Article
Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region
by Natnaree Laothaweerungsawat, Jakkapan Sirithunyalug and Wantida Chaiyana
Molecules 2020, 25(5), 1101; https://doi.org/10.3390/molecules25051101 - 1 Mar 2020
Cited by 42 | Viewed by 9119
Abstract
Origanum vulgare L. has been used as a culinary ingredient worldwide. This study revealed the cosmeceutical potential of O. vulgare essential oil as a skin-ageing retardant. The O. vulgare essential oil from a highland area of a tropical country (HO), obtained by hydrodistillation [...] Read more.
Origanum vulgare L. has been used as a culinary ingredient worldwide. This study revealed the cosmeceutical potential of O. vulgare essential oil as a skin-ageing retardant. The O. vulgare essential oil from a highland area of a tropical country (HO), obtained by hydrodistillation was investigated and compared to a commercial oil from the Mediterranean region (CO). Their chemical compositions were investigated by gas chromatography–mass spectrometry. Antioxidant activities were investigated by ferric reducing antioxidant power, 1,1-diphenyl-2-picrylhydrazyl, and ferric thiocyanate assay. Anti-skin-ageing activities were determined by means of collagenase, elastase, and hyaluronidase inhibition. Carvacrol was the major component in both oils, but a higher amount was detected in HO (79.5%) than CO (64.6%). HO possessed comparable radical scavenging activity to CO (IC50 = 1.8 ± 0.8 mg/mL) but significantly higher lipid peroxidation inhibition (38.0 ± 0.8%). Carvacrol was remarked as the major compound responsible for the reducing power of both oils. Interestingly, HO possessed significant superior anti-skin-ageing activity than ascorbic acid (P < 0.01), with inhibition against collagenase, elastase, and hyaluronidase of 92.0 ± 9.7%, 53.1 ± 13.3%, and 16.7 ± 0.3%, at the concentration of 67, 25, and 4 µg/mL, respectively. Since HO possessed comparable anti-hyaluronidase activity to CO and superior anti-collagenase and anti-elastase (P < 0.01), HO was suggested to be used as a natural skin-ageing retardant in a cosmetic industry. Full article
Show Figures

Graphical abstract

15 pages, 1549 KiB  
Article
Development of a Method Suitable for High-Throughput Screening to Measure Antioxidant Activity in a Linoleic Acid Emulsion
by Md Ahsan Ghani, Celia Barril, Danny R. Bedgood and Paul D. Prenzler
Antioxidants 2019, 8(9), 366; https://doi.org/10.3390/antiox8090366 - 2 Sep 2019
Cited by 14 | Viewed by 4732
Abstract
An improved system for measuring antioxidant activity via thiobarbituric acid reactive substances and ferric thiocyanate assays is reported, on the basis of oxidation of a linoleic acid (LA) emulsion. Oxidation times were reduced from 20 h to 5 h by increasing the reaction [...] Read more.
An improved system for measuring antioxidant activity via thiobarbituric acid reactive substances and ferric thiocyanate assays is reported, on the basis of oxidation of a linoleic acid (LA) emulsion. Oxidation times were reduced from 20 h to 5 h by increasing the reaction temperature from 37 °C to 50 °C and with an acceptable precision of <10% coefficient of variation (CV). Antioxidants varying in polarity and chemical class—250 µM Trolox, quercetin, ascorbic acid and gallic acid—were used for method optimisation. Further reductions in reaction time were investigated through the addition of catalysts, oxygen initiators or increasing temperature to 60 °C; however, antioxidant activity varied from that established at 37 °C and 20 h reaction time—the method validation conditions. Further validation of the method was achieved with catechin, epicatechin, caffeic acid and α-tocopherol, with results at 50 °C and 5 h comparable to those at 37 °C and 20 h. The improved assay has the potential to rapidly screen antioxidants of various polarities, thus making it useful in studies where large numbers of plant extracts require testing. Furthermore, as this assay involves protection of a lipid, the assay is likely to provide complementary information to well-established tests, such as the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Full article
Show Figures

Graphical abstract

12 pages, 1740 KiB  
Article
Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal
by Sushant Aryal, Manoj Kumar Baniya, Krisha Danekhu, Puspa Kunwar, Roshani Gurung and Niranjan Koirala
Plants 2019, 8(4), 96; https://doi.org/10.3390/plants8040096 - 11 Apr 2019
Cited by 973 | Viewed by 33831
Abstract
Eight selected wild vegetables from Nepal (Alternanthera sessilis, Basella alba, Cassia tora, Digera muricata, Ipomoea aquatica, Leucas cephalotes, Portulaca oleracea and Solanum nigrum) were investigated for their antioxidative potential using 2,2-dyphenyl-1-picrylhydrazyl (DPPH) scavenging, hydrogen peroxide [...] Read more.
Eight selected wild vegetables from Nepal (Alternanthera sessilis, Basella alba, Cassia tora, Digera muricata, Ipomoea aquatica, Leucas cephalotes, Portulaca oleracea and Solanum nigrum) were investigated for their antioxidative potential using 2,2-dyphenyl-1-picrylhydrazyl (DPPH) scavenging, hydrogen peroxide (H2O2), ferric reducing antioxidant power (FRAP), and ferric thiocyanate (FTC) methods. Among the selected plant extracts C. tora displayed the highest DPPH radical scavenging activity with an IC50 value 9.898 μg/mL, whereas A. sessilis had the maximum H2O2 scavenging activity with an IC50 value 16.25 μg/mL—very close to that of ascorbic acid (16.26 μg/mL). C. tora showed the highest absorbance in the FRAP assay and the lowest lipid peroxidation in the FTC assay. A methanol extract of A. sessilis resulted in the greatest phenolic content (292.65 ± 0.42 mg gallic acid equivalent (GAE)/g) measured by the Folin–Ciocalteu reagent method, while the smallest content was recorded for B. alba (72.66 ± 0.46 GAE/g). The greatest flavonoid content was observed with extracts of P. oleracea (39.38 ± 0.57 mg quercetin equivalents (QE)/g) as measured by an aluminium chloride colorimetric method, while the least was recorded for I. aquatica (6.61 ± 0.42 QE/g). There was a strong correlation between antioxidant activity with total phenolic (DPPH, R2 = 0.75; H2O2, R2 = 0.71) and total flavonoid content (DPPH, R2 = 0.84; H2O2, R2 = 0.66). This study demonstrates that these wild edible leafy plants could be a potential source of natural antioxidants. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

14 pages, 1015 KiB  
Article
Quantitative Structure-Activity Relationship Study of Antioxidant Tripeptides Based on Model Population Analysis
by Baichuan Deng, Hongrong Long, Tianyue Tang, Xiaojun Ni, Jialuo Chen, Guangming Yang, Fan Zhang, Ruihua Cao, Dongsheng Cao, Maomao Zeng and Lunzhao Yi
Int. J. Mol. Sci. 2019, 20(4), 995; https://doi.org/10.3390/ijms20040995 - 25 Feb 2019
Cited by 24 | Viewed by 4696
Abstract
Due to their beneficial effects on human health, antioxidant peptides have attracted much attention from researchers. However, the structure-activity relationships of antioxidant peptides have not been fully understood. In this paper, quantitative structure-activity relationships (QSAR) models were built on two datasets, i.e., the [...] Read more.
Due to their beneficial effects on human health, antioxidant peptides have attracted much attention from researchers. However, the structure-activity relationships of antioxidant peptides have not been fully understood. In this paper, quantitative structure-activity relationships (QSAR) models were built on two datasets, i.e., the ferric thiocyanate (FTC) dataset and ferric-reducing antioxidant power (FRAP) dataset, containing 214 and 172 unique antioxidant tripeptides, respectively. Sixteen amino acid descriptors were used and model population analysis (MPA) was then applied to improve the QSAR models for better prediction performance. The results showed that, by applying MPA, the cross-validated coefficient of determination (Q2) was increased from 0.6170 to 0.7471 for the FTC dataset and from 0.4878 to 0.6088 for the FRAP dataset, respectively. These findings indicate that the integration of different amino acid descriptors provide additional information for model building and MPA can efficiently extract the information for better prediction performance. Full article
(This article belongs to the Special Issue QSAR and Chemoinformatics Tools for Modeling)
Show Figures

Graphical abstract

15 pages, 1396 KiB  
Article
Methylseleninic Acid Induces Lipid Peroxidation and Radiation Sensitivity in Head and Neck Cancer Cells
by John T. Lafin, Ehab H. Sarsour, Amanda L. Kalen, Brett A. Wagner, Garry R. Buettner and Prabhat C. Goswami
Int. J. Mol. Sci. 2019, 20(1), 225; https://doi.org/10.3390/ijms20010225 - 8 Jan 2019
Cited by 16 | Viewed by 6022
Abstract
Combination radiation and chemotherapy are commonly used to treat locoregionally advanced head and neck squamous cell carcinoma (HNSCC). Aggressive dosing of these therapies is significantly hampered by side effects due to normal tissue toxicity. Selenium represents an adjuvant that selectively sensitizes cancer cells [...] Read more.
Combination radiation and chemotherapy are commonly used to treat locoregionally advanced head and neck squamous cell carcinoma (HNSCC). Aggressive dosing of these therapies is significantly hampered by side effects due to normal tissue toxicity. Selenium represents an adjuvant that selectively sensitizes cancer cells to these treatments modalities, potentially by inducing lipid peroxidation (LPO). This study investigated whether one such selenium compound, methylseleninic acid (MSA), induces LPO and radiation sensitivity in HNSCC cells. Results from 4,4-difluoro-4-bora-3a,4a-diaza-S-indacene (BODIPY) C11 oxidation and ferric thiocyanate assays revealed that MSA induced LPO in cells rapidly and persistently. Propidium iodide (PI) exclusion assay found that MSA was more toxic to cancer cells than other related selenium compounds; this toxicity was abrogated by treatment with α-tocopherol, an LPO inhibitor. MSA exhibited no toxicity to normal fibroblasts at similar doses. MSA also sensitized HNSCC cells to radiation as determined by clonogenic assay. Intracellular glutathione in cancer cells was depleted following MSA treatment, and supplementation of the intracellular glutathione pool with N-acetylcysteine sensitized cells to MSA. The addition of MSA to a cell-free solution of glutathione resulted in an increase in oxygen consumption, which was abrogated by catalase, suggesting the formation of H2O2. Results from this study identify MSA as an inducer of LPO, and reveal its capability to sensitize HNSCC to radiation. MSA may represent a potent adjuvant to radiation therapy in HNSCC. Full article
Show Figures

Figure 1

13 pages, 4958 KiB  
Article
Antioxidant and Moisturizing Effect of Camellia assamica Seed Oil and Its Development into Microemulsion
by Wantida Chaiyana, Pimporn Leelapornpisid, Jaroon Jakmunee and Chawalit Korsamphan
Cosmetics 2018, 5(3), 40; https://doi.org/10.3390/cosmetics5030040 - 1 Jul 2018
Cited by 19 | Viewed by 17838
Abstract
The present study aimed to investigate the fatty acid content, and antioxidant and moisturizing effect of Camellia assamica seed oil (CA). Additionally, microemulsions containing CA were also developed for topical use. The antioxidant activity of CA and two commercial Camellia oleifera [...] Read more.
The present study aimed to investigate the fatty acid content, and antioxidant and moisturizing effect of Camellia assamica seed oil (CA). Additionally, microemulsions containing CA were also developed for topical use. The antioxidant activity of CA and two commercial Camellia oleifera seed oils were investigated by means of 1,1-diphenyl-2-picrylhydrazy radical (DPPH) assay and lipid peroxidation by ferric thiocyanate method. Moreover, the in vitro skin moisturizing effect was investigated on stillborn piglet skin by using a Corneometer®. CA microemulsions were developed and characterized by photon correlation spectroscopy, rheometer, and heating-cooling stability tests. The results revealed that the major fatty acid components of CA were cis-9-oleic acid, cis-9,12-linoleic acid, and palmitic acid. CA had a significantly higher lipid peroxidation inhibition and DPPH scavenging capacity compared to the commercial oils (p < 0.05). Lipid peroxidation inhibition of CA was 39.2% ± 0.6% at 37.5 mg/mL and the IC50 value of DPPH assay was 70.8 ± 27.1 mg/mL. The skin moisture content after applying CA, commercial oils, and tocopheryl acetate were significantly higher than untreated skin (p < 0.05) and the moisturizing efficacy increased with time. Interestingly, radical scavenging and antioxidant effect of CA microemulsions were significantly higher than the native oil even after the stability test (p < 0.05). In conclusion, incorporating CA into microemulsion increased its antioxidant activity indicating that it would be beneficial as a cosmeceutical application for anti-aging. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

17 pages, 1589 KiB  
Article
Inhibition of 5α-Reductase, IL-6 Secretion, and Oxidation Process of Equisetum debile Roxb. ex Vaucher Extract as Functional Food and Nutraceuticals Ingredients
by Wantida Chaiyana, Chanun Punyoyai, Suvimol Somwongin, Pimporn Leelapornpisid, Kornkanok Ingkaninan, Neti Waranuch, Jukkarin Srivilai, Natthawut Thitipramote, Wudtichai Wisuitiprot, Roswitha Schuster, Helmut Viernstein and Monika Mueller
Nutrients 2017, 9(10), 1105; https://doi.org/10.3390/nu9101105 - 10 Oct 2017
Cited by 73 | Viewed by 14018
Abstract
This study aims to investigate the biological activities related to hair loss of Equisetum debile extracts, including 5α-reductase inhibition, interleukin-6 (IL-6) secretion reduction, and anti-oxidation. E. debile extracts were obtained by maceration in various solvents. Crude extract (CE) was obtained by maceration in [...] Read more.
This study aims to investigate the biological activities related to hair loss of Equisetum debile extracts, including 5α-reductase inhibition, interleukin-6 (IL-6) secretion reduction, and anti-oxidation. E. debile extracts were obtained by maceration in various solvents. Crude extract (CE) was obtained by maceration in 95% ethanol. Chlorophyll-free extract (CF) was the CE which of the chlorophyll has been removed by electrocoagulation. Hexane extract (HE), ethyl acetate extract (EA), and ethanolic extract (ET) were fraction extracts obtained from maceration in hexane, ethyl acetate, and 95% ethanol, respectively. The extracts were investigated for inhibitory activity against 5α-reductase and IL-6 secretion. Total phenolic contents (TPC) were investigated and antioxidant activities were determined by means of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2′-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The inhibition of lipid peroxidation was determined by the ferric thiocyanate method. The cytotoxicity of the extracts on dermal papilla cells and irritation test by hen's egg test chorioallantoic membrane assay were also investigated. All extracts could inhibit 5α-reductase and decrease IL-6 secretion in lipopolysaccharide-stimulated macrophage. The antioxidant activity of E. debile extracts was directly related to their TPC. ET which contained the highest TPC (68.8 ± 6.7 mg GA/g) showed the highest equivalent concentration (EC1) of 289.1 ± 26.4 mM FeSO4/g, TEAC of 156.6 ± 34.6 mM Trolox/g, and 20.0 ± 6.0% DPPH inhibition. However, EA exhibited the highest inhibition against lipid peroxidation (57.2 ± 0.4%). In addition, EA showed no cytotoxicity on dermal papilla cell line and no irritation on chorioallantoic membrane of hen’s eggs. In conclusion, EA was suggested as the most attractive ingredients for functional food and nutraceuticals because of the high inhibitory activity against 5α-reductase, IL-6 secretion, and lipid peroxidation inhibition. Full article
Show Figures

Graphical abstract

15 pages, 852 KiB  
Article
Hypolipidemic and Antioxidative Effects of Aqueous Enzymatic Extract from Rice Bran in Rats Fed a High-Fat and -Cholesterol Diet
by Yu-Xin Wang, Yang Li, An-Min Sun, Feng-Jiao Wang and Guo-Ping Yu
Nutrients 2014, 6(9), 3696-3710; https://doi.org/10.3390/nu6093696 - 16 Sep 2014
Cited by 42 | Viewed by 9117
Abstract
Purpose: The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. Methods: The antioxidant [...] Read more.
Purpose: The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. Methods: The antioxidant activity of AEERB in vitro was measured in terms of radical scavenging capacity, ferric reducing ability power (FRAP) and linoleic acid emulsion system-ferric thiocyanate method (FTC). Male Wistar rats were fed with a normal diet and a high-fat and high-cholesterol diet with or without AEERB. After treatment, biochemical assays of serum, liver and feces lipid levels, the antioxidant enzyme activity, malondialdehyde (MDA) and protein carbonyl were determined. Result: AEERB is completely soluble in water and rich in hydrophilic and lipophilic functional ingredients. AEERB scavenged DPPH• and ABTS•+ and exhibited antioxidant activity slightly lower than that of ascorbic acid in the linoleic acid system. The administration of AEERB reduced serum lipid levels and the atherogenic index compared with those of the hyperlipidemic diet group (HD). The administration of AEERB significantly lowered liver lipid levels, inhibited hepatic 3-hydroxyl-3-methylglutaryl CoA reductase activity, and efficiently promoted the fecal excretion of total lipids and total cholesterol (TC) (p < 0.05). Dietary AEERB enhanced antioxidant status in the serum, liver and brain by increasing the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreasing the content of MDA and protein carbonyl. Conclusions: The results indicated that AEERB might act as a potent hypolipidemic and antioxidant functional food. Full article
Show Figures

Figure 1

10 pages, 193 KiB  
Article
Phenolic Content and Antioxidant Activity of Hibiscus cannabinus L. Seed Extracts after Sequential Solvent Extraction
by Noordin Mohd Yusri, Kim Wei Chan, Shahid Iqbal and Maznah Ismail
Molecules 2012, 17(11), 12612-12621; https://doi.org/10.3390/molecules171112612 - 25 Oct 2012
Cited by 48 | Viewed by 9562
Abstract
A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water [...] Read more.
A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 215 KiB  
Article
Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products
by Ehsan Oskoueian, Norhani Abdullah, Rudi Hendra and Ehsan Karimi
Int. J. Mol. Sci. 2011, 12(12), 8610-8625; https://doi.org/10.3390/ijms12128610 - 29 Nov 2011
Cited by 59 | Viewed by 8892
Abstract
Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, [...] Read more.
Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC50 values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop