Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = fava bean flour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 290 KiB  
Proceeding Paper
Effect of Partial Replacement of Wheat with Fava Bean and Black Cumin Flours on Nutritional Properties and Sensory Attributes of Bread
by Melaku Tafese Awulachew
Eng. Proc. 2025, 87(1), 8; https://doi.org/10.3390/engproc2025087008 - 20 Feb 2025
Viewed by 952
Abstract
Blending wheat with fava bean and black cumin flours can improve the nutritional content of wheat-based bread. The current study investigated the effects of flour blending ratios of wheat, germinated fava bean, and black cumin on the physicochemical and sensory attributes of bread. [...] Read more.
Blending wheat with fava bean and black cumin flours can improve the nutritional content of wheat-based bread. The current study investigated the effects of flour blending ratios of wheat, germinated fava bean, and black cumin on the physicochemical and sensory attributes of bread. A total of sixteen bread formulations were produced using the Design Expert software version 13.0.5.0: mixtures of wheat (64–100%), fava bean (0–30%), and black cumin (0–6%). The findings showed that the mixed fraction of composite flours affected the sensory attributes and nutritional value of bread. The mineral contents [Fe, Zn, and Ca] and proximate compositions [ash, fiber, fat, and crude protein] increased with an increase in fava bean and black cumin flour content and decreased with an increase in wheat flour content. The carbohydrate content and crumb lightness (L* value) increased with a decrease in black cumin and germinated fava bean flour proportion. The sensory attributes were significantly affected by the blend proportion (p < 0.05). Sensory scores increased with an increase in the level of germinated fava bean flour and decreased with an increase in the level of black cumin. Generally, the best bread blending ratio was found to be 72.5% wheat, 25.6% germinated fava bean, and 1.9% black cumin, in terms of overall qualitative attributes. This could lead to healthier and more appealing bread options. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
27 pages, 48439 KiB  
Article
Optimization of 3D Extrusion Printing Parameters for Raw and Extruded Dehulled Andean Fava Bean Flours Using Response Surface Methodology (RSM)
by Grimaldo Wilfredo Quispe Santivañez, Henry Juan Javier Ninahuaman, Joselin Paucarchuco Soto, Maria Teresa Pedrosa Silva Clerici and Rebeca Salvador-Reyes
Foods 2025, 14(5), 715; https://doi.org/10.3390/foods14050715 - 20 Feb 2025
Viewed by 935
Abstract
This study optimizes the 3D extrusion printing parameters—water-to-flour ratio (X1), temperature (X2), and printing speed (X3)—for raw (RFB) and extruded (EFB) dehulled Andean fava bean flours to maximize print quality and minimize structural defects. A 23 [...] Read more.
This study optimizes the 3D extrusion printing parameters—water-to-flour ratio (X1), temperature (X2), and printing speed (X3)—for raw (RFB) and extruded (EFB) dehulled Andean fava bean flours to maximize print quality and minimize structural defects. A 23 central composite design combined with response surface methodology (RSM) was used to identify the optimal conditions for achieving geometric precision, surface homogeneity, and textural stability. Physicochemical analyses showed that extrusion cooking substantially modified the composition and rheology of the flour. Compared with RFB, EFB exhibited lower protein and fiber contents, a higher proportion of digestible carbohydrates, and reduced rheological parameters (τ0, K, G′, G″), which facilitated printing. The evaluation of different parameter combinations revealed notable differences between the two flours, with X1 and X2 exerting the greatest influence on print quality. For RFB, the highest desirability (0.853) was achieved at X1 = 0.806, X2 = 23.18 °C, and X3 = 2470.5 mm/min, yielding more uniform and firmer printed structures. In contrast, EFB reached a desirability of 0.844 at X1 = 1.66 °C, X2 = 56.82 °C, and X3 = 1505.43 mm/min, indicating its outstanding geometric accuracy and robustness. In conclusion, raw flour requires higher hydration and lower temperatures to prevent excessive viscosity. In contrast, extruded flour benefits from low water and high temperatures to achieve stable structures and firm textures. These findings demonstrate the feasibility of using Andean fava bean flour in 3D food printing to create nutrient-dense, functional foods with improved printability. This work offers practical applications for developing personalized foods—such as customized meals for individuals with specific dietary requirements—while contributing to sustainable and secure food production. Future research should address long-term storage, post-printing drying methods, and scaling production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 829 KiB  
Article
Antioxidant Bioaccessibility of Cooked Gluten-Free Pasta Enriched with Tomato Pomace or Linseed Meal
by Lorenzo Estivi, Gabriella Pasini, Amel Betrouche, Vanja Traviĉić, Elena Becciu, Andrea Brandolini and Alyssa Hidalgo
Foods 2024, 13(22), 3700; https://doi.org/10.3390/foods13223700 - 20 Nov 2024
Viewed by 1185
Abstract
Gluten-free products lack bioactive compounds, while vegetable wastes from food manufacturing are still rich in nutrients. This study compared the antioxidants of gluten-free pastas enriched with vegetable by-products: the control formulation (66.7% rice and 33.3% fava bean flours) was enriched with 10% or [...] Read more.
Gluten-free products lack bioactive compounds, while vegetable wastes from food manufacturing are still rich in nutrients. This study compared the antioxidants of gluten-free pastas enriched with vegetable by-products: the control formulation (66.7% rice and 33.3% fava bean flours) was enriched with 10% or 15% of tomato waste (TO) or defatted linseed cake (LI). Carotenoids, tocols, phenolics, and antioxidant capacity (ABTS and FRAP) were determined in the cooked pasta as well as in the soluble and insoluble fractions after in vitro gastro-intestinal digestion. The cooked enriched pastas showed higher levels of carotenoids (1.36–1.53 vs. 1.02 mg/kg DM), except for the LI-added samples, tocols (8.83–21.70 vs. 7.01 mg/kg DM), free polyphenols (218.1–258.6 vs. 200.9 mg/kg DM), bound polyphenols (132.7–177.6 vs. 101.9 mg/kg DM), and antioxidant capacity. Cooking augmented the carotenoids and free polyphenols in the enriched pastas, tocols in LI pastas and bound flavonoids in TO pastas. After digestion, the recoveries for soluble and insoluble fractions were 53% and 35% for carotenoids, 52% and 43% for tocols, 109% for free phenolic acids, 97% for free flavonoids, 93% for bound phenolic acids, and 100% for bound flavonoids. Bioaccessibility was the highest for free phenolic compounds, whereas carotenoids and tocols were partially available. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

27 pages, 3122 KiB  
Article
Exploring the Impact of Solid-State Fermentation on Fava Bean Flour: A Comparative Study of Aspergillus oryzae and Rhizopus oligosporus
by Ophélie Gautheron, Laura Nyhan, Maria Garcia Torreiro, Ali Zein Alabiden Tlais, Claudia Cappello, Marco Gobbetti, Andreas Klaus Hammer, Emanuele Zannini, Elke K. Arendt and Aylin W. Sahin
Foods 2024, 13(18), 2922; https://doi.org/10.3390/foods13182922 - 15 Sep 2024
Cited by 4 | Viewed by 3108
Abstract
Fava bean (Vicia faba L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. [...] Read more.
Fava bean (Vicia faba L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. In this study, fava bean flour (FB) was fermented with Aspergillus oryzae and Rhizopus oligosporus to produce FBA and FBR, respectively, ingredients with distinct nutritional, functional, and aroma characteristics. The protein content increased by 20% in FBA and 8% in FBR, while fat levels rose more significantly in FBR (+40%). The overall content of fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) decreased by 47% (FBA) and 57% (FBR), although polyol production by A. oryzae was observed. SSF improved the nutritional profile of FBA and FBR, with a notable increase in the concentration of essential amino acids observed, and a reduction in most antinutrients, with the exception of trypsin inhibitors. SSF resulted in the formation of aggregates, which increased the particle size and reduced protein solubility. Emulsions prepared with the fermented ingredients separated faster, and the foaming capacity of both FBA and FBR was decreased, but an increase in water-holding capacity was observed. SSF resulted in the production of predominantly savoury-associated aroma compounds, with compounds characteristic of metallic and mouldy aromas reduced. These results indicate the potential of SSF to transform FB with enhanced nutritional value and improved sensory and functional properties. Full article
(This article belongs to the Special Issue Novel Eco-Friendly Technologies to Improve Food Safety and Quality)
Show Figures

Figure 1

18 pages, 1704 KiB  
Article
Impact of Particle Size on the Physicochemical, Functional, and In Vitro Digestibility Properties of Fava Bean Flour and Bread
by Sunday J. Olakanmi, Digvir S. Jayas, Jitendra Paliwal and Rotimi E. Aluko
Foods 2024, 13(18), 2862; https://doi.org/10.3390/foods13182862 - 10 Sep 2024
Cited by 5 | Viewed by 2291
Abstract
Fava beans, renowned for their nutritional value and sustainable cultivation, are pivotal in various food applications. This study examined the implications of varying the particle size on the functional, physicochemical, and in vitro digestibility properties of fava bean flour. Fava bean was milled [...] Read more.
Fava beans, renowned for their nutritional value and sustainable cultivation, are pivotal in various food applications. This study examined the implications of varying the particle size on the functional, physicochemical, and in vitro digestibility properties of fava bean flour. Fava bean was milled into 0.14, 0.50, and 1.0 mm particle sizes using a Ferkar multipurpose knife mill. Physicochemical analyses showed that the 0.14 mm flour had more starch damage, but higher protein and fat contents. Functionality assessments revealed that the finer particle sizes had better foaming properties, swelling power, and gelation behavior than the coarse particle size. Emulsion capacity showed that for all the pH conditions, 1.00 mm particle size flour had a significantly higher (p < 0.05) oil droplet size, while the 0.5 and 0.14 mm flours had smaller and similar oil droplet sizes. Moreover, in vitro digestibility assays resulted in improved starch digestion (p ˂ 0.05) with the increase in flour particle size. Varying the particle size of fava bean flour had less impact on the in vitro digestibility of the bread produced from wheat–fava bean composite flour, with an average of 84%. The findings underscore the critical role of particle size in tailoring fava bean flour for specific culinary purposes and nutritional considerations. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 3819 KiB  
Article
Quality Characterization of Fava Bean-Fortified Bread Using Hyperspectral Imaging
by Sunday J. Olakanmi, Digvir S. Jayas, Jitendra Paliwal, Muhammad Mudassir Arif Chaudhry and Catherine Rui Jin Findlay
Foods 2024, 13(2), 231; https://doi.org/10.3390/foods13020231 - 11 Jan 2024
Cited by 10 | Viewed by 2277
Abstract
As the demand for alternative protein sources and nutritional improvement in baked goods grows, integrating legume-based ingredients, such as fava beans, into wheat flour presents an innovative alternative. This study investigates the potential of hyperspectral imaging (HSI) to predict the protein content (short-wave [...] Read more.
As the demand for alternative protein sources and nutritional improvement in baked goods grows, integrating legume-based ingredients, such as fava beans, into wheat flour presents an innovative alternative. This study investigates the potential of hyperspectral imaging (HSI) to predict the protein content (short-wave infrared (SWIR) range)) of fava bean-fortified bread and classify them based on their color characteristics (visible–near-infrared (Vis-NIR) range). Different multivariate analysis tools, such as principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and partial least square regression (PLSR), were utilized to assess the protein distribution and color quality parameters of bread samples. The result of the PLS-DA in the SWIR range yielded a classification accuracy of ˃99%, successfully classifying the samples based on their protein contents (low protein and high protein). The PLSR model showed an RMSEC of 0.086% and an RMSECV of 0.094%. Also, the external validation resulted in an RMSEP of 0.064%. The PLSR model possessed the capability to efficiently predict the protein content of the bread samples. The results suggest that HSI can be successfully used to classify bread samples based on their protein content and for the prediction of protein composition. Hyperspectral imaging can therefore be reliably implemented for the quality monitoring of baked goods in commercial bakeries. Full article
(This article belongs to the Special Issue Recent Applications of Near-Infrared Spectroscopy in Food Analysis)
Show Figures

Figure 1

12 pages, 2554 KiB  
Article
Buckwheat, Fava Bean and Hemp Flours Fortified with Anthocyanins and Other Bioactive Phytochemicals as Sustainable Ingredients for Functional Food Development
by Madalina Neacsu, James S. Christie, Gary J. Duncan, Nicholas J. Vaughan and Wendy R. Russell
Nutraceuticals 2022, 2(3), 150-161; https://doi.org/10.3390/nutraceuticals2030011 - 14 Jul 2022
Cited by 8 | Viewed by 4034
Abstract
Facing a climate emergency and an increasingly unhealthy population, functional foods should not only address health issues but must be prepared from sustainable ingredients while contributing to our sustainable development goals, such as tackling waste and promoting a healthy environment. High-protein crop flours, [...] Read more.
Facing a climate emergency and an increasingly unhealthy population, functional foods should not only address health issues but must be prepared from sustainable ingredients while contributing to our sustainable development goals, such as tackling waste and promoting a healthy environment. High-protein crop flours, i.e., buckwheat, hemp and fava bean, are investigated as potential matrices to be fortified with key bioactive phytochemicals from soft fruits to explore potential waste valorization and to deliver sustainable functional food ingredients. Hemp flour provided the best matrix for anthocyanin fortification, adsorbing of 88.45 ± 0.88% anthocyanins and 69.77 mg/kg of additional phytochemicals. Buckwheat and fava bean absorbed 78.64 ± 3.15% and 50.46 ± 2.94% of anthocyanins 118.22 mg/kg and 103.88 mg/kg of additional phytochemicals, respectively. During the fortification, there was no detectable adsorption of the berry sugars to the flours, and the quantities of free sugars from the flours were also removed. One gram of fortified hemp flour provides the same amount of anthocyanins found in 20 g of fresh bilberries but has substantially less sugar. The optimum conditions for high protein flour fortification with anthocyanins was established and showed that it is a viable way to reduce and valorize potential agricultural waste, contributing to a circular and greener nutrition. Full article
(This article belongs to the Special Issue Functional Foods as a New Therapeutic Strategy)
Show Figures

Figure 1

36 pages, 3518 KiB  
Article
Extrusion Simulation for the Design of Cereal and Legume Foods
by Magdalena Kristiawan, Guy Della Valle and Françoise Berzin
Foods 2022, 11(12), 1780; https://doi.org/10.3390/foods11121780 - 16 Jun 2022
Cited by 8 | Viewed by 3849
Abstract
A 1D global twin-screw extrusion model, implemented in numerical software, Ludovic®, was applied to predict extrusion variables and, therefore, to design various starchy products with targeted structure and properties. An experimental database was built with seven starchy food formulations for manufacturing [...] Read more.
A 1D global twin-screw extrusion model, implemented in numerical software, Ludovic®, was applied to predict extrusion variables and, therefore, to design various starchy products with targeted structure and properties. An experimental database was built with seven starchy food formulations for manufacturing dense and expanded foods made from starches, starch blends, breakfast cereals, pulse crop ingredients such as pea flour, fava bean flour, and fava bean starch concentrated, and wheat flour enriched with wheat bran. This database includes the thermal and physical properties of the formulations at solid and molten states, melt viscosity model, extruder configurations and operating parameters, and extruded foods properties. Using extrusion and viscosity models, melt temperature (T) and specific mechanical energy (SME) were satisfactorily predicted. A sensitivity analysis of variables at die exit was performed on formulation, extruder configuration, and operating parameters, generating the extruder operating charts. Results allowed the establishment of relationships between predicted variables (T, SME, melt viscosity) and product features such as starch and protein structural change, density and cellular structure, and functional properties. The extrusion operating conditions leading to targeted food properties can be assessed from these relationships and also the relationship between extrusion operating parameters and variables provided by simulation. Full article
(This article belongs to the Special Issue Food Rheology and Applications in Food Product Design)
Show Figures

Figure 1

19 pages, 1730 KiB  
Article
The Effects of Fermentation of Low or High Tannin Fava Bean-Based Diets on Glucose Response, Cardiovascular Function, and Fecal Bile Acid Excretion during a 28-Day Feeding Period in Dogs: Comparison with Commercial Diets with Normal vs. High Protein
by Luciana G. Reis, Tressa Morris, Chloe Quilliam, Lucas A. Rodrigues, Matthew E. Loewen and Lynn P. Weber
Metabolites 2021, 11(12), 878; https://doi.org/10.3390/metabo11120878 - 16 Dec 2021
Cited by 6 | Viewed by 3479
Abstract
We have shown that feeding dogs fava bean (FB)-based diets for 7 days is safe and FB flour fermentation with Candida utilis has the potential to decrease FB anti-nutritional factors. In the present study, the effects of 28-day feeding of 4 different FB-based [...] Read more.
We have shown that feeding dogs fava bean (FB)-based diets for 7 days is safe and FB flour fermentation with Candida utilis has the potential to decrease FB anti-nutritional factors. In the present study, the effects of 28-day feeding of 4 different FB-based test dog foods containing moderate protein (~27% dry matter (DM)) were compared with two commercial diets with normal protein (NP, grain-containing, ~31% DM protein) or high protein (HP, grain-free, ~41% DM protein). Health parameters were investigated in beagles fed the NP or HP diets or using a randomized, crossover, 2 × 2 Latin square design of the FB diets: unfermented high-tannin (UF-HT), fermented high-tannin (FM-HT), unfermented low-tannin (UF-LT), and fermented low-tannin (FM-LT). The results showed that fermentation increased glucose tolerance, increased red blood cell numbers and increased systolic blood pressure, but decreased flow-mediated vasodilation. Taken together, the overall effect of fermentation appears to be beneficial and improved FB nutritional value. Most interesting, even though the HP diet was grain-free, the diet did contain added taurine, and no adverse effects on cardiac function were observed, while glucose tolerance was impaired compared to NP-fed dogs. In summary, this study did not find evidence of adverse cardiac effects of pulses in ‘grain-free’ diets, at least not in the relatively resistant beagle breed over a 28-day period. More importantly, fermentation with C. utilis shows promise to enhance health benefits of pulses such as FB in dog food. Full article
(This article belongs to the Special Issue Effects of Diet on Protein and Energy Metabolism in Companion Animals)
Show Figures

Graphical abstract

Back to TopTop