Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,335)

Search Parameters:
Keywords = fault detection, fault diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8736 KiB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 (registering DOI) - 1 Aug 2025
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

23 pages, 1396 KiB  
Article
Unsupervised Anomaly Detection Method for Electrical Equipment Based on Audio Latent Representation and Parallel Attention Mechanism
by Wei Zhou, Shaoping Zhou, Yikun Cao, Junkang Yang and Hongqing Liu
Appl. Sci. 2025, 15(15), 8474; https://doi.org/10.3390/app15158474 - 30 Jul 2025
Abstract
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised [...] Read more.
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised anomaly detection method for electrical equipment, utilizing audio latent representation and a parallel attention mechanism. The framework employs an autoencoder to extract low-dimensional features from audio signals and introduces a phase-aware parallel attention block to dynamically weight these features for an improved anomaly sensitivity. With adversarial training and a dual-encoding mechanism, the proposed method demonstrates robust performance in complex scenarios. Using public datasets (MIMII and ToyADMOS) and our collected real-world wind turbine data, it achieves high AUC scores, surpassing the best baselines, which demonstrates our framework design is suitable for industrial applications. Full article
Show Figures

Figure 1

21 pages, 964 KiB  
Article
A Data-Driven Strategy Assisted by Effective Parameter Optimization for Cable Fault Diagnosis in the Secondary Circuit of a Substation
by Dongbin Yu, Yanjing Zhang, Sijin Luo, Wei Zou, Junting Liu, Zhiyong Ran and Wei Liu
Processes 2025, 13(8), 2407; https://doi.org/10.3390/pr13082407 - 29 Jul 2025
Viewed by 161
Abstract
As power systems evolve rapidly, cables, essential for electric power transmission, demand accurate and timely fault diagnosis to ensure grid safety and stability. However, current cable fault diagnosis technologies often struggle with incomplete feature extraction from complex fault signals and inefficient parameter tuning [...] Read more.
As power systems evolve rapidly, cables, essential for electric power transmission, demand accurate and timely fault diagnosis to ensure grid safety and stability. However, current cable fault diagnosis technologies often struggle with incomplete feature extraction from complex fault signals and inefficient parameter tuning in diagnostic models, hindering efficient and precise fault detection in modern power systems. To address these, this paper proposes a data-driven strategy for cable fault diagnosis in substation secondary circuits, enhanced by effective parameter optimization. Initially, wavelet packet decomposition is employed to finely divide collected cable fault current signals into multiple levels and bands, effectively extracting fault feature vectors. To tackle the challenge of selecting penalty and kernel parameters in Support Vector Machine (SVM) models, an improved Golden Jackal Optimization (GJO) algorithm is introduced. This algorithm simulates the predatory behavior of golden jackals in nature, enabling efficient global optimization of SVM parameters and significantly improving the classification accuracy and generalization capability of the fault diagnosis model. Simulation verification using real cable fault cases confirms that the proposed method outperforms traditional techniques in fault recognition accuracy, diagnostic speed, and robustness, proving its effectiveness and feasibility. This study offers a novel and efficient solution for cable fault diagnosis. Full article
Show Figures

Figure 1

24 pages, 3694 KiB  
Article
Enhancing the Distinguishability of Minor Fluctuations in Time Series Classification Using Graph Representation: The MFSI-TSC Framework
by He Nai, Chunlei Zhang and Xianjun Hu
Sensors 2025, 25(15), 4672; https://doi.org/10.3390/s25154672 - 29 Jul 2025
Viewed by 176
Abstract
In industrial systems, sensors often classify collected time series data for incipient fault diagnosis. However, time series data from sensors during the initial stages of a fault often exhibits minor fluctuation characteristics. Existing time series classification (TSC) methods struggle to achieve high classification [...] Read more.
In industrial systems, sensors often classify collected time series data for incipient fault diagnosis. However, time series data from sensors during the initial stages of a fault often exhibits minor fluctuation characteristics. Existing time series classification (TSC) methods struggle to achieve high classification accuracy when these minor fluctuations serve as the primary distinguishing feature. This limitation arises because the low-amplitude variations of these fluctuations, compared with trends, lead the classifier to prioritize and learn trend features while ignoring the minor fluctuations crucial for accurate classification. To address this challenge, this paper proposes a novel graph-based time series classification framework, termed MFSI-TSC. MFSI-TSC first extracts the trend component of the raw time series. Subsequently, both the trend series and the raw series are represented as graphs by extracting the “visible relationship” of the series. By performing a subtraction operation between these graphs, the framework isolates the differential information arising from the minor fluctuations. The subtracted graph effectively captures minor fluctuations by highlighting topological variations, thereby making them more distinguishable. Furthermore, the framework incorporates optimizations to reduce computational complexity, facilitating its deployment in resource-constrained sensor systems. Finally, empirical evaluation of MFSI-TSC on both real-world and publicly available datasets demonstrates its effectiveness. Compared with ten benchmark methods, MFSI-TSC exhibits both high accuracy and computational efficiency, making it more suitable for deployment in sensor systems to complete incipient fault detection tasks. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

14 pages, 2969 KiB  
Article
ANSYS-Based Modeling and Simulation of Electrostatic Oil-Line Sensor
by Ruochen Liu, Ge Cai, Jianzhong Sun and Lanchun Zhang
Sensors 2025, 25(15), 4669; https://doi.org/10.3390/s25154669 - 28 Jul 2025
Viewed by 158
Abstract
Mechanical components are more difficult to detect at the initial state of failure. To solve this problem, this paper models and simulates the characteristics of an electrostatic oil-line sensor (OLS) wear particles carried in the lubricating oil path are detected. In this study, [...] Read more.
Mechanical components are more difficult to detect at the initial state of failure. To solve this problem, this paper models and simulates the characteristics of an electrostatic oil-line sensor (OLS) wear particles carried in the lubricating oil path are detected. In this study, an OLS that monitors the charge in an oil line using the principle of electrostatic induction is modeled and simulated. The sensor characteristics are simulated and tested using finite element simulation. The sensor efficiency, spatial sensitivity, and length-to-diameter ratio are simulated based on the point charges at different locations. The simulation results show that the sensitivity exhibits different trends when the point charge is inside and outside the probe. The length-to-diameter ratio is proportional to the sensor efficiency, the spatial sensitivity distribution law of multiple charges is consistent with that of a point charge, and the relative deviation rate between the mathematically calculated values and the simulated values is less than 3% under the same conditions. In conclusion, the finite element simulation results of the electrostatic oil line sensor constructed in this study are consistent with the theoretical model calculations and can be used in future mechanical fault diagnosis. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 2878 KiB  
Article
Research on Mechanical Fault Diagnosis Method of Isolation Switch Based on Variational Autoencoder
by Shun He, Fangrong Zhou, Xiangyu Tan, Guangfu Hu, Jiangjun Ruan and Song He
Processes 2025, 13(8), 2388; https://doi.org/10.3390/pr13082388 - 27 Jul 2025
Viewed by 358
Abstract
This study presents a Variational Autoencoder (VAE)-based framework for the unsupervised mechanical fault diagnosis of high-voltage isolation switches. By analyzing voltage and current signals to compute instantaneous power sequences, the method detects anomalies through reconstruction errors. Experimental results from both laboratory and real-world [...] Read more.
This study presents a Variational Autoencoder (VAE)-based framework for the unsupervised mechanical fault diagnosis of high-voltage isolation switches. By analyzing voltage and current signals to compute instantaneous power sequences, the method detects anomalies through reconstruction errors. Experimental results from both laboratory and real-world datasets demonstrate that the VAE model outperforms traditional methods, offering high diagnostic accuracy and robustness without the need for labeled data or manual feature extraction. This approach provides an effective solution for the real-time monitoring and predictive maintenance of high-voltage switchgear. Full article
Show Figures

Figure 1

17 pages, 752 KiB  
Article
A Soft-Fault Diagnosis Method for Coastal Lightning Location Networks Based on Observer Pattern
by Yiming Zhang and Ping Guo
Sensors 2025, 25(15), 4593; https://doi.org/10.3390/s25154593 - 24 Jul 2025
Viewed by 158
Abstract
Coastal areas are prone to thunderstorms. Lightning strikes can damage power facilities and communication systems, thereby leading to serious consequences. The lightning location network achieves lightning location through data fusion from multiple lightning locator nodes and can detect the location and intensity of [...] Read more.
Coastal areas are prone to thunderstorms. Lightning strikes can damage power facilities and communication systems, thereby leading to serious consequences. The lightning location network achieves lightning location through data fusion from multiple lightning locator nodes and can detect the location and intensity of lightning in real time. It is an important facility for thunderstorm warning and protection in coastal areas. However, when a sensor node in a lightning location network experiences a soft fault, it causes distortion in the lightning location. To achieve fault diagnosis of lightning locator nodes in a multi-node data fusion mode, this study proposes a new lightning location mode: the observer pattern. This paper first analyzes the main factors contributing to the error of the lightning location algorithm under this mode, proposes an observer pattern estimation algorithm (OPE) for lightning location, and defines the proportion of improvement in lightning positioning accuracy (PI) caused by the OPE algorithm. By analyzing the changes in PI in the process of lightning location, this study further proposes a diagnostic algorithm (OPSFD) for soft-fault nodes in a lightning location network. The simulation experiments in the paper demonstrate that the OPE algorithm can effectively improve the positioning accuracy of existing lightning location networks. Therefore, the OPE algorithm is also a low-cost and efficient method for improving the accuracy of existing lightning location networks, and it is suitable for the actual deployment and upgrading of current lightning locators. Meanwhile, the experimental results show that when a soft fault causes the observation error of the node to exceed the normal range, the OPSFD algorithm proposed in this study can effectively diagnose the faulty node. Full article
(This article belongs to the Special Issue Internet of Things (IoT) Sensing Systems for Engineering Applications)
Show Figures

Figure 1

19 pages, 1040 KiB  
Systematic Review
A Systematic Review on Risk Management and Enhancing Reliability in Autonomous Vehicles
by Ali Mahmood and Róbert Szabolcsi
Machines 2025, 13(8), 646; https://doi.org/10.3390/machines13080646 - 24 Jul 2025
Viewed by 278
Abstract
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes [...] Read more.
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes advancements across five key domains: fault detection and diagnosis (FDD), collision avoidance and decision making, system reliability and resilience, validation and verification (V&V), and safety evaluation. It integrates both hardware- and software-level perspectives, with a focus on emerging techniques such as Bayesian behavior prediction, uncertainty-aware control, and set-based fault detection to enhance operational robustness. Despite these advances, this review identifies persistent challenges, including limited cross-layer fault modeling, lack of formal verification for learning-based components, and the scarcity of scenario-driven validation datasets. To address these gaps, this paper proposes future directions such as verifiable machine learning, unified fault propagation models, digital twin-based reliability frameworks, and cyber-physical threat modeling. This review offers a comprehensive reference for developing certifiable, context-aware, and fail-operational autonomous driving systems, contributing to the broader goal of ensuring safe and trustworthy AV deployment. Full article
Show Figures

Figure 1

20 pages, 695 KiB  
Article
Deep Hybrid Model for Fault Diagnosis of Ship’s Main Engine
by Se-Ha Kim, Tae-Gyeong Kim, Junseok Lee, Hyoung-Kyu Song, Hyeonjoon Moon and Chang-Jae Chun
J. Mar. Sci. Eng. 2025, 13(8), 1398; https://doi.org/10.3390/jmse13081398 - 23 Jul 2025
Viewed by 164
Abstract
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, [...] Read more.
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, early fault diagnosis of abnormal engine conditions is critical for effective maintenance. In this paper, we propose a deep hybrid model for fault diagnosis of ship main engines, utilizing exhaust gas temperature data. The proposed model utilizes both time-domain features (TDFs) and time-series raw data. In order to effectively extract features from each type of data, two distinct feature extraction networks and an attention module-based classifier are designed. The model performance is evaluated using real-world cylinder exhaust gas temperature data collected from the large ship low-speed two-stroke main engine. The experimental results demonstrate that the proposed method outperforms conventional methods in fault diagnosis accuracy. The experimental results demonstrate that the proposed method improves fault diagnosis accuracy by 6.146% compared to the best conventional method. Furthermore, the proposed method maintains superior performanceeven in noisy environments under realistic industrial conditions. This study demonstrates the potential of using exhaust gas temperature using a single sensor signal for data-driven fault detection and provides a scalable foundation for future multi-sensor diagnostic systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1412 KiB  
Article
Graph-Regularized Orthogonal Non-Negative Matrix Factorization with Itakura–Saito (IS) Divergence for Fault Detection
by Yabing Liu, Juncheng Wu, Jin Zhang and Man-Fai Leung
Mathematics 2025, 13(15), 2343; https://doi.org/10.3390/math13152343 - 23 Jul 2025
Viewed by 160
Abstract
In modern industrial environments, quickly and accurately identifying faults is crucial for ensuring the smooth operation of production processes. Non-negative Matrix Factorization (NMF)-based fault detection technology has garnered attention due to its wide application in industrial process monitoring and machinery fault diagnosis. As [...] Read more.
In modern industrial environments, quickly and accurately identifying faults is crucial for ensuring the smooth operation of production processes. Non-negative Matrix Factorization (NMF)-based fault detection technology has garnered attention due to its wide application in industrial process monitoring and machinery fault diagnosis. As an effective dimensionality reduction tool, NMF can decompose complex datasets into non-negative matrices with practical and physical significance, thereby extracting key features of the process. This paper presents a novel approach to fault detection in industrial processes, called Graph-Regularized Orthogonal Non-negative Matrix Factorization with Itakura–Saito Divergence (GONMF-IS). The proposed method addresses the challenges of fault detection in complex, non-Gaussian industrial environments. By using Itakura–Saito divergence, GONMF-IS effectively handles data with probabilistic distribution characteristics, improving the model’s ability to process non-Gaussian data. Additionally, graph regularization leverages the structural relationships among data points to refine the matrix factorization process, enhancing the robustness and adaptability of the algorithm. The incorporation of orthogonality constraints further enhances the independence and interpretability of the resulting factors. Through extensive experiments, the GONMF-IS method demonstrates superior performance in fault detection tasks, providing an effective and reliable tool for industrial applications. The results suggest that GONMF-IS offers significant improvements over traditional methods, offering a more robust and accurate solution for fault diagnosis in complex industrial settings. Full article
Show Figures

Figure 1

19 pages, 1406 KiB  
Article
A Comparative Study of Dimensionality Reduction Methods for Accurate and Efficient Inverter Fault Detection in Grid-Connected Solar Photovoltaic Systems
by Shahid Tufail and Arif I. Sarwat
Electronics 2025, 14(14), 2916; https://doi.org/10.3390/electronics14142916 - 21 Jul 2025
Viewed by 239
Abstract
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection [...] Read more.
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection presents interesting prospects in accuracy and responsiveness. By streamlining data complexity and allowing faster and more effective fault diagnosis, dimensionality reduction methods play vital role. Using dimensionality reduction and ML techniques, this work explores inverter fault detection in GCPV systems. Photovoltaic inverter operational data was normalized and preprocessed. In the next step, dimensionality reduction using Principal Component Analysis (PCA) and autoencoder-based feature extraction were explored. For ML training four classifiers which include Random Forest (RF), logistic regression (LR), decision tree (DT), and K-Nearest Neighbors (KNN) were used. Trained on the whole standardized dataset, the RF model routinely produced the greatest accuracy of 99.87%, so efficiently capturing complicated feature interactions but requiring large processing resources and time of 36.47sec. LR model showed reduction in accuracy, but very fast training time compared to other models. Further, PCA greatly lowered computing demands, especially improving inference speed for LR and KNN. High accuracy of 99.23% across all models was maintained by autoencoder-derived features. Full article
Show Figures

Figure 1

15 pages, 2481 KiB  
Review
Transfer Learning for Induction Motor Health Monitoring: A Brief Review
by Prashant Kumar
Energies 2025, 18(14), 3823; https://doi.org/10.3390/en18143823 - 18 Jul 2025
Viewed by 289
Abstract
With advancements in computational resources, artificial intelligence has gained significant attention in motor health monitoring. These sophisticated deep learning algorithms have been widely used for induction motor health monitoring due to their autonomous feature extraction abilities and end-to-end learning capabilities. However, in real-world [...] Read more.
With advancements in computational resources, artificial intelligence has gained significant attention in motor health monitoring. These sophisticated deep learning algorithms have been widely used for induction motor health monitoring due to their autonomous feature extraction abilities and end-to-end learning capabilities. However, in real-world scenarios, challenges such as limited labeled data and diverse operating conditions have led to the application of transfer learning for motor health monitoring. Transfer learning utilizes pretrained models to address new tasks with limited labeled data. Recent advancements in this domain have significantly improved fault diagnosis, condition monitoring, and the predictive maintenance of induction motors. This study reviews state-of-the-art transfer learning techniques, including domain adaptation, fine-tuning, and feature-based transfer for induction motor health monitoring. The key methodologies are analyzed, highlighting their contributions to improving fault detection, diagnosis, and prognosis in industrial applications. Additionally, emerging trends and future research directions are discussed to guide further advancements in this rapidly evolving field. Full article
Show Figures

Figure 1

15 pages, 4034 KiB  
Article
Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
by Yongjie Nie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu and Shengtao Li
Appl. Sci. 2025, 15(14), 7965; https://doi.org/10.3390/app15147965 - 17 Jul 2025
Viewed by 219
Abstract
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric [...] Read more.
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric field distribution-based techniques require complex instrumentation, limiting its applications in scenes of complex structures and atop tower climbing. To address these challenges, this study proposes an electroluminescent sensing strategy for zero-value insulator identification based on the electroluminescence of ZnS:Cu. Based on the stimulation of electrical stress, real-time monitoring of the health status of insulators was achieved by applying the composite of epoxy and ZnS:Cu onto the connection area between the insulator steel cap and the shed. Experimental results demonstrate that healthy insulators exhibit characteristic luminescence, whereas zero-value insulators show no luminescence due to a reduced drop in electrical potential. Compared with conventional detection methods requiring access of electric signals, such non-contact optical detection method offers high fault-recognition accuracy and real-time response capability within milliseconds. This work establishes a novel intelligent sensing paradigm for visualized condition monitoring of electrical equipment, demonstrating significant potential for fault diagnosis in advanced power systems. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

27 pages, 3817 KiB  
Article
A Deep Learning-Based Diagnostic Framework for Shaft Earthing Brush Faults in Large Turbine Generators
by Katudi Oupa Mailula and Akshay Kumar Saha
Energies 2025, 18(14), 3793; https://doi.org/10.3390/en18143793 - 17 Jul 2025
Viewed by 210
Abstract
Large turbine generators rely on shaft earthing brushes to safely divert harmful shaft currents to ground, protecting bearings from electrical damage. This paper presents a novel deep learning-based diagnostic framework to detect and classify faults in shaft earthing brushes of large turbine generators. [...] Read more.
Large turbine generators rely on shaft earthing brushes to safely divert harmful shaft currents to ground, protecting bearings from electrical damage. This paper presents a novel deep learning-based diagnostic framework to detect and classify faults in shaft earthing brushes of large turbine generators. A key innovation lies in the use of FFT-derived spectrograms from both voltage and current waveforms as dual-channel inputs to the CNN, enabling automatic feature extraction of time–frequency patterns associated with different SEB fault types. The proposed framework combines advanced signal processing and convolutional neural networks (CNNs) to automatically recognize fault-related patterns in shaft grounding current and voltage signals. In the approach, raw time-domain signals are converted into informative time–frequency representations, which serve as input to a CNN model trained to distinguish normal and faulty conditions. The framework was evaluated using data from a fleet of large-scale generators under various brush fault scenarios (e.g., increased brush contact resistance, loss of brush contact, worn out brushes, and brush contamination). Experimental results demonstrate high fault detection accuracy (exceeding 98%) and the reliable identification of different fault types, outperforming conventional threshold-based monitoring techniques. The proposed deep learning framework offers a novel intelligent monitoring solution for predictive maintenance of turbine generators. The contributions include the following: (1) the development of a specialized deep learning model for shaft earthing brush fault diagnosis, (2) a systematic methodology for feature extraction from shaft current signals, and (3) the validation of the framework on real-world fault data. This work enables the early detection of brush degradation, thereby reducing unplanned downtime and maintenance costs in power generation facilities. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 3698 KiB  
Article
A Novel Fault Diagnosis Method for Rolling Bearings Based on Spectral Kurtosis and LS-SVM
by Lianyou Lai, Weijian Xu and Zhongzhe Song
Electronics 2025, 14(14), 2790; https://doi.org/10.3390/electronics14142790 - 11 Jul 2025
Viewed by 267
Abstract
As a core component of machining tools and vehicles, the load-bearing and transmission performance of rolling bearings is directly related to product processing quality and driving safety, highlighting the critical importance of fault detection. To address the nonlinearity, non-stationary modulation, and low signal-to-noise [...] Read more.
As a core component of machining tools and vehicles, the load-bearing and transmission performance of rolling bearings is directly related to product processing quality and driving safety, highlighting the critical importance of fault detection. To address the nonlinearity, non-stationary modulation, and low signal-to-noise ratio (SNR) observed in bearing vibration signals, we propose a fault feature extraction method based on spectral kurtosis and Hilbert envelope demodulation. First, spectral kurtosis is employed to determine the center frequency and bandwidth of the signal adaptively, and a bandpass filter is constructed to enhance the characteristic frequency components. Subsequently, the envelope spectrum is extracted through the Hilbert transform, allowing for the precise identification of fault characteristic frequencies. In the fault diagnosis stage, a multidimensional feature vector is formed by combining the kurtosis index with the amplitude ratios of inner/outer race characteristic frequencies, and fault pattern classification is accomplished using a Least-Squares Support Vector Machine (LS-SVM). To evaluate the effectiveness of the proposed method, experiments were conducted on the bearing datasets from Case Western Reserve University (CWRU) and the Machine Failure Prevention Technology (MFPT) Society. The experimental results demonstrate that the proposed method surpasses other comparative approaches, achieving identification accuracies of 95% and 100% for the CWRU and MFPT datasets, respectively. Full article
Show Figures

Figure 1

Back to TopTop