Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,571)

Search Parameters:
Keywords = farm sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3000 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

48 pages, 3035 KiB  
Review
A Review of Indian-Based Drones in the Agriculture Sector: Issues, Challenges, and Solutions
by Ranjit Singh and Saurabh Singh
Sensors 2025, 25(15), 4876; https://doi.org/10.3390/s25154876 (registering DOI) - 7 Aug 2025
Abstract
In the current era, Indian agriculture faces a significant demand for increased food production, which has led to the integration of advanced technologies to enhance efficiency and productivity. Drones have emerged as transformative tools for enhancing precision agriculture, reducing costs, and improving sustainability. [...] Read more.
In the current era, Indian agriculture faces a significant demand for increased food production, which has led to the integration of advanced technologies to enhance efficiency and productivity. Drones have emerged as transformative tools for enhancing precision agriculture, reducing costs, and improving sustainability. This study provides a comprehensive review of drone adoption in Indian agriculture by examining its effects on precision farming, crop monitoring, and pesticide application. This research evaluates technological advancements, regulatory frameworks, infrastructure, farmers’ perceptions, and the financial accessibility of drone technology in the Indian agricultural context. Key findings indicate that, while drone adoption enhances efficiency and sustainability, challenges such as high costs, lack of training, and regulatory barriers hinder widespread implementation. This paper also explores the growing market for agricultural drones in India, highlighting key industry players and projected market growth. Furthermore, it addresses regional differences in adoption rates and emphasizes the increasing social acceptance of drones among Indian farmers. To bridge the gap between potential and practice, the study proposes several policy and institutional recommendations, including government-led financial incentives, training programs, and public–private partnerships to facilitate drone integration. Moreover, this review article also highlights technological advancements, such as AI and IoT, in agriculture. Finally, open issues and future research directions for drones are discussed. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

17 pages, 4991 KiB  
Article
Understory Plant Diversity in Cunninghamia lanceolata (Lamb.) Hook. Plantations Under Different Mixed Planting Patterns
by Minsi Wang, Hongting Guo and Jiang Jiang
Forests 2025, 16(8), 1290; https://doi.org/10.3390/f16081290 (registering DOI) - 7 Aug 2025
Abstract
The composition and structure of understory plants are crucial for forest ecosystem succession and stability. This study examined the impact of various Cunninghamia lanceolata mixed plantation patterns on understory biodiversity, aiming to provide a theoretical foundation for sustainable management. Six patterns were evaluated [...] Read more.
The composition and structure of understory plants are crucial for forest ecosystem succession and stability. This study examined the impact of various Cunninghamia lanceolata mixed plantation patterns on understory biodiversity, aiming to provide a theoretical foundation for sustainable management. Six patterns were evaluated using sample plots at Guanshan Forest Farm in Jiangxi Province, China. Understory vegetation diversity, biomass, and soil properties—including total nitrogen, available nitrogen, total phosphorus, available phosphorus, total potassium, available potassium, soil organic matter, and pH—were quantitatively analyzed. Significant differences in diversity among the patterns were revealed. The ‘Cunninghamia lanceolata + Phoebe bournei (Hemsl.) Yen C. Yang + Schima superba Gardner & Champ’ mixed plantation exhibited the most pronounced enhancement of understory plant diversity, whereas the ‘C. lanceolata + Liquidambar formosana Hance’ pattern demonstrated the least significant effects among all treatments. Significant correlations were detected between soil nutrients and diversity indices. Mixed patterns enhance diversity through expanded ecological niches and optimized microenvironments, thereby strengthening ecological functions and management efficiency. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

27 pages, 1523 KiB  
Article
Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability
by Zhaoan Wang, Shaoping Xiao, Jun Wang, Ashwin Parab and Shivam Patel
AgriEngineering 2025, 7(8), 252; https://doi.org/10.3390/agriengineering7080252 - 7 Aug 2025
Abstract
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance [...] Read more.
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance crop productivity with environmental impact, particularly N2O emissions. By modeling agricultural decision-making as a partially observable Markov decision process (POMDP), the framework accounts for uncertainties in environmental conditions and observational data. The approach integrates deep Q-learning with recurrent neural networks (RNNs) to train adaptive agents within a simulated farming environment. A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions, achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95% confidence interval on the available dataset. While the PDL model’s generalizability is currently constrained by the limited observational data, the RL framework itself is designed for broad applicability, capable of extending to diverse agricultural practices and environmental conditions. Results demonstrate that RL agents reduce N2O emissions without compromising yields, even under climatic variability. The framework’s flexibility allows for future integration of expanded datasets or alternative emission models, ensuring scalability as more field data becomes available. This work highlights the potential of artificial intelligence to advance climate-smart agriculture by simultaneously addressing productivity and sustainability goals in dynamic real-world settings. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

14 pages, 646 KiB  
Review
The Role of Sensor Technologies in Estrus Detection in Beef Cattle: A Review of Current Applications
by Inga Merkelytė, Artūras Šiukščius and Rasa Nainienė
Animals 2025, 15(15), 2313; https://doi.org/10.3390/ani15152313 - 7 Aug 2025
Abstract
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each [...] Read more.
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each cow produces one calf per year, maintaining a calving interval of 365 days. However, this goal is difficult to achieve, as the gestation period in beef cows lasts approximately 280 days, leaving only 80–85 days for successful conception. Traditional methods, such as visual estrus detection, are becoming increasingly unreliable due to expanding herd sizes and the subjectivity of visual observation. Additionally, silent estrus—where ovulation occurs without noticeable behavioral changes—further complicates the accurate estrous-based identification of the optimal insemination period. To enhance reproductive efficiency, advanced technologies are increasingly being integrated into cattle management. Sensor-based monitoring systems, including accelerometers, pedometers, and ruminoreticular boluses, enable the precise tracking of activity changes associated with the estrous cycle. Furthermore, infrared thermography offers a non-invasive method for detecting body temperature fluctuations, allowing for more accurate estrus identification and optimized timing of insemination. The use of these innovative technologies has the potential to significantly improve reproductive efficiency in beef cattle herds and contribute to overall farm productivity and sustainability. The objective of this review is to examine advancements in smart technologies applied to beef cattle reproductive management, presenting commercially available technologies and recent scientific studies on innovative systems. The focus is on sensor-based monitoring systems and infrared thermography for optimizing reproduction. Additionally, the challenges associated with these technologies and their potential to enhance reproductive efficiency and sustainability in the beef cattle industry are discussed. Despite the benefits of advanced technologies, their implementation in cattle farms is hindered by financial and technical challenges. High initial investment costs and the complexity of data analysis may limit their adoption, particularly in small and medium-sized farms. However, the continuous development of these technologies and their adaptation to farmers’ needs may significantly contribute to more efficient and sustainable reproductive management in beef cattle production. Full article
(This article belongs to the Special Issue Reproductive Management Strategies for Dairy and Beef Cows)
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion
by Xiaoyan Chen, Yuntong Lu, Xing Liu, Yunying Gu and Fei Li
Microorganisms 2025, 13(8), 1840; https://doi.org/10.3390/microorganisms13081840 - 7 Aug 2025
Abstract
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various [...] Read more.
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various enzymes, secondary metabolites, and volatile organic compounds, Trichoderma effectively suppresses plant pathogens, promotes root development, and primes plant immune responses. This review details the evolutionary adaptations of Trichoderma, which has transitioned from saprotrophism to mycoparasitism and established beneficial symbiotic relationships with plants. It also highlights the ecological versatility of Trichoderma in colonizing plant roots and improving soil health, while emphasizing its role in mitigating both biotic and abiotic stressors. With increasing recognition as a biostimulant and biocontrol agent, Trichoderma has become a key player in reducing chemical inputs and advancing eco-friendly farming practices. This review addresses challenges such as strain selection, formulation stability, and regulatory hurdles and concludes by advocating for continued research to optimize Trichoderma’s applications in addressing climate change, enhancing food security, and promoting a sustainable agricultural future. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

23 pages, 2767 KiB  
Article
Sustainable Cotton Production in Sicily: Yield Optimization Through Varietal Selection, Mycorrhizae, and Efficient Water Management
by Giuseppe Salvatore Vitale, Nicolò Iacuzzi, Noemi Tortorici, Giuseppe Indovino, Loris Franco, Carmelo Mosca, Antonio Giovino, Aurelio Scavo, Sara Lombardo, Teresa Tuttolomondo and Paolo Guarnaccia
Agronomy 2025, 15(8), 1892; https://doi.org/10.3390/agronomy15081892 - 6 Aug 2025
Abstract
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown [...] Read more.
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown Mediterranean cultivars (Armonia and ST-318) under three irrigation levels (I-100: 100% crop water requirement; I-70: 70%; I-30: 30%) across two Sicilian soil types (sandy loam vs. clay-rich). Under I-100, lint yields reached 0.99 t ha−1, while severe deficit (I-30) yielded only 0.40 t ha−1. However, moderate deficit (I-70) maintained 75–79% of full yields, proving a viable strategy. AMF inoculation significantly enhanced plant height (68.52 cm vs. 65.85 cm), boll number (+22.1%), and seed yield (+12.5%) (p < 0.001). Cultivar responses differed: Armonia performed better under water stress, while ST-318 thrived with full irrigation. Site 1, with higher organic matter, required 31–38% less water and achieved superior irrigation water productivity (1.43 kg m−3). Water stress also shortened phenological stages, allowing earlier harvests—important for avoiding autumn rains. These results highlight the potential of combining adaptive irrigation, resilient cultivars, and AMF to restore sustainable cotton production in the Mediterranean, emphasizing the importance of soil-specific management. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

11 pages, 1359 KiB  
Communication
Temporal Distribution of Milking Events in a Dairy Herd with an Automatic Milking System
by Vanessa Lambrecht Szambelan, Marcos Busanello, Mariani Schmalz Lindorfer, Rômulo Batista Rodrigues and Juliana Sarubbi
Animals 2025, 15(15), 2293; https://doi.org/10.3390/ani15152293 - 6 Aug 2025
Abstract
This study aimed to evaluate daily patterns of hourly milking frequency (MF) in dairy cows milked with an automatic milking system (AMSs), considering the effects of season, parity order (PO), days in milk (DIM), and milk yield (MY). A retrospective longitudinal study was [...] Read more.
This study aimed to evaluate daily patterns of hourly milking frequency (MF) in dairy cows milked with an automatic milking system (AMSs), considering the effects of season, parity order (PO), days in milk (DIM), and milk yield (MY). A retrospective longitudinal study was conducted on a commercial dairy farm in southern Brazil over one year using data from 130 Holstein cows and 94,611 milking events. MF data were analyzed using general linear models. Overall, hourly MF followed a consistent daily pattern, with peaks between 4:00 and 11:00 a.m. and between 2:00 and 6:00 p.m., regardless of season, PO, DIM, or MY category. MF was higher in primiparous (2.84/day, p = 0.0013), early-lactation (<106 DIM; 3.00/day, p < 0.0001), and high-yielding cows (≥45 L/day; 3.09/day, p < 0.0001). High-yielding cows also showed sustained milking activity into the late nighttime. Although seasonal and individual factors significantly affected MF, they had limited influence on the overall daily distribution of milkings. These results suggest stable behavioral patterns within the specific AMS management conditions observed in this study and suggest that adjusting milking permissions and feeding strategies based on cow characteristics may improve system efficiency. Full article
(This article belongs to the Special Issue Sustainability of Local Dairy Farming Systems)
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

43 pages, 1183 KiB  
Review
Harnessing Legume Productivity in Tropical Farming Systems by Addressing Challenges Posed by Legume Diseases
by Catherine Hazel Aguilar, David Pires, Cris Cortaga, Reynaldo Peja, Maria Angela Cruz, Joanne Langres, Mark Christian Felipe Redillas, Leny Galvez and Mark Angelo Balendres
Nitrogen 2025, 6(3), 65; https://doi.org/10.3390/nitrogen6030065 - 5 Aug 2025
Abstract
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical [...] Read more.
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical environments pose unique challenges, including high temperatures, erratic rainfall, soil infertility, and a high incidence of pests and diseases. Indeed, legumes are vulnerable to infections caused by bacteria, fungi, oomycetes, viruses, and nematodes. This review highlights the importance of legumes in tropical farming and discusses major diseases affecting productivity and their impact on the economy, environment, and lives of smallholder legume farmers. We emphasize the use of legume genetic resources and breeding, and biotechnology innovations to foster resistance and address the challenges posed by pathogens in legumes. However, an integrated approach that includes other cultivation techniques (e.g., crop rotation, rational fertilization, deep plowing) remains important for the prevention and control of diseases in legume crops. Finally, we highlight the contributions of plant genetic resources to smallholder resilience and food security. Full article
Show Figures

Figure 1

13 pages, 223 KiB  
Article
Preliminary Research on the Efficacy of Selected Herbicides Approved for Use in Sustainable Agriculture Using Spring Cereals as an Example
by Piotr Szulc, Justyna Bauza-Kaszewska, Marek Selwet and Katarzyna Ambroży-Deręgowska
Sustainability 2025, 17(15), 7090; https://doi.org/10.3390/su17157090 - 5 Aug 2025
Abstract
The objective of this study was to evaluate the efficacy of selected herbicides permitted for use in sustainable agriculture, specifically targeting spring rye and spring barley in a no-till farming system. The application of chemical herbicide protection in the cultivation of spring rye [...] Read more.
The objective of this study was to evaluate the efficacy of selected herbicides permitted for use in sustainable agriculture, specifically targeting spring rye and spring barley in a no-till farming system. The application of chemical herbicide protection in the cultivation of spring rye and barley significantly increased the yield and improved the quality parameters of the harvested grain, with the most pronounced effect observed in spring barley. The effectiveness of the herbicide treatment in reducing the number of weeds was 99.4% for spring rye and 82.39% for spring barley. The study demonstrated that the application of chemical herbicide protection had a positive impact on the quality parameters of spring barley grain. Both the thousand-grain weight and protein content were significantly higher in the grain collected from protected plots compared to the control plots. By utilizing herbicides permitted for use in integrated production (IP) in a sustainable manner, we protect the environment while minimizing the impact on crop yields and maintaining the quality of the harvested produce. Full article
20 pages, 9066 KiB  
Article
Dynamic Modeling of Poultry Litter Composting in High Mountain Climates Using System Identification Techniques
by Alvaro A. Patiño-Forero, Fabian Salazar-Caceres, Harrynson Ramirez-Murillo, Fabiana F. Franceschi, Ricardo Rincón and Geraldynne Sierra-Rueda
Automation 2025, 6(3), 36; https://doi.org/10.3390/automation6030036 - 5 Aug 2025
Viewed by 39
Abstract
Poultry waste composting is a necessary technique for agricultural farm sustainability. Composting is a dynamic process influenced by multiple variables. Humidity and temperature play fundamental roles in analyzing its different phases according to the environment and composting technique. Current developments for monitoring these [...] Read more.
Poultry waste composting is a necessary technique for agricultural farm sustainability. Composting is a dynamic process influenced by multiple variables. Humidity and temperature play fundamental roles in analyzing its different phases according to the environment and composting technique. Current developments for monitoring these variables include automation via intelligent Internet of Things (IoT)-based sensor networks for variable tracking. These advancements serve as efficient tools for modeling that facilitate the simulation and prediction of composting process variables to improve system efficiency. Therefore, this paper presents the dynamic modeling of composting via forced aeration processes in high-mountain climates, with the intent of estimating biomass temperature dynamics in different phases using system identification techniques. To this end, four dynamic model estimation structures are employed: transfer function (TF), state space (SS), process (P), and Hammerstein–Wiener (HW). The and model quality, fitting results, and standard error metrics of the different models found in each phase are assessed through residual analysis from each structure by validation with real system data. Our results show that the second-order underdamped multiple-input–single-output (MISO) process model with added noise demonstrates the best fit and validation performance. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

Back to TopTop