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Abstract

Induction motors (IMs) are the backbone of modern industry. Despite their robustness and
reliability, they are prone to a range of problems that can result in periods of inactivity,
diminished operational efficiency, and potential safety risks. Rapid identification and
assessment of faults is important to maintain efficient motors operation and avoid serious
malfunctions. The paper offers a comprehensive analysis of the existing body of knowledge
in IMs’ faults detection, highlighting areas of deficiency and obstacles. Our review is built
according to the IMs diagnosis process, presenting for each step of this process several
approaches. Finally, we discuss the effectiveness of each fault classification approach in ad-
dressing data-driven challenges such as high-dimensionality, class imbalance, nonlinearity,
noise, and overfitting. This paper highlights the rising transition to data-driven strategies,
with deep learning increasingly taking center stage in tackling the complex challenges of
fault diagnosis. It underscores the significant impact of these advancements on the field,
actively facilitating future research into intelligent, real-time condition monitoring systems.

Keywords: induction motor; diagnosis; machine learning; condition monitoring; signal processing

1. Introduction
Induction motors (IMs) play a critical role in modern industries, and their malfunction

can significantly disrupt operational productivity and economic performance [1]. Fault
detection (FD) is crucial for ensuring the continuous operation of vital machinery in indus-
trial production lines, thereby conserving both time and financial resources [2]. Condition
monitoring (CM) methods detect equipment abnormalities early, preventing them from es-
calating into critical failures and enabling timely, proactive maintenance interventions [3,4].
This strategy offers various benefits [5]:

• Reduced total maintenance costs.
• Optimized spare parts inventory.
• Customized proactive maintenance based on equipment needs.
• Improved safety.

Figure 1 illustrates the predictive maintenance (PM) strategy within the framework
of the P–F curve [6], a widely recognized concept in industrial maintenance. This curve
represents the health condition of a machine over time, starting from its peak performance
to functional failure. The “P” point marks the moment a potential failure is first detected,
while the “F” point represents the point of functional failure. Between these two points
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lies a crucial window for predictive maintenance actions, during which timely detection
and intervention can prevent the fault from progressing to a catastrophic breakdown. PM
systems leverage real-time data from sensors and diagnostic tools to detect these early
signs of failure, allowing corrective measures before severe consequences arise. In contrast
to classical methods, which have relied explicitly on historical data, CM uses sensors to
provide meaningful information on the health of various devices. These sensors collect
data to monitor crucial operating parameters such as vibrations, sound anomalies, airflow,
and current. The different types of PM take CM to the next level [7]. Building on these
sensor data, PM uses advanced time–frequency analytics and artificial intelligence (AI) to
predict machine failures before they occur. CM employing a data-driven approach follows a
sequential procedure, commencing with data acquisition, followed by data processing and
cleansing, culminating in fault isolation and signature characterization. Upon completion
of this process, a predictive model is generated, which can subsequently be deployed for
real-time CM applications.

Figure 1. Predictive maintenance in the context of the P–F curve [6].

Figure 2 presents a comprehensive workflow of the Condition-Based Monitoring
(CBM) process specifically tailored for induction motors. This diagram outlines the se-
quential steps involved in fault detection and diagnosis, beginning with data acquisition
and preprocessing, followed by feature extraction through signal processing techniques,
and culminating in fault classification using machine learning algorithms (MLAs). It also
highlights the iterative nature of this process, where feedback from fault detection out-
comes is used to refine and improve predictive models over time. This structured approach
ensures systematic monitoring of IMs’ health status, starting from initial raw data collection
to actionable diagnostic conclusions. Each stage of the process offers opportunities to
mitigate challenges such as high-dimensional data, class imbalance, nonlinearity, and noise.
The figure also emphasizes the integration of both traditional signal analysis methods and
advanced machine learning (ML) techniques, reflecting the current trend toward intelligent,
data-driven CM systems.
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Figure 2. Overall Process of Condition-Based Monitoring for Induction Motors.

The review is a comprehensive collection of references related to (FD), (CM), and Pre-
dictive Maintenance (PM) in IMs. It builds on the structure depicted in Figure 2, examining
in detail each step of the diagnosis process, surveying existing methodologies, identifying
limitations, and discussing how emerging AI-driven techniques can address prevailing
challenges in IMs diagnostics. The paper is organized as follows. Section 2 reports the
various failures that affect the proper operation of IMs and presents their categorization.
Section 3 reviews the different strategies employed for data acquisition, detailing the na-
ture and characteristics of the collected signals. To address the challenges of noise and
irrelevant information in the datasets, Section 4 discusses fault signature extraction and
signal processing techniques. Section 5 presents the diverse methods applied in the data
classification process. The comparative advantages of these approaches, depending on
specific fault scenarios, are analyzed in Section 6. Finally, Section 7 concludes the review
and outlines the key findings.

2. Induction Motor Faults
Due to harsh operating conditions, IMs are not free of damage that affects the stator,

rotor, bearings, etc. The most frequent induction motor defects are bearing failures, rep-
resenting (from 40% to 50% ) of all other fault occurrences. The IEEE reports that 42% of
faults in induction motors (IMs) are attributed to bearing defects, 28% to stator defects, 8%
to rotor defects, and 22% to other types of faults. Conversely, the Electric Power Research
Institute (EPRI) estimates the likelihood of bearing faults at 41%, stator faults at 36%, rotor
faults at 9%, and other faults at 14% [8,9].

Different research studies are being conducted to study various types of motor failure
in multiple research settings [9,10]. Some methods are based on the analysis of electrical
parameters, and others on non-electrical values as vibration, acoustic, thermal, etc., to detect
IM faults like motor eccentricity, and machine insulation faults [11]. A comprehensive
grasp of the physical phenomena is essential for creating models tailored to each fault
mode, which must also accommodate various operating conditions. Consequently, the re-
sulting programs that generate the diagnostic indices are challenging to implement [7].
Fault categorization in induction motors (IMs) plays a critical role in enabling rapid fault
detection and assessing the severity of failures. By classifying the faults accurately, mainte-
nance teams can respond appropriately and in a timely manner. These faults, which can
significantly reduce efficiency or even cause catastrophic failures, are broadly classified
into three categories: (i) electrical faults (e.g., stator winding failures), (ii) mechanical faults
(e.g., bearing defects, rotor bar breakages), and (iii) environmental or operational faults
(e.g., misalignment, unbalanced loads). Such structured classification not only supports
early diagnosis but also helps in selecting appropriate monitoring techniques and interven-
tion strategies. In this review, particular emphasis is placed on internal mechanical faults
and the emerging role of AI-based detection methods.

2.1. The Induction Motor Faults Classification

Operators of IMs are under continual pressure to reduce maintenance costs and
prevent unscheduled motor downtime. To reduce downtime and also for reliable oper-
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ation, early detection of motor faults is highly demanding. For this, fault diagnosis of
induction motors has become a burning topic for electrical technologists over the last two
decades [2]. Typically, the current signature or/and vibration signature is analyzed, and use-
ful information is provided to the IM operators about the health condition of the motor [12].
Although the induction motor is reliable, rugged, and almost unbreakable, it is suscep-
tible to different types of faults. The effects of such faults in induction motors include
unbalanced stator currents and voltages, torque oscillations, reduction in efficiency and
torque, overheating, and excessive vibration [9]. In addition, these faults can increase the
magnitude of certain harmonic components of currents and voltages. IMs’ performance
may be affected by the following types of faults:

• Electrical Faults: Faults in this category include unbalanced supply voltage or current,
single phasing, under- or overvoltage of current, reverse phase sequence, earth fault,
overload, inter-turn short-circuit fault, and crawling.

• Mechanical Faults: Faults in this category include a fractured rotor bar, an imbalanced
mass, an eccentric air gap, damaged bearings, a failed rotor coil, and a failed stator coil.

• Environmental Faults: The performance of an IM could be affected by ambient tem-
perature and external moisture. The performance of the equipment can be affected by
vibrations caused by several factors, such as defects in the installation and foundation
defects [13].

Other types of IM faults are listed in detail in Table 1.
Faults in induction motors have been identified through various signal processing and

pattern recognition methods, including Fast Fourier Transform (FFT), wavelet transform,
and motor current signature analysis (MCSA). Recently, knowledge-based techniques
such as k-Nearest Neighbor (KNN), support vector machines (SVMs), and artificial neural
networks (ANNs) have gained traction. A nonlinear feature extraction technique known
as kernel independent component analysis is proposed, which utilizes the independent
component analysis procedure along with the kernel trick to nonlinearly map Gaussian
chirplet distributions into a feature space. This approach is implemented in self-organizing
maps to categorize the faults of an induction motor [9].

By organizing faults in this manner, we emphasize the multifaceted nature of IMs
failures, showing that effective monitoring systems must be capable of identifying both
electrical and mechanical anomalies, as well as environmental influences. The subsequent
sections of this paper will build upon this classification, detailing how different CM and
FD techniques target these specific fault categories and how recent advances in ML and
signal processing contribute to improving detection accuracy.

Table 1. Classification of faults, their detection methods, and descriptions.

Name of Fault Classification Description References

Bearing failure Mechanical A prevalent origin of vibration (2–60 kHz). Thermal
imaging is more effective for detection. [14–16]

Broken rotor bars Mechanical Low amplitude makes detection challenging. Current
signals provide higher sensitivity. [17,18]

Misalignment Mechanical Detected via infrared thermography (IRT) and vibration
signature analysis. [19,20]

Rotor mass unbalance Mechanical Centrifugal force induces heightened vibration in the
rotor and stator. [21–23]

Air gap eccentricity Mechanical Spectral analysis of apparent power modulus detects
early-stage faults. [24,25]

Coil and lamination defects Electrical Requires reduction of eddy current losses. [26,27]
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Table 1. Cont.

Name of Fault Classification Description References

Stator winding failure Electrical Characterized by current anomalies. Thermal imaging
is applicable. [17,28]

Crawling Electrical Harmonic distortion variations in the Larke plane axes
are detectable. [29]

Unbalanced supply voltage/current Electrical Dynamic symbolic state machines (DSSMs) identify
voltage imbalances. [17]

Single Phasing Electrical Infrared examinations facilitate fault identification. [27]

Earth fault Electrical High-resistance grounding manages fault
currents effectively. [27,30]

Ambient temperature Environmental May lead to inaccurate measurements. [27,30,31]

Contamination Environmental Particulate matter in metallic construction exceeds
final packing by 200%. [27,31]

Humidity Environmental Negligible impact on temperature measurement. [30]

2.2. The Common Fault in Induction Motor

Faults in induction motors can be classified in several ways. In review, we choose to
list hereafter the common encounter failures: (1) broken rotor bar fault, (2) unbalanced
rotational mass, (3) stabilization fault, (4) crumple, (5) bearing fault. Determining the
initial failure of an induction motor can be challenging when numerous defects arise
simultaneously [9]. The consequences of such a fault in an induction motor are uneven
stator currents and voltages, torque oscillations, decreased efficiency, torque, overheating,
and excessive vibration [32]. Furthermore, these motor flaws have the potential to amplify
the magnitude of specific harmonic components in electrical currents and voltages. Any of
the flaws can influence the performance of an induction motor.

3. Data Acquisition Strategies for Fault Diagnosis in IMs
Data acquisition for the diagnosis of IMs can be processed in different ways. However,

in this review, we classify it into two main approaches: empirical and modeling. Data acqui-
sition for IMs diagnosis involves collecting various electrical and mechanical parameters
from the motor during operation. Some of the key parameters that are typically monitored
and collected are listed in Table 2 [33]. By analyzing and processing the collected data using
techniques such as traditional signal processing or data-driven methods, different faults
and abnormalities in IMs can be diagnosed, enabling predictive maintenance (PM) and
improved reliability.

Table 2. The main parameters of data acquisition and their associated indication [33].

Parameters Indication Examples/Insights

Current (I)

The current flowing
through the motor
windings reflects
operational status
and health.

• Stator winding faults: Increased current due to insulation failure or
short-circuits.

• Rotor bar damage: Asymmetrical current or spikes indicate broken
rotor bars.

• Overload conditions: Excessive current from higher-than-rated load.
• Unbalanced phases: Imbalance in three-phase motors suggests supply

or winding issues.

Voltage (V) Voltage affects motor
performance and efficiency.

• Voltage imbalances: Cause uneven torque and mechanical stress.
• Undervoltage/overvoltage: Indicates supply issues or improperly

sized motor.
• Harmonics/sags: Distortions reduce motor lifespan and performance.
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Table 2. Cont.

Parameters Indication Examples/Insights

Power (P)
Power consumption
reflects load conditions
and efficiency.

• Overloading: Increased power due to excessive mechanical load.
• Rotor bar faults: Inconsistent power under load indicates rotor damage.
• Inefficiencies: High power vs. output suggests friction/misalignment.

Speed (N) Rotational speed deviations
detect abnormalities.

• Mechanical faults: Slowdowns indicate bearing wear or misalignment.
• Electrical faults: Speed reductions from rotor/stator issues.
• Overheating: Speed reduction due to overloaded motor.

Temperature (T)
Temperature monitoring
identifies overheating or
insulation issues.

• Overheating: From excessive load or poor ventilation.
• Insulation deterioration: High temperatures degrade insulation.
• Bearing failure: Heat from mechanical friction.

Vibration (Vib) Vibration analysis detects
mechanical faults.

• Rotor imbalance: Excessive vibrations from imbalance/misalignment.
• Bearing wear: Abnormal vibrations from worn bearings.
• Misalignment: Motor-load misalignment causes vibrations.

3.1. Real Data Collection for Fault Detection in IMs

Real data collection plays a crucial role in developing accurate and generalizable fault
detection systems for IMs. Experimental datasets are typically obtained through controlled
tests that operate the machines under a variety of conditions including varying loads, speeds,
and fault scenarios such as bearing defects, stator winding faults, broken rotor bars, and ec-
centricities. By systematically labeling these datasets, researchers are able to build predictive
and diagnostic models that can be benchmarked and validated across open platforms [34].

A variety of sensors have been employed for capturing these fault-related signals.
Among them, vibration sensors are most commonly used due to their sensitivity in identi-
fying mechanical degradation. Micro-Electro-Mechanical System (MEMS) accelerometers,
in particular, have emerged as a suitable option because of their small size, low cost, wide
frequency response, and low power consumption, making them favorable for both labo-
ratory and industrial applications [35,36]. Moreover, MEMS accelerometers can be easily
integrated into Internet of Things (IoT)-based predictive maintenance frameworks, thereby
enabling scalable and real-time condition monitoring [37].

The AC Machinery Fault Simulator is one such widely used platform, which allows for
the controlled introduction of both electrical and mechanical faults, thereby facilitating the
rapid collection of reliable and repeatable datasets [38]. High-resolution data acquisition
systems with precise synchronization across sensors further enhance fault signature quality,
providing rich datasets for developing advanced ML and deep learning models [39].

To ensure reproducibility and to accelerate research, several large-scale publicly avail-
able projects and datasets have been established:

• Case Western Reserve University (CWRU) Bearing Dataset: One of the most widely
cited repositories, containing vibration signals acquired from a 2-hp Reliance electric
motor with artificially induced bearing faults under different loads and operating
conditions. The dataset is freely available online, and has become a de facto benchmark
in condition monitoring research [40].

• Paderborn University Bearing Dataset: A comprehensive dataset containing run-to-
failure experiments of bearings under real operating conditions, capturing vibration,
current, and speed signals. It also provides high-resolution failure progression data,
making it suitable for prognostics studies. The dataset can be accessed at the official
Paderborn repository [41].

• NASA Ames Prognostics Data Repository (IMS Dataset): Managed by the NASA
Prognostics Center, this repository includes multiple bearing run-to-failure datasets
(the IMS dataset) acquired under controlled laboratory conditions with seeded defects.
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Signals include vibration and temperature, and the dataset has been extensively used
for developing prognostics and health management (PHM) models [42].

• MAFAULDA Dataset (Machinery Fault Database): A large and diverse data collection ini-
tiative from the Polytechnic University of Madrid containing vibration, acoustic, and motor
current signals, covering a wide range of IM conditions and fault scenarios [43].

3.2. Data Collection Through Modeling for Fault Diagnosis in Induction Motors

Using mathematical tools to portray a system is an approach known as modeling. The sys-
tem can be simulated thanks to this representation, which offers important insights into how
it functions and behaves. There are several benefits to modeling, especially when devel-
oping complicated systems [44]. Modeling improves knowledge, maximizes performance,
and minimizes risks while drastically cutting development time and costs by offering a virtual
environment for testing and analysis. It will remain essential as technology develops for the
creation and use of creative and effective solutions in a variety of sectors. Simulation has
emerged as a powerful tool to analyze machine behavior under different fault conditions,
enabling in-depth study without the need for physical experimentation [45].

3.2.1. Modeling Air Gap Variations for Fault Analysis in IMs

The symmetrical nature of the IMs offers a significant advantage for fault detection.
Any deviation in this feature changes the interaction between the stator and rotor fluxes,
causing disturbances in the stator current and the motor vibration. One promising modeling
approach to IM fault detection is through analysis of the motor’s air gap, as changes in
the air gap can indicate the presence of IM faults [45]. Any fault in the motor can cause
changes in the motor’s airgap characteristics, particularly in the air gap permeance and
the Magnetomotive Force (MMF) As shown in Figure 3, the process is explained step by
step. These parameters affect the stator’s mutual and self-inductance, influencing the stator
current. This modeling approach is based on geometry and relies on detecting eccentricity.
Therefore, the goal here is to establish a distribution in the motor gap and gather stator
current data. Extensive research has explored methods for modeling air gap variations
and relating them to bearing health [46]. Broken rotor bars, which can lead to air gap
irregularities, have been a particular focus of induction motor fault analysis. Algorithms
suitable for real-time implementation have been developed to detect changes in parameters
like mass unbalance, stiffness, and damping that may indicate bearing issues. Similarly,
studies have shown that mechanical faults like bearing failures can influence the stator
current, magnetic field distribution, and other measurable quantities, providing avenues
for fault detection [47,48]. By modeling the relationship between air gap variations and IM
health, researchers have made progress toward reliable, noninvasive CM of IMs.

Figure 3. Induction motor fault detection from airgap and MMF analysis to stator current changes.
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3.2.2. Electromagnetic Model for Fault Detection in IMs

To address this issue, researchers have explored using electromagnetic signatures, such
as stator current, vibration, and stray flux, to detect and diagnose faults in induction motors.
An approach, known as model-based fault detection, involves developing algorithms that
can identify specific fault characteristics in the electromagnetic signatures of the machine.
These algorithms can be customized to detect specific types of fault, such as raceway
faults in rolling element bearings, changes in mass imbalance, and variations in stiffness
and damping. As shown in Figure 4 Finite element analysis (FEA) of a faulty induction
motor can also provide valuable information on the effects of faults on the machine’s
electromagnetic field, which cannot be observed directly [49].

Figure 4. FEA -based IM model using GMSH/GetDp application [50].

FEAs, coupled with the partial element equivalent circuit (PEEC), offer several advan-
tages and perfectly emulate the behaviors of the equipment prototype [46]. The FEM is an
effective method for computing local values in electromagnetic analysis. These local values
represent the flux intensity and current density. By combining this method with circuit
analysis using PEEC, we can obtain global values such as voltage and current [51].

3.3. Comparative Analysis of Real and Simulated Data Collection

A meaningful comparison between real data collection and modeling-based data
generation for induction motor (IM) fault diagnosis requires the consideration of several
criteria. In terms of accuracy and realism, real data offers the advantage of capturing
the true motor behavior, including noise, nonlinearities, and unexpected interactions.
This makes it highly realistic, though often accompanied by uncontrollable disturbances.
Conversely, modeling produces clean and controlled signals under idealized assumptions.
While this allows specific fault scenarios to be simulated with precision, it may not fully
represent the complexities of real-world operating environments. Cost and practicality
also distinguish the two approaches. Real data collection typically demands costly test
rigs, multiple motors, sensors, data acquisition systems, and, in some cases, destructive
testing (e.g., intentionally damaging rotor bars or bearings). By contrast, modeling is more
economical and flexible, requiring no physical hardware and enabling safe simulation of a
wide range of faults. Reproducibility presents another point of divergence. Real data is
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difficult to replicate exactly because of variations in environment, motor aging, and load
fluctuations (such as overlapping torque and fault frequencies). Simulated data, on the other
hand, is fully reproducible since it is generated from predefined models and parameters.
Fault coverage and dataset scalability are equally important considerations. Real data
is inherently limited by practical constraints, as not all faults, especially severe ones like
winding breakdowns, can be tested safely. Modeling, however, makes it possible to simulate
any type of fault, from mild to catastrophic. Moreover, collecting large datasets under
varied operating conditions is time-consuming and resource-intensive in experimental
setups, whereas modeling enables the generation of extensive and balanced datasets with
controlled variations in load, speed, and fault severity. Perhaps the most critical criterion
in the context of this review is the applicability to ML and deep learning. Real data is
more reliable for training models that generalize well to practical systems, even though
available datasets are often small. Simulated data is particularly useful for pre-training
and validation, but it may introduce a “reality gap”, necessitating transfer learning or
domain adaptation when applied to actual motors. Overall, modeling appears to surpass
real data collection in many of the considered criteria. Nevertheless, the two approaches
should be viewed as complementary rather than competing. Future research should focus
on generating more model-based data informed and calibrated by existing benchmark
datasets, thereby constructing meta-data frameworks capable of tuning the governing
equations and correlations of IM physical phenomena with greater accuracy.

3.4. Data Acquisition Modalities in Induction Motor Monitoring

Conventional fault detection techniques for induction motors rely on various mon-
itoring approaches, each targeting specific fault signatures [52]. Vibration analysis is
widely used to detect mechanical anomalies such as bearing defects, rotor imbalance, or
misalignment [53]. Current signature analysis examines the stator current to identify elec-
trical and electro-mechanical faults, including broken rotor bars or stator winding issues.
Temperature monitoring provides insights into thermal stress and overheating, which may
indicate insulation degradation or bearing wear. Acoustic emission monitoring captures
high-frequency sound waves generated by faults, offering early detection of mechanical
defects. Additionally, rotor speed and torque observation can reveal irregularities in motor
performance caused by mechanical or electrical faults. Although vibration-based sensing
is widely adopted, complementary data acquisition strategies are also utilized. Current
signature analysis, for instance, provides a non-intrusive and cost-effective alternative
for monitoring electrical faults such as stator winding inter-turn short circuits and bro-
ken rotor bars [54]. Emerging modalities, such as thermal monitoring, acoustic emission,
and electromagnetic flux analysis, are increasingly being explored to complement tra-
ditional methods and enhance fault diagnosis capabilities. Nevertheless, motor current
signature analysis (MCSA) and vibration analysis (VA) remain the leading approaches
for reliable and efficient condition monitoring, with MCSA providing low-cost detection
of electrical faults through stator current analysis [55], and VA offering highly sensitive
detection of mechanical faults based on extensive practical experience [56].

Literature Search Methodology

To collect relevant academic references, two methods were used:

1. Automated Scraping Attempt.

A Python 3.10 script was developed to scrape academic databases (IEEE Xplore,
Piscataway, NJ, USA, Elsevier, Amsterdam, the Netherlands) for articles matching specific
keywords. However, due to technical challenges such as access restrictions and CAPTCHA
verification, this approach was unsuccessful [57].



Sensors 2025, 25, 5942 10 of 36

2. Manual Literature Search.

The search was conducted manually by entering keywords such as “Current analysis”
and “Vibration analysis” into the search engines of IEEE Xplore and Elsevier to compare
the results shown in Table 3. Articles were filtered by publication year (2013–2023), and the
number of occurrences for each keyword was recorded.

Table 3. Statistical survey related to fault detection in IM using current analysis and Vibration Analysis.

Publisher MCSA Vibration Analysis

IEEE 277 516
Elsevier 299 1781

MCSA has a relatively smaller number of publications in both IEEE and Elsevier,
suggesting that it may be less commonly used for fault detection in induction motors.
MCSA is a more recent technique that has gained popularity in recent years, as it can be
used to detect electrical faults such as stator winding faults and broken rotor bars. Current
analysis is a relatively new technique, and the number of publications in this area will
likely continue to grow in the future. The survey results indicate that vibration analysis
is the most widely used method for fault detection in induction motors. Researchers and
practitioners in this field may benefit from considering vibration analysis as a primary tool
for fault detection and diagnosis.

3.5. Multimodal Data Acquisition for Induction Motor Fault Diagnosis

Multimodal data acquisition refers to the collection of diagnostic information from
multiple heterogeneous sensors, capturing different aspects of induction motor operation
such as electrical signals (current, voltage), mechanical responses (vibration), thermal
characteristics (temperature), and acoustic emissions. By integrating these complementary
modalities, multimodal acquisition provides a richer representation of the motor’s health
state than single-sensor approaches [58]. Modern industrial systems commonly deploy
such sensors under the Industrial Internet of Things (IIoT) paradigm to ensure synchronous,
high-fidelity data collection for use in ML and physics-informed diagnostic methods [59].

The key advantage of multimodal data acquisition lies in its ability to capture comple-
mentary and redundant fault information across diverse physical domains, which improves
robustness and diagnostic accuracy. For instance, vibration signals are sensitive to mechan-
ical misalignment or bearing faults, while stator current analysis better reflects electrical
faults. By fusing these modalities, a more holistic fault profile is achieved [60]. In addition,
multimodal data helps mitigate the limitation of any individual sensor, reducing the risk of
false alarms or missed detections under complex and variable operating conditions [61].
Studies have also shown that multimodal fusion can improve early fault detection, par-
ticularly in incipient or compound fault scenarios where fault signatures may be weak or
distributed across domains [62].

Despite its benefits, multimodal acquisition introduces challenges in terms of system
complexity, cost, and data management. Deploying multiple high-frequency sensors in-
creases hardware and maintenance costs and can raise synchronization issues, as signals
collected at different sampling rates must be aligned carefully for meaningful analysis [63].
In addition, multimodal data streams are often high-dimensional, leading to computational
burdens and potential overfitting if not managed with effective feature selection or dimen-
sionality reduction. Interoperability across heterogeneous sensor types and legacy systems
adds another layer of complexity in industrial deployments.

To address these challenges, recent works have proposed multimodal data fusion
frameworks that combine sensor inputs at feature, decision, or model levels to streamline
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integration [64]. Dimensionality reduction and representation learning techniques, such
as autoencoders or attention-based networks, are used to capture shared latent features
that reduce computational cost while retaining salient fault information [65]. When full
multimodal deployments are not feasible, virtual sensing and physics-informed models can
provide surrogate measurements, enhancing monitoring without costly sensor installations.
These strategies allow multimodal fault diagnosis to remain both practical and effective in
real-world industrial IM monitoring.

4. Fault Signature Extraction and Signal Processing
Fault signature extraction is a crucial step in IMs’ CM. It aims to transform raw

measurements into discriminative representations that facilitate the identification and
classification of faults. Advances in computer science and applied mathematics have made
signal processing techniques increasingly sophisticated and effective. When applied to CM,
SP serves as a powerful tool for feature extraction, helping to reduce both computational
resources and the time required for the final fault detection stage, ultimately enhancing
the accuracy and performance of CM systems. In modern CM architectures, SP is often
considered a preprocessing step. However, with the emergence of deep learning (DL)
methods, there is a growing trend toward minimizing or even eliminating this step, as DL
models can learn to extract features directly from raw data. This section reviews the
major approaches used for feature extraction, ranging from traditional signal processing
techniques to modern ML-based strategies. In the following section, we present the various
methods employed in the core part of the CM process. A brief overview of each approach is
provided, followed by a discussion of the challenges associated with data-driven techniques:
High-dimensional data is a common feature in modern ML applications and present
both opportunities and challenges. Data scientists can unlock the value of these complex
datasets using the right tools and techniques, such as dimensionality reduction and feature
selection [66]. As technology develops, effective working with high-dimensional data
will become essential to driving innovation and discovering new insights in different
fields. Imbalanced Data is a common problem in ML where the training data is not evenly
distributed across all classes or categories. This can result in biased models that do not
perform well in the minority class and may not generalize well to real-world data [67].
Nonlinearity refers to the property of a system or relationship that does not exhibit a
linear or directly proportional relationship between the input and output. In other words,
the output is not only a direct multiplier of the input [68]. Noise and overfitting are two
related concepts in the context of empirical data analysis, particularly in ML and statistical
modeling [69].

4.1. Time-Domain Feature Extraction

Time-domain features are directly derived from the raw signals and remain the most
intuitive descriptors of motor behavior. Commonly used features include the mean, root
mean square (RMS), standard deviation, peak-to-peak amplitude, skewness, and kurtosis.
These values are obtained by dividing the complete vibration signal into one-second
segments. For each segment, the corresponding features are computed across the entire
eighteen-second vibration recording. Subsequently, all extracted features are concatenated
to form a single dataset representing the time-domain characteristics of the raw vibration
signal [70]. These features are simple to compute and provide useful statistical information,
but they may fail to capture hidden periodicities or frequency-related signatures in the data.
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4.2. Time Frequency Feature Extraction

Frequency-domain techniques rely on spectral analysis to reveal periodic components
that are often associated with specific fault mechanisms. Fourier Transform (FT) and its
variants are widely applied to decompose signals into their constituent frequencies. Fault
signatures such as sideband harmonics, frequency peaks, or energy distribution across
spectral bands can be effectively identified in this domain. Although powerful, FT-based
methods assume stationarity and may be less effective for non-stationary fault signals.
To handle non-stationary signals, time–frequency approaches such as Short-Time Fourier
Transform (STFT), Wavelet Transform (WT), and Hilbert–Huang Transform (HHT) are
employed. These methods allow simultaneous localization in both time and frequency,
making them well suited for transient fault detection. Wavelet-based features (e.g., wavelet
energy, entropy, and coefficients) are particularly effective in isolating impulsive patterns
caused by localized defects.

4.2.1. Fast Fourier Transform

The FFT, in its various forms (Classical, Instantaneous Power FFT, Bispectrum, etc.),
has been widely utilized in fault signatures stigmatization for VA and MCSA . FFT has
limitations, such as masking characteristic frequencies by the supply frequency and the
inappropriateness of transient signals [71]. To overcome this kind of problem, newer tech-
niques used for signal processing include a Short-Time Fourier Transform (STFT), Wavelet
Transform (WT), wavelet packet decomposition (WPD), Wigner Ville distribution (WVD),
power spectral density (PSD), support vector machines (SVMs), Prony analysis, fractal
analysis, and fuzzy logic [71]. Despite their effectiveness, these methods are primarily
suited for non-stationary signals. Recent research has therefore focused on utilizing both
starting and steady-state current signatures to detect faults, including broken rotor bars.
In addition, finite element analysis and Wavelet Transform have been used to charac-
terize internal motor faults, offering a more detailed insight into motor behavior under
faulty conditions [72]. Recent advances in signal processing have led to the exploration of
novel methodologies, including the Park transform and artificial neural networks, for the
analysis of stator current signatures, thus offering alternative approaches to traditional
techniques [73].

4.2.2. Wavelet Transform (WT)

For an accurate VA and MCSA signal analysis, the Wavelet Transform was introduced
with the idea of overcoming difficulties encountered in the application of FFT [74]. The WT
is a windowing technique with a variable-size region is then used to perform the signal
analysis, which can be the stator current. By using wavelet analysis, we can obtain more
precise low-frequency information by using long-time intervals, and more accurate high-
frequency information by using shorter regions. The ability to perform local analysis is one
of the most interesting features of the Wavelet Transform [75].

4.2.3. Hilbert Transform (HT)

The Hilbert Transform (HT) is a widely used and influential method in signal analysis,
with applications spanning various scientific domains, including fault diagnosis, signal
transmission, geophysical data processing, and the detection of mechanical load anomalies
and rotor cage faults in induction motors [76]. The HT complements other signal process-
ing techniques, such as the Fast Fourier Transform (FFT) and Wavelet Transform (WT),
by providing enhanced capabilities for analyzing non-stationary signals and extracting
instantaneous frequency and phase information [77]. This approach enables the extraction
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of meaningful features from raw data, reducing its dimensionality and facilitating more
accurate analysis.

As demonstrated in [78], the HT can be improved through the use of Estimation of
Signal Parameters via Rotational Invariance Techniques (ESPRIT) for detecting rotor faults
in induction motors at low slip. Similarly, the author in [77] showed that the HT can be used
to enhance the resolution of the MCSA method, enabling the diagnosis of rotor asymmetries
at very low slip. These studies highlight the potential of the HT in fault diagnosis and
demonstrate its effectiveness in various applications.

The HT, FFT, and WT are all computationally intensive methods that require the
solution of complex mathematical equations, which can be a significant limitation. However,
the integration of ML Techniques can mitigate this limitation, offering several benefits,
including the ability to handle large volumes of data, expedited processing, and early
detection of faults [78]. Using ML techniques, researchers, and practitioners can overcome
the computational challenges associated with traditional signal processing methods and
develop more efficient and effective FD systems.

While time–frequency methods provide rich representations of non-stationary signals,
they often suffer from high dimensionality, sensitivity to noise, and parameter dependence.
Statistical feature extraction has emerged to address these limitations, offering compact,
interpretable, and computationally efficient descriptors that improve fault classification.

4.3. Statistical Feature Extraction

Statistical descriptors are often employed to summarize signal distributions in either
the time or frequency domain. Higher-order statistics (e.g., skewness, kurtosis, entropy)
and correlation-based measures provide additional discriminatory power. Furthermore,
advanced statistical learning methods such as principal component analysis (PCA) or
independent component analysis (ICA) can be applied to reduce dimensionality while
preserving fault-relevant information.

In the diagnosis of IM, vibration signals are commonly monitored as a key parameter,
with the root mean square (RMS) value of vibration velocity, crest factor, and kurtosis being
the primary indicators used to detect anomalies [79].

The root mean square (RMS) value reflects the energy content of the vibration signal
and is defined as

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (1)

where xi is the vibration amplitude at sample i, and N is the total number of samples.
The crest factor (CF) provides sensitivity to impulsive events and is expressed as

CF =
max |xi|

RMS
(2)

A high CF indicates the presence of sharp transients, often linked to bearing defects or
mechanical impacts.

The kurtosis (K) is a fourth-order statistical moment measuring the peakedness of the
signal distribution:

K =
1
N ∑N

i=1(xi − µ)4(
1
N ∑N

i=1(xi − µ)2
)2 (3)

where µ is the mean of the signal.
In the CM context the rms value is a measure of the energetic dissipation caused by

dissipative events, providing insight into the overall energy content of the vibration signal.
According to [80,81], the recommended rms thresholds have been established to facilitate
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the detection of faults. The crest factor, calculated as the ratio of the peak amplitude of the
vibration signal to its normalized RMS value, is a sensitive indicator of impulsive events,
such as those resulting from collisions between bearing components [82,83]. This measure
allows for the assessment of the significance of these events relative to the overall RMS
value of the signal, enabling the identification of potential faults [84]. As noted in [85],
the crest factor is particularly useful in detecting bearing failures, a common cause of IM
failures. Furthermore, [86] demonstrated that the combination of RMS and crest factor
analysis can improve the precision of fault diagnosis in IM.

Statistical feature extraction emerged as a means to overcome some of the limitations
of traditional time–frequency techniques, particularly their high dimensionality, sensitivity
to noise, and parameter dependence. By condensing raw signals into compact descriptors
such as mean, variance, RMS, skewness, and kurtosis, statistical approaches offer both
computational efficiency and physical interpretability. However, these handcrafted features
still rely heavily on expert knowledge and may fail to capture complex, nonlinear depen-
dencies inherent in real-world induction motor data. To address these shortcomings, ML
and, more recently, deep learning-based feature extraction methods have been developed.
Classical MLAs, such as support vector machines (SVMs) and Random Forests (RFs), can
automatically identify discriminative combinations of handcrafted features. In contrast,
deep learning models including convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and Transformers can learn hierarchical and task-specific features di-
rectly from raw signals, thereby minimizing the need for manual feature engineering and
offering superior generalization across diverse operating conditions.

4.4. Machine Learning and Deep Learning-Based Feature Extraction

With the advent of data-driven methods, the extraction of features in IM diagnosis has
increasingly shifted toward automated learning. ML algorithms such as SVM, RF, and k-
Nearest Neighbor (kNN) can operate on handcrafted features while also assisting in feature
selection. More recently, deep learning approaches such as CNN, RNN, and Transformers
have demonstrated the ability to learn hierarchical feature representations directly from
raw signals, reducing reliance on manual feature engineering and often yielding superior
performance in complex fault scenarios.

Several studies have adopted a two-stage approach, where one ML or DL model is
used for feature extraction and another for classification. Convolutional Autoencoders
(CAs) have been used to extract features from current and vibration signals, followed by
SVM for classifying stator turn faults and broken rotor bars in IMs, achieving over 95%
in [87] . In [88], Triplet CNN embeddings combined with SVM have successfully addressed
rolling bearing fault classification under small-sample conditions. In [89] Unsupervised
Autoencoders (UAs) have been employed to select features from vibration data, followed
by feed-forward neural networks for motor bearing fault classification. The author in [90]
presented a nonlinear feature extraction using (Kernel) PCA or ICA followed by SVM has
been applied for multiple types of IM faults, representing a classical two-stage pipeline.
Other approaches include component-analysis-based features on transient signals classified
with SVM [91], wavelet packet transform combined with PCA feeding a dual SVM for IM
bearing faults [92], and CNN autoencoders for feature extraction followed by deep neural
networks for multimodal electric motor fault diagnosis, integrating both signal and power
analysis data [93].

4.5. The Efficiency Signal Processing Approach

The CM process involves two critical steps, each requiring careful selection of the most
suitable approach. These steps are signal processing and fault detection using intelligent
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systems. SP and feature extraction play a key role in reducing noise and dimensionality
by extracting relevant features from the data. Subsequently, ML and DLM techniques are
employed to identify patterns and correlations that indicate potential faults.

The FFT converts signals to the frequency domain, but often results in a high number
of frequency components, which requires feature selection or dimensionality reduction
techniques like PCA [94]. However, FFT does not inherently handle class imbalance,
requiring post-processing methods such as resampling or weighting [95]. Additionally, FFT
assumes stationary and linear signals, making it less effective for highly nonlinear faults,
and it is sensitive to noise, often requiring prefiltering (e.g., low-pass filters) to mitigate
noise impact [96]. In contrast, the WT produces a large number of coefficients, but these
can be managed through feature selection techniques like statistical moments of wavelet
coefficients [97]. Although WT does not inherently address class imbalance, extracted
features can be processed with balancing techniques [98]. WT outperforms FFT in handling
nonlinear and non-stationary signals and reduces noise sensitivity through the use of
different mother wavelets (e.g., Daubechies, Morlet) [99]. HT generates additional features,
which can be managed with proper feature selection, but it requires external techniques
like Synthetic Minority Over-sampling Technique (SMOTE) or cost-sensitive learning to
handle class imbalance [100,101]. HT works well with nonlinear signals when combined
with methods like Empirical Mode Decomposition (EMD) [102]. Although it is sensitive to
noise and is often used with band-pass filtering to enhance fault signatures [103]. WT is a
powerful tool for analyzing transient signals; however, the selection of the mother wavelet
is arbitrary and can introduce errors. For this purpose, this approach is primarily used as a
complementary tool to other techniques, mainly ML-based methods [104]. In summary,
time-domain, frequency-domain, and time–frequency techniques have long served as
the foundation for fault feature extraction, each providing complementary insights into
induction motor behavior. However, their effectiveness is often constrained by sensitivity
to noise, limited capacity to capture nonlinear dynamics, and challenges in handling
high-dimensional data. To overcome these issues, statistical feature extraction has been
developed, offering more compact and discriminative representations. Building on this
foundation, ML approaches further enhance feature extraction, while deep learning models
advance the field by enabling end-to-end diagnosis directly from raw signals. Together,
these methodologies represent an evolutionary trajectory that balances interpretability,
robustness, and accuracy in condition monitoring systems.

5. Machine Learning and Deep Learning-Based IMs Fault Classification
Classification is a fundamental and widely understood function in ML. It requires

making predictions about the category or class of certain data items using labeled data for
training. Nevertheless, classification as the “most basic” function can be deceptive given
the intricacy that can manifest itself in real-world scenarios. The classification is conceptual
simplicity at its core, it is about assigning labels to inputs, for example, determining whether
an email is spam or not, recognizing handwritten digits, or in our case, fault detection
in IM [76]. To efficiently tackle fault classification, researchers have devised a range of
classification algorithms that can be classified into several categories, such as Linear Models,
which encompass logistic regression and linear discriminant analysis techniques. Random
Forests and gradient-boosting machines are two such instances of tree-based algorithms in
decision tree analysis. Ref. [86] highlights the possibilities of applying the RF in machine
fault diagnosis, proposing a hybrid method combined with a genetic algorithm to improve
classification accuracy. There are also support vector machines (SVMs), which are highly
efficient in handling high-dimensional spaces. In [105], a diagnosis was made on the data
collected using SVM, multilayer neural network, convolutional neural network, gradient
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boosting machine, and XGBoost ML models. An inherent limitation of employing SVM is
that it performs effectively when there is a distinct boundary between two classes. In such
cases, the algorithm must address the quadratic optimization problem to identify the
ideal hyperplane separating the two classes [106]. Another kind of algorithm is the k-
Nearest Neighbors (KNN), which is a straightforward model for instance-based learning.
Utilizing KNN is inefficient due to its being the least robust algorithm, highly susceptible
to outliers, and its accuracy is contingent upon the selection of k [107]. More sophisticated
ML techniques are neural networks encompassing deep learning models designed for
intricate tasks like acoustic and image recognition. In [108], various ANN models, including
multi-layer perceptron (MLP) and Radial Basis Function (RBF), have been investigated for
bearing fault detection in induction motors, including single-phase monitoring. However,
choosing the “best” one depends on various factors. The literature study indicates that deep
learning models, especially CNNs [109], regularly surpass standard MLAs such as MLPs
and networks in IM defect identification. However, owing to the substantial computing
demands of CNNs, we intend to identify a model that accomplishes efficient fault detection
while utilizing fewer resources. In the following section, we present a curated selection
of ML algorithms that can be effectively employed to develop an intelligent CM system.
Our objective is to highlight the most commonly used algorithms in the literature, with a
particular focus on two major categories: ANN-based methods and decision tree-based
ensemble techniques.

5.1. Radial Basis Function (RBF) Networks

Radial Basis Function (RBF) networks are a distinct category of artificial neural net-
works known for their exceptional precision in modeling intricate nonlinear interactions.
Thus, they are particularly adept for applications that require the identification and anal-
ysis of faults [110,111]. A primary advantage of employing RBF networks for IM failure
detection is their ability to understand complex relationships between input parameters,
including vibration, stator current, stray flux, and the associated bearing fault conditions.
In [112], different impacts of neural network complexity and RBF activation function char-
acteristics on data classification quality were illustrated. The RBF Kernel can be used in
combination with Polynomial to minimize error classification such as in [113]. Recent stud-
ies indicate that Radial Basis Function networks could be effective in identifying bearing
defects in induction motors.The architecture of the RBF network is illustrated in Figure 5.

Figure 5. Architecture of a RBF network. The network consists of an input layer, a hidden layer with
radial basis functions, and an output layer

The use of RBF networks to identify defects in induction motors has shown consider-
able promise. These networks may effectively represent the complex relationships between
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input data and fault circumstances, facilitating accurate and reliable problem identification,
especially in challenging operational environments. To summarize, the primary benefits of
employing RBF networks for detecting IMs faults encompass their capability to represent
intricate nonlinear correlations between input variables and fault situations [114]. This
model allows for elevated precision in identifying diverse IM types, including instances
of multiple faults. Furthermore, RBF shows a resilience to noise and other operating chal-
lenges. The effectiveness of this method was confirmed through practical trials carried out
under various bearing failure conditions [115]. Nevertheless, there are several constraints to
using RBF networks in IM defect detection, including a substantial demand on training data
to reach the best performance. The model may be computationally demanding, particularly
for extensive applications. The RBF needs a special learning low to adjust the node number
in the hidden layer automatically as well as a small number of epochs. These advantages
are not enough to consider them more powerful than other classical ANNs such as the
MLP structure [115]. This could lead to a substantial demand for meticulous design and
selection of features to ensure the use of the most relevant inputs for the network [116,117].

5.2. Multi-Layer Perceptron (MLP)

The MLP has an input layer, one or more hidden layers, and an output layer. Through-
out the training process, the network acquires the ability to associate the input characteris-
tics with their respective fault classes through backpropagation of the error gradient [118].
The MLP is a promising deep learning methodology, a variant of artificial neural networks
capable of learning intricate nonlinear correlations from data [119]. It is trained on a labeled
dataset, whereby each data point comprises an input vector and its associated output vector.
The MLP acquires the ability to correlate input vectors with output vectors by modifying
its internal weights and biases. It can effectively handle high-dimensional input data, such
as vibration or current signals, and extract relevant features for fault classification [120].
The application of MLP for bearing fault detection in induction motors has been carefully
examined in the literature. Sadeghi in [121] proposed a multistream convolutional neural
network that integrated data from motor vibration and stator current signals, exhibiting
enhanced performance compared to traditional ML techniques. More in depth, Grezmak
in [122] presented an exhaustive overview of the use of deep learning techniques, includ-
ing multi-layer perceptrons, for the detection of electrical motor defects, highlighting the
current state of the art and the prospects for further developments in this domain. In bear-
ing defect detection, the multi-layer perceptron can extract pertinent information from
motor vibration or current signals and subsequently categorize the fault. In contrast to
conventional ML methods, an MLP can autonomously acquire the best features for fault
classification, eliminating the need for manual feature engineering.Figure 6 presents a
schematic illustration of a simple MLP network
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Figure 6. Architecture of a MLP network. The network consists of an input layer, two hidden layers,
and an output layer.

Researchers have investigated several ways to improve the classification performance
of MLP [123,124]. That includes integrating specialized network topologies that utilize the
spatial and temporal correlations present in the input data.

5.3. Decision Trees (DTs)

A decision tree is a traditional ML model that is derived inductively from a set of
samples. In the tree, each node represents an attribute (or characteristic), while the edges
denote values (or ranges of values) linked to that property as illustrated in Figure 7 [125].
The appearance of an attribute in a tree indicates the relevance of the associated at-
tribute [126,127]. Several DT algorithms have been developed, including Conditional
Inference Trees [100,128], Chi-squared Automatic Interaction Detection (CHAID) [129],
C4.5 [130], as well as classification and regression trees (CARTs) [131].

Figure 7. Workflow of the DT Algorithm.

5.4. Random Forest

In the field of IM failure identification, the Random Forest Algorithm (RFA) is a pow-
erful technique that has attracted a lot of interest. To detect and diagnose mechanical
problems in rotating equipment, such as increased mass unbalance, raceway faults in
rolling element bearings, and variations in stiffness and damping, this program employs a
model-based approach [86]. The technique has been thoroughly examined and evaluated
using computer simulations, demonstrating that it is a successful real-time implementation;
see Figure 8 for the Random Forest workflow. Numerous industrial applications, espe-
cially those that involve weapons and equipment that must withstand high temperatures,
high speeds, and large loads, frequently experience bearing problems. Researchers have
developed several data-driven strategies, such as ML techniques, to solve this problem [2].



Sensors 2025, 25, 5942 19 of 36

Figure 8. Workflow of the Random Forest Algorithm.

As shown in [132,133], RF has been used to address various IM failure conditions.
Furthermore, a thorough analysis of the state of the art in deep learning-based IM fault
diagnostics is provided in the survey work by [134], which also highlights the advantages
and disadvantages of various algorithms.

5.5. Emerging Trends and Future Possibilities

Over the past decades, IMs fault diagnosis has evolved from traditional signal pro-
cessing methods toward sophisticated data-driven and hybrid techniques. With increasing
industrial demands for reliability, energy efficiency, and predictive maintenance, several
emerging trends are shaping the future of IM condition monitoring and diagnostics:

5.5.1. Convolutional Neural Networks (CNNs)

CNNs represent a class of deep learning models that are particularly effective in
image recognition and spatial data analysis. The foundational concept can be traced back
to the work of Fukushima [135], who proposed an early hierarchical model capable of
recognition of shift-invariant patterns. This idea was extended and applied effectively
by LeCun [136], who introduced the LeNet architecture and demonstrated its success
in handwritten digit recognition tasks. The popularity of CNNs increased significantly
with the introduction of AlexNet by [137], which achieved outstanding performance in
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). This breakthrough
marked the beginning of wide adoption of CNNs for computer vision tasks. Subsequent
architectures, such as VGGNet [138], further extended network depth and influenced many
modern CNN designs.

Deep learning-based methods have shown promising results in the diagnosis of IM
faults, as they can effectively extract features from raw sensor data without requiring exten-
sive feature engineering [2]. CNNs have shown their ability to extract relevant features from
vibration, current, or acoustic emissions data, making them an appropriate choice for IM fault
detection [139]. These deep learning models (DLMs) can learn classified representations of
input data, catching both local and global patterns that are indicative of fault detection [140].
Unlike traditional approaches that rely on handcrafted feature extraction and require substan-
tial expertise in data analysis and signal processing. CNNs can directly process time-series
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or two-dimensional signal representations such as spectrograms, thereby reducing reliance
on domain-specific signal processing [141]. One major advantage of CNN-based diagnosis is
their high classification accuracy, even under noisy or variable operating conditions. Several
studies have demonstrated that CNNs outperform traditional ML methods when dealing
with complex, nonlinear patterns in motor fault data [140]. CNNs are also scalable, enabling
the same architecture to be applied across different machine sizes and fault categories with
minimal redesign, which underscores their reliability and practicality for industrial appli-
cations [142,143]. Furthermore, CNN architectures allow for real-time deployment due to
their efficient inference capabilities when implemented on modern GPUs or edge devices.
This computational efficiency, combined with their robustness and precision, makes CNNs
particularly suitable for PM frameworks where early detection of motor faults is critical for
minimizing downtime and operational costs [144].

To illustrate this process, in Figure 9, we have a schematic representation of a CNN
architecture. The network begins with an input image, followed by multiple convolutional
and pooling layers for feature extraction. The feature maps are then flattened and passed
through fully connected layers with dropout regularization to prevent overfitting. The final
output layer uses a softmax activation function for classification.

However, these conventional approaches often struggle to extract meaningful features
from raw data effectively [145,146]. To address these limitations, other DLMs have emerged
as a powerful alternative, offering superior feature extraction capabilities compared to
traditional ML algorithms [147].

Figure 9. A schematic representation of a CNN architecture [148].

5.5.2. Recurrent Neural Networks (RNNs)

RNNs represent a class of DLM architectures capable of handling sequential data of
arbitrary length and have been effectively applied to a wide range of end-to-end learning
tasks. Time-series modeling using RNNs and their variants has attracted increasing interest,
as the sequential and temporal characteristics of motor signals can be effectively used for
condition monitoring and fault diagnosis [149]. Standard RNNs suffer from vanishing and
exploding gradient problems, which limit their ability to capture long-term dependencies.
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To address this limitation, Hochreiter and Schmidhuber introduced the Long Short-Term
Memory (LSTM) network, which uses gated mechanisms (input, forget, and output gates)
to regulate information flow and preserve relevant context over longer sequences [150].
LSTM have proven advantageous in handling motor signals due to their ability to mitigate
vanishing gradient issues and capture both short- and long-term dependencies in sequential
data [151]. This makes it particularly suitable for analyzing the complex, non-stationary
time-series patterns of vibration, current, and acoustic signals generated by induction
motors. Their architecture includes recurrent connections, allowing information from
earlier time steps to influence later outputs.

In the context of IM fault diagnosis, LSTMs exhibit strong capabilities for modeling
temporal dependencies in sensor signals, which often carry fault information over ex-
tended time horizons. By leveraging their gating mechanisms, LSTMs effectively retain
fault signatures while filtering out noise and irrelevant fluctuations [152]. Compared to
traditional ML and statistical methods, LSTMs require less manual feature engineering,
as they directly learn representations from raw or minimally preprocessed signals [153].
They also demonstrate robustness under varying load and speed conditions, enhancing
generalization to different operational scenarios [154]. Empirical studies show that LSTMs
outperform conventional classifiers and even shallow neural networks for incipient fault
detection, making them a strong candidate for PM [155].

Despite their advantages, LSTMs face certain limitations in industrial fault diagnosis.
First, they are computationally more expensive than classical models, especially for long
sequences. Training LSTMs requires careful hyperparameter tuning (e.g., number of units,
dropout rates) to avoid overfitting when fault datasets are small. Additionally, while they
capture temporal relationships, they may fail to exploit global contextual information as
efficiently as attention-based models such as Transformers. Another challenge is their
comparative “black-box” nature, which limits interpretability and may hinder industrial
acceptance in safety-critical applications.

Several strategies have been proposed to mitigate these issues. Data augmenta-
tion and transfer learning improve LSTM performance in scenarios with limited training
samples [146]. Hybrid approaches, where LSTMs are combined with CNNs, are increas-
ingly adopted for IM fault diagnosis, as CNNs capture local spatial features while LSTMs
model temporal dependencies [149]. More recently, attention-augmented LSTM architec-
tures have been investigated to enhance global feature capture and interpretability, bridging
part of the performance gap with Transformer models. Thus, while some limitations re-
main, LSTMs continue to offer a balanced and practical approach to fault diagnosis in
induction motors.

5.5.3. Transformer Architectures

Transformer architectures, originally introduced for natural language processing
by [156], rely on self-attention mechanisms that capture long-range dependencies in se-
quential data without the recurrence operations used in traditional RNNs. Their ability to
model contextual relationships efficiently has led to rapid adoption in computer vision,
signal processing, and time-series analysis. Recently, variants such as Vision Transformers
(ViT) [157] and Time-Series Transformers [158] have been applied to industrial monitoring
tasks, including condition-based maintenance and machinery fault diagnosis. When ap-
plied to induction motors, Transformers use their attention layers to extract fault-relevant
patterns from vibration, current, or acoustic signals, effectively handling both temporal
and spectral representations.

Transformers offer several advantages for IM fault diagnosis compared to CNNs or
RNN-based architectures. First, the self-attention mechanism enables a global view of
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the input, making it particularly effective for identifying subtle degradation patterns
spread across long sequences [159]. Second, their flexibility allows seamless integra-
tion of multimodal inputs, such as combining current and vibration signals in a unified
representation [160]. Moreover, Transformer-based models can adapt to variable operat-
ing conditions by dynamically weighting the contribution of different time points, which
supports robust performance for real-world industrial scenarios. Empirical studies have
shown that Transformer variants outperform or complement CNNs and LSTMs in PM
settings, offering higher diagnostic accuracy and generalization capability.

Despite these advantages, some limitations to this approach have been identified.
Transformers typically require large training datasets, which may not always be available
in industrial settings where fault samples are scarce. They also tend to be computationally
intensive, raising concerns about real-time deployment on embedded systems without
hardware acceleration. Additionally, while attention mechanisms provide some inter-
pretability, the decision-making process of Transformers is still less transparent compared
to traditional physics-informed or hybrid approaches.

To mitigate these limitations, researchers have proposed lightweight Transformer
variants that reduce computational cost through efficient attention approximations [161].
Transfer learning and data augmentation have also been used to address the issue of
limited fault data [1,162]. In practice, a hybrid approach, combining CNNs for local feature
extraction and Transformers for capturing long-range dependencies, has shown promise
in balancing accuracy, interpretability, and efficiency [163]. Such strategies suggest that
while Transformers alone present challenges, their integration with other methods can
yield robust solutions for induction motor fault diagnosis.

5.5.4. IoT, Edge Computing, and Cloud-Based Data Platforms

The proliferation of the Industrial Internet of Things (IoT) has enabled continuous
monitoring of induction motors through distributed networks of sensors that collect vibration,
current, temperature, and acoustic data in real time [164]. These data streams can then be
transmitted for processing either at the edge, closer to the source, or in centralized cloud
platforms. Edge computing refers to data processing performed locally on embedded devices
or edge servers in proximity to the motor, reducing latency and bandwidth requirements [165].
Alternatively, cloud platforms provide scalable storage and computational infrastructures
suited for advanced analytics and training of ML models across large datasets [166]. Together,
IoT-enabled data acquisition, edge computing, and cloud integration provide the backbone of
modern fault-diagnosis architectures for industrial systems.

The combined use of IoT, edge, and cloud platforms offers significant advantages in
IM fault diagnosis. IoT-based sensing provides high-resolution, continuous monitoring ca-
pabilities across large fleets of motors, improving fault detection coverage. Edge computing
enables real-time decision-making, allowing early response to critical events by avoiding
delays due to network congestion or cloud communication [167]. Cloud computing com-
plements this strategy by offering virtually unlimited computational resources for model
training, historical trend analysis, and large-scale fleet management, thereby enhancing
scalability and knowledge sharing across industrial sites [168]. This hybrid architecture
balances low-latency processing at the edge with data-intensive model optimization in the
cloud, ensuring both operational reliability and long-term predictive intelligence.

Despite their promise, challenges remain in deploying these technologies. IoT-based
monitoring introduces cybersecurity and privacy concerns, as sensitive operational data
must be transmitted across networks [169]. Edge devices, while offering reduced latency, are
typically resource-constrained, limiting their ability to host complex deep learning models.
Meanwhile, cloud solutions may suffer from connectivity issues and increase dependency
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on reliable high-bandwidth internet. Furthermore, integration of heterogeneous sensors
and interoperability across platforms can be difficult in legacy industrial settings. Recent
research and practice propose several strategies to overcome these barriers. Lightweight
deep learning models have been adapted for deployment on edge devices, allowing efficient
local inference while offloading more complex training tasks to the cloud [170]. Federated
learning has emerged as a privacy-preserving alternative, enabling collaborative training
across distributed IoT nodes without raw data sharing [171]. Edge–cloud collaborative
frameworks, where preprocessing is done at the edge and advanced analytics at the cloud,
are increasingly adopted for fault diagnosis in IMs. Ultimately, the integration of IoT, edge,
and cloud platforms offers a flexible and practical infrastructure, supporting real-time
monitoring while leveraging big data analytics for predictive maintenance.

6. Comparative Advantages of CM Approaches
Following a comprehensive review of various methods used to classify faults in

IMs, this discussion section highlights the key challenges (High-dimensional, Imbalanced
Data, Nonlinearity, Noise, and Overfitting) associated with fault detection and how each
approach addresses them. Figure 10 is schematic representation showing how each of the
reviewed methods addresses the challenges associated with data-driven IMs diagnosis,
while highlighting both their respective advantages and inherent limitations.

The ML and DLM gain insights into the underlying patterns or structures that encode
information within raw data. These representations, often referred to as structural descrip-
tions or models, serve as frameworks for capturing and organizing the extracted knowledge.
Once trained, such models can be used to make predictions on previously unseen data.
Structural descriptions can vary in form and complexity, including representations such as
decision trees where data are split based on feature-based rules and neural network weights,
which define the learned parameters across layers [172]. In our review, we specifically
categorized and analyzed models employing these two types of representations: decision
trees (e.g., RF) and neural network weights (e.g., MLPs and CNNs), highlighting their
relevance in induction motor fault detection systems. Each method offers unique strengths
and limitations, making their selection dependent on the specific challenges of the fault
classification task.
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Figure 10. Challenges and efficient methods for induction motor fault detection: A post-review synthesis.

Table 4 presents various studies on ML- and DLM-based IM diagnosis, organized
chronologically from earlier, simpler models to more recent and complex approaches. Each
study outlines the complete diagnostic pipeline, revealing the diversity of methodolo-
gies employed. While earlier methods generally exhibit lower accuracy, more advanced
approaches demonstrate improved performance, though they often demand greater com-
putational resources.

Table 4. A summary of deep learning approaches for fault diagnosis.

Reference Type of Data Used Signal Processing Model Application Performance Metrics

RF

Abdulkareem et al.
(2025) [173]

Vibration
and Temperature

Imputation, Z-score,
FT Features,
Min–Max Normalization

Bearing fault
and Load imbalance

Among all models, Random
Forest delivered the strongest
results, attaining an accuracy
of 91%.

Patel et al.
(2016) [174] Vibration Signal Statistical Features Bearing fault detection

A further analysis with the four
most important features led to
100% prediction success.
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Table 4. Cont.

Reference Type of Data Used Signal Processing Model Application Performance Metrics

Pohakar (2025) [175] Torque, Speed,
Currents, Power

Imputation, Z-score/IQR,
Min-Max Normalization,
PCA, and FT Features

7 Universal Categories
of IM faults

The RF model reached 93.1%
accuracy, highlighting its
dependable and steady
performance in motor fault
detection across categories.

MLP

Ghate (2010) [123] Stator Current
Statistical Parameters are
used as input feature space
and PCA

Stator winding
inter-turn short
and rotor
dynamic eccentricity

The reduced MLP NN achieved
low MSE (0.046 test, 0.030 CV)
with high accuracy (98.25% test,
96.22% CV) for fault diagnosis.

Jin (2025) [176]
Operational Data
(Vibration,
Temperature, Speed)

Continuous Wavelet
Transform (CWT)
features integrated with
a dynamic multi-head
attention mechanism

RUL prediction and
anomaly detection

The proposed approach enhances
the accuracy and reliability of
RUL predictions, supporting more
effective predictive maintenance
in industrial settings.

Santos (2021) [177] Acoustic Signals MFCCs; Noise reduction Incipient
fault classification

Experiments with varying loads
and voltage unbalance, typical of
industrial settings, achieved over
97% accuracy

Convolutional Neural Networks (CNNs)

Nazemi(2024) [178] Three-phase
Stator Currents

A current to image
transformation mechanism Stator inter-turn faults

The proposed CNN effectively
detects SITFs with superior
accuracy and online potential.

Abdelmaksoud
(2023) [179]

Image Data (Voltages,
Currents, Torque,
and Speed)

d-q Lissajous imaging with
single multi-channel inputs

Locked-rotor, overload,
voltage unbalance,
overvoltage,
and undervoltage

Strong cross-machine
generalization; open-set and
source-free adaptation.

Lee(2019) [180] Vibration Signal Raw data Rotor fault and
bearing fault

Accuracies of 98% for normal
operation, 98% for rotor faults,
and 100% for bearing faults in IM.

Transformer Models

Chen (2023) [181] Stator Current

Current signals into
time-domain images using
the Instantaneous Square
Current Value (ISCV)

Bearing fault

Average diagnostic accuracies of
96.60% (PU dataset) and 94.87%
(SZTU dataset) using the
ISCV-ViT model.

Ali (2025) [182] Multivariate Time-series

Combining Transformer
feature extraction with
DNN classification for
fault detection

Binary and multi-class
detection of IMs
faults (mechanical
and electrical)

Binary accuracies of 99.97%
(TMFD) and 98.26% (MFD),
for multi-class 99.97% (TMFD)
and 98.39% (MFD).

Choi (2025) [183]

Multidimensional
Power Quality Data
(Voltage, Current,
and Harmonics)

Multi-scale feature
analysis, frequency
gating, and
SHAP-based interpretation.

IM’s shaft unbalance,
bearing and stator
winding faults

Achieved 99.9% accuracy with
0.1% false alarm rate and 0.2%
missed detection rate

RNNs

Vos (2022) [184] Vibration Signals
A two-step LSTM
configuration and
statistical feature

Bearing
anomaly detection

LSTM2-OCSVM architecture
improved sensitivity to bearing.

Ahsan (2025) [185]
Vibration Signals under
three load conditions
(100 W, 200 W, 300 W)

1D vibration signals were
transformed into 2D
time–frequency images
using CWT

Different bearing fault

Achieved 100% training accuracy
and validation accuracies of
96.43% (100 W), 97.47% (200 W),
and 95.06% (300 W),

Overcoming data-driven challenges in ML, especially in applications like condition
monitoring (CM), requires a combination of strategies. Model like RBF networks handle
high-dimensional data effectively but require careful tuning of radial basis functions [186].
While RBF networks excel at modeling complex, nonlinear relationships, their performance
can degrade with imbalanced datasets unless class weighting with the snowball method
proposed [187] and the multi-font character recognition to improve the accuracy of the
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minor class [188]. Overfitting is also common if too many basis functions are used, ne-
cessitating the use of regularization methods, such as Least Squares Regulization (Ridge
Regression) ensures numerical stability and smoother decision boundaries [189]. Another
promising solution the MLP networks can manage high-dimensional data but require
careful architecture tuning and regularization in to overcome this difficulty. In [190], a high-
dimensional time-series classification model (HDTSCM) based on an MLP and moving
average mode is used. MLPs excel at capturing complex, nonlinear relationships but re-
quire adjustments to their loss functions (e.g., focal loss, weighted loss) to address class
imbalance and are prone to overfitting without techniques such as dropout or batch nor-
malization [191–193]. DT handles high-dimensional data but can become overly complex
and overfit, requiring pruning to improve generalization [194]. They are biased toward
the majority class and need resampling techniques to address class imbalance [195]. Al-
though decision trees can capture some nonlinearity, they are highly sensitive to noise [196].
RD improve upon decision trees by handling high-dimensional data more effectively and
using feature importance to reduce dimensionality [197]. RFs are less prone to overfitting
due to bagging and can capture complex relationships, although they may still require
resampling techniques or balanced Random Forests to address class imbalance [198]. So far,
advance and novel DLM strategies (CNN, RNN, Transformer architectures) offer the best
solution for addressing the cited challenge. It excels at handling large feature maps from
images or spectrograms, time-series analysis and can effectively model complex, nonlinear
patterns [199]. Data augmentation techniques help mitigate class imbalance, while dropout
improves generalization [200,201].

A closer examination of Table 4 highlights the importance of each step in the CM
process for addressing data-driven challenges and building effective models. As discussed,
the process begins with data collection, where different data types have shown varying
effectiveness depending on the fault type in IMs. Using multimodal data can further
improve performance and enhance the generalization of CM systems, making them less
specialized in detecting only a single fault type. The next stage involves data cleaning and
signal processing, where diverse techniques have been employed; recent trends indicate
a reduction in preprocessing steps, making intelligent systems more practical for indus-
trial deployment with minimal resource usage. For fault classification, two categories of
approaches emerge: earlier methods relying on explicit feature extraction, which perform
well in specific cases and remain attractive for embedded systems with limited resources;
and more advanced methods, including CNNs, RNNs, and Transformers, which require
greater computational power but can automatically extract features from raw data, making
them well-suited for cloud- and IoT-based CM implementations.

7. Conclusions
This paper highlighted the general process of a fault detection system for IMs and

provided an insightful review of several steps and approaches that can be used to design
an efficient diagnosis system for IMs.

Each approach is evaluated by highlighting its weaknesses and strengths in solving
data classification problems. In this study, we reviewed the common faults that affect
the proper operating conditions of IMs and examined how each fault typically manifests.
In other words, we defined the concept of fault signatures and discussed how understand-
ing these signatures can support the development of an effective and reliable CM system.
Subsequently, we outlined the various strategies used to obtain or generate data for condi-
tion monitoring. These strategies can be broadly categorized into two main approaches: the
first involves collecting real-world data from physical systems, while the second relies on
generating synthetic data through modeling and simulation techniques. Several parameters
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can be used to characterize faults in IMs, and these parameters may originate from various
domains such as electrical, mechanical, thermal, and others. Although recent trends in
CM increasingly aim to eliminate the need for manual signal preprocessing by leveraging
deep learning techniques, signal processing remains a crucial step in many applications.
Traditional methods such as the FFT and its variants are still widely employed in recent
studies. Additionally, techniques like WT and HT continue to play a significant role in
feature extraction and noise reduction. Recently, ML and DLM techniques have emerged
as powerful tools for identifying fault patterns and signatures, as they exploit the statistical
characteristics of the available data. Various ML and DLM strategies have been used for
final CM process step which the data calssification. In our review, we focused primarily
on supervised learning techniques, selecting two main branches: ANNs and ensemble
methods based on decision trees. The existing categorization in data-driven engineering,
which divides intelligent systems into ML- and DL-based approaches, remains valid when
applied to IM CM. ML methods such as SVM, DT, RF, and MLP perform effectively for
detecting pronounced faults but struggle with early-stage faults; nevertheless, they re-
quire relatively fewer computational resources. In contrast, deep learning models (CNNs,
RNNs, and Transformers) simplify the CM process by reducing the need for extensive
preprocessing, though they demand higher computational power. In summary, traditional
ML methods are well-suited for environments that do not require very high accuracy
and for embedded systems with limited resources, whereas advanced DL approaches are
recommended for sensitive industrial applications, such as nuclear installations, where
downtime could result in severe consequences.
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ANN Artificial Neural Network
CA Convolutional Autoencoders
CART Classification and Regression Trees
CBM Condition-Based Monitoring
CHAID Chi-squared Automatic Interaction Detection
CM Conditional Monitoring
CNN Convolutional Neural Network
DL Deep Learning
DSSMs Dynamic Symbolic State Machines
DT Decision Tree
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
EPRI Electric Power Research Institute
FD Fault Detection
FEA Finite Element Analysis
FFT Fast Fourier Transform
HDTSCM High-Dimensional Time-Series Classification Model
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HT Helbert Transform
KNN k-Nearest Neighbor
MEMS Micro-Electro-Mechanical System
MFD Motor Fault Diagnosis dataset
MCSA Motor Current Signature Analysis
MMF Magnetomotive Force
TMFD Turning Machine Fault Detection dataset
ML Machine Learning
MLP Multi-Layer Perceptron
NN Nearest Neighbour
LSTM Long Short-Term Memory
IMs Induction Motors
TLA Three Letter Acronym
RF Random Forest
RBF Radial Basic Function
RNNs Recurrent Neural Networks
SMOTE Synthetic Minority Over-sampling Technique
SP Signal Processing
SVMs Support Vector Machines
SZTU dataset Shenzhen Technology University bearing fault dataset
OCSVM One-Class Support Vector Machine
PCA Principal Component Analysis
PEEC Partial Element Equivalent Circuit
PM Predictive Maintenance
PU dataset Paderborn University bearing fault dataset
UAs Unsupervised Autoencoders
VA Vibration Analysis
VMM Vibration Measurement Method
WT Wavelet Transform
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