Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (384)

Search Parameters:
Keywords = failure-free time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3175 KiB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Viewed by 143
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

24 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 235
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

13 pages, 1189 KiB  
Article
The Role of Biodegradable Temporizing Matrix in Paediatric Reconstructive Surgery
by Aikaterini Bini, Michael Ndukwe, Christina Lipede, Ramesh Vidyadharan, Yvonne Wilson and Andrea Jester
J. Clin. Med. 2025, 14(15), 5427; https://doi.org/10.3390/jcm14155427 - 1 Aug 2025
Viewed by 278
Abstract
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients, evaluate the short-term and [...] Read more.
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients, evaluate the short-term and long-term results, including complications and functional outcomes, as well as to share some unique observations regarding the use of BTM in paediatric population. Patients and Methods: Patients undergoing reconstructive surgery and BTM application during the last three years were included. Data collected included patient demographics, primary diagnosis, previous surgical management, post-operative complications and final outcomes. BTM was used in 32 patients. The indications varied including epidermolysis bullosa (n = 6), burns (n = 4), trauma (n = 7), infection (n = 4), ischemia or necrosis (n = 11). Results: The results were satisfying with acceptable aesthetic and functional outcomes. Complications included haematoma underneath the BTM leading to BTM removal and re-application (n = 1), BTM infection (n = 1) and split-thickness skin graft failure on top of BTM requiring re-grafting (n = 2). Conclusions: BTM can be a good alternative to large skin grafts, locoregional flaps or even free flaps. The big advantages over other dermal substitutes or skin grafts are that BTM is less prone to infection and offers excellent scarring by preserving the normal skin architecture. Specifically in children, BTM might not require grafting, resulting in spontaneous healing with good scarring. In critically ill patients, BTM reduces the operation time and there is no donor site morbidity. BTM should be considered in the reconstructive ladder when discussing defect coverage options in children and young people. Full article
(This article belongs to the Special Issue Trends in Plastic and Reconstructive Surgery)
Show Figures

Figure 1

25 pages, 1984 KiB  
Article
Intra-Domain Routing Protection Scheme Based on the Minimum Cross-Degree Between the Shortest Path and Backup Path
by Haijun Geng, Xuemiao Liu, Wei Hou, Lei Xu and Ling Wang
Appl. Sci. 2025, 15(15), 8151; https://doi.org/10.3390/app15158151 - 22 Jul 2025
Viewed by 176
Abstract
With the continuous development of the Internet, people have put forward higher requirements for the stability and availability of the network. Although we constantly strive to take measures to avoid network failures, it is undeniable that network failures are unavoidable. Therefore, in this [...] Read more.
With the continuous development of the Internet, people have put forward higher requirements for the stability and availability of the network. Although we constantly strive to take measures to avoid network failures, it is undeniable that network failures are unavoidable. Therefore, in this situation, enhancing the stability and reliability of the network to cope with possible network failures has become particularly crucial. Therefore, researching and developing high fault protection rate intra-domain routing protection schemes has become an important topic and is the subject of this study. This study aims to enhance the resilience and service continuity of networks in the event of failures by proposing innovative routing protection strategies. The existing methods, such as Loop Free Alternative (LFA) and Equal Cost Multiple Paths (ECMP), have some shortcomings in terms of fast fault detection, fault response, and fault recovery processes, such as long fault recovery time, limitations of routing protection strategies, and requirements for network topology. In response to these issues, this article proposes a new routing protection scheme, which is an intra-domain routing protection scheme based on the minimum cross-degree backup path. The core idea of this plan is to find the backup path with the minimum degree of intersection with the optimal path, in order to avoid potential fault areas and minimize the impact of faults on other parts of the network. Through comparative analysis and performance evaluation, this scheme can provide a higher fault protection rate and more reliable routing protection in the network. Especially in complex networks, this scheme has more performance and protection advantages than traditional routing protection methods. The proposed scheme in this paper exhibits a high rate of fault protection across multiple topologies, demonstrating a fault protection rate of 1 in the context of real topology. It performs commendably in terms of path stretch, evidenced by a figure of 1.06 in the case of real topology Ans, suggesting robust path length control capabilities. The mean intersection value is 0 in the majority of the topologies, implying virtually no common edge between the backup and optimal paths. This effectively mitigates the risk of single-point failure. Full article
Show Figures

Figure 1

11 pages, 1579 KiB  
Article
Effect of Iron Deficiency on Right Ventricular Strain in Patients Diagnosed with Acute Heart Failure
by Kemal Engin, Umit Yasar Sinan, Sukru Arslan and Mehmet Serdar Kucukoglu
J. Clin. Med. 2025, 14(15), 5188; https://doi.org/10.3390/jcm14155188 - 22 Jul 2025
Viewed by 273
Abstract
Background: Iron deficiency (ID) is a prevalent comorbidity of heart failure (HF), affecting up to 59% of patients, regardless of the presence of anaemia. Although its negative impact on left ventricular (LV) function is well documented, its effect on right ventricular (RV) function [...] Read more.
Background: Iron deficiency (ID) is a prevalent comorbidity of heart failure (HF), affecting up to 59% of patients, regardless of the presence of anaemia. Although its negative impact on left ventricular (LV) function is well documented, its effect on right ventricular (RV) function remains unclear. This study assessed the effects of ID on RV global longitudinal strain (RV-GLS) in patients diagnosed with acute decompensated HF (ADHF). Methods: This study included data from 100 patients hospitalised with ADHF irrespective of LV ejection fraction (LVEF) value. ID was defined according to the European Society of Cardiology HF guidelines as serum ferritin <100 ng/mL or ferritin 100–299 ng/mL, with transferrin saturation <20%. Anaemia was defined according to World Health Organization criteria as haemoglobin level <12 g/dL in women and <13 g/dL in men. RV systolic function was assessed using parameters including RV ejection fraction (RVEF), tricuspid annular plane systolic excursion (TAPSE), RV fractional area change (FAC), peak systolic tissue Doppler velocity of the RV annulus (RV TDI S′), acceleration time of the RV outflow tract, and RV free wall GLS. Results: The mean (±SD) age of the study population (64% male) was 70 ± 10 years. The median LVEF was 35%, with 66% of patients classified with HF with reduced ejection fraction, 6% with HF with mid-range ejection fraction, and 28% with HF with preserved ejection fraction. Fifty-eight percent of patients had ID. There were no significant differences between patients with and without ID regarding demographics, LVEF, RV FAC, RV TDI S′, or systolic pulmonary artery pressure. However, TAPSE (15.6 versus [vs.] 17.2 mm; p = 0.05) and RV free wall GLS (−14.7% vs. −18.2%; p = 0.005) were significantly lower in patients with ID, indicating subclinical RV systolic dysfunction. Conclusions: ID was associated with subclinical impairment of RV systolic function in patients diagnosed with ADHF, as evidenced by reductions in TAPSE and RV-GLS, despite the preservation of conventional RV systolic function parameters. Further research validating these findings and exploring the underlying mechanisms is warranted. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

12 pages, 1879 KiB  
Article
Chemical-Free Rapid Lysis of Blood Cells in a Microfluidic Device Utilizing Ion Concentration Polarization
by Suhyeon Kim, Seungbin Yoon, Hyoryung Nam, Hyeonsu Woo, Woonjae Choi, Geon Hwee Kim and Geunbae Lim
Appl. Sci. 2025, 15(15), 8127; https://doi.org/10.3390/app15158127 - 22 Jul 2025
Viewed by 212
Abstract
Blood is a widely used sample for diagnosing diseases such as malaria and diabetes. While diagnostic techniques have advanced, sample preparation remains labor-intensive, requiring steps like mixing and centrifugation. Microfluidic technologies have automated parts of this process, including cell lysis, yet challenges persist. [...] Read more.
Blood is a widely used sample for diagnosing diseases such as malaria and diabetes. While diagnostic techniques have advanced, sample preparation remains labor-intensive, requiring steps like mixing and centrifugation. Microfluidic technologies have automated parts of this process, including cell lysis, yet challenges persist. Electrical lysis offers a chemical-free, continuous approach, but lysing small cells like red blood cells requires high electric fields, which can damage electrodes and cause system failures. Here, we present a microfluidic device utilizing ion concentration polarization (ICP) for rapid blood cell lysis at 75 V. Fluorescence imaging confirmed the formation of an ion depletion region near the Nafion® nanochannel membrane, where the electric field was concentrated across the entire microchannel width. This phenomenon enabled the efficient trapping and lysis of blood cells under these conditions. Continuous blood injection achieved a lysis time of 0.3 s with an efficiency exceeding 99.4%. Moreover, lysed cell contents accumulated near the Nafion membrane, forming a concentrated lysate. This approach eliminates the need for high-voltage circuits or chemical reagents, offering a simple yet effective method for blood cell lysis. The proposed device is expected to advance lab-on-a-chip and point-of-care diagnostics by enabling rapid and continuous sample processing. Full article
Show Figures

Figure 1

32 pages, 2698 KiB  
Article
Design and Validation of an Edge-AI Fire Safety System with SmartThings Integration for Accelerated Detection and Targeted Suppression
by Seung-Jun Lee, Hong-Sik Yun, Yang-Bae Sim and Sang-Hoon Lee
Appl. Sci. 2025, 15(14), 8118; https://doi.org/10.3390/app15148118 - 21 Jul 2025
Viewed by 658
Abstract
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor [...] Read more.
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor array for early fire recognition, motorized ventilation units for rapid smoke extraction, and a 360° directional nozzle for targeted agent discharge using a residue-free clean extinguishing agent. Experimental trials demonstrated an average fire detection time of 5.8 s and complete flame suppression within 13.2 s, with 90% smoke clearance achieved in under 95 s. No false positives were recorded during non-fire simulations, and the system remained fully functional under simulated cloud communication failure, confirming its edge-resilient architecture. A probabilistic risk analysis based on ISO 31000 and NFPA 551 frameworks showed risk reductions of 75.6% in life safety, 58.0% in property damage, and 67.1% in business disruption. The system achieved a composite risk reduction of approximately 73%, shifting the operational risk level into the ALARP region. These findings demonstrate the system’s capacity to provide proactive, energy-efficient, and spatially targeted fire response suitable for high-value infrastructure. The modular design and SmartThings Edge integration further support scalable deployment and real-time system intelligence, establishing a strong foundation for future adaptive fire protection frameworks. Full article
Show Figures

Figure 1

19 pages, 6323 KiB  
Article
A UNet++-Based Approach for Delamination Imaging in CFRP Laminates Using Full Wavefield
by Yitian Yan, Kang Yang, Yaxun Gou, Zhifeng Tang, Fuzai Lv, Zhoumo Zeng, Jian Li and Yang Liu
Sensors 2025, 25(14), 4292; https://doi.org/10.3390/s25144292 - 9 Jul 2025
Viewed by 319
Abstract
The timely detection of delamination is essential for preventing catastrophic failures and extending the service life of carbon fiber-reinforced polymers (CFRP). Full wavefields in CFRP encapsulate extensive information on the interaction between guided waves and structural damage, making them a widely utilized tool [...] Read more.
The timely detection of delamination is essential for preventing catastrophic failures and extending the service life of carbon fiber-reinforced polymers (CFRP). Full wavefields in CFRP encapsulate extensive information on the interaction between guided waves and structural damage, making them a widely utilized tool for damage mapping. However, due to the multimodal and dispersive nature of guided waves, interpreting full wavefields remains a significant challenge. This study proposes an end-to-end delamination imaging approach based on UNet++ using 2D frequency domain spectra (FDS) derived from full wavefield data. The proposed method is validated through a self-constructed simulation dataset, experimental data collected using Scanning Laser Doppler Vibrometry, and a publicly available dataset created by Kudela and Ijjeh. The results on the simulated data show that UNet++, trained with multi-frequency FDS, can accurately predict the location, shape, and size of delamination while effectively handling frequency offsets and noise interference in the input FDS. Experimental results further indicate that the model, trained exclusively on simulated data, can be directly applied to real-world scenarios, delivering artifact-free delamination imaging. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

13 pages, 1329 KiB  
Article
Endothelial Activation and Permeability in Patients on VV-ECMO Support: An Exploratory Study
by Carolien Volleman, Yakun Li, Anita M. Tuip-de Boer, Chantal A. Polet, Roselique Ibelings, Marleen A. Slim, Henrike M. Hamer, Alexander P. J. Vlaar and Charissa E. van den Brom
J. Clin. Med. 2025, 14(14), 4866; https://doi.org/10.3390/jcm14144866 - 9 Jul 2025
Viewed by 298
Abstract
Background Veno-venous extracorporeal membrane oxygenation (VV-ECMO) supports critically ill patients with respiratory failure. However, ECMO may induce systemic inflammation, hemolysis, and hemodilution, potentially resulting in endothelial activation and damage. Therefore, this study explored the longitudinal changes in circulating markers of inflammation, hemolysis, and [...] Read more.
Background Veno-venous extracorporeal membrane oxygenation (VV-ECMO) supports critically ill patients with respiratory failure. However, ECMO may induce systemic inflammation, hemolysis, and hemodilution, potentially resulting in endothelial activation and damage. Therefore, this study explored the longitudinal changes in circulating markers of inflammation, hemolysis, and endothelial activation and damage in patients with COVID-19 on VV-ECMO. Methods Plasma was obtained before, within 48 h as well as on day 4, week 1, and week 2 of ECMO support and after decannulation. Circulating markers were measured using Luminex, ELISA, and spectrophotometry. Human pulmonary endothelial cells were exposed to patient plasma, and in vitro endothelial permeability was assessed using electric cell-substrate impedance sensing. Results From April 2020 to January 2022, plasma was collected from 14 patients (71.4% male; age 54 (45–61) years). IL-6 levels decreased (1.238 vs. 0.614 ng/mL, p = 0.039) while ICAM-1 increased (667 vs. 884 ng/mL, p = 0.003) over time when compared to pre-ECMO. Angiopoietin-1 decreased after ECMO initiation (7.57 vs. 3.58 ng/mL, p = 0.030), whereas angiopoietin-2 increased (5.20 vs. 10.19 ng/mL, p = 0.017), particularly in non-survivors of ECMO. Cell-free hemoglobin decreased directly after VV-ECMO initiation but remained stable thereafter (55.29 vs. 9.19 mg/dL, p = 0.017). Moreover, the plasma obtained at several time points during the ECMO run induced in vitro pulmonary endothelial hyperpermeability. Conclusions This exploratory study shows that patients on VV-ECMO support due to COVID-ARDS exhibit progressive endothelial activation and damage but not inflammation and hemolysis. Larger prospective studies are necessary to elucidate pathophysiological pathways leading to endothelial activation and damage, thereby reducing organ failure in these critically ill patients. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

18 pages, 573 KiB  
Review
Challenges, Difficulties, and Delayed Diagnosis of Multiple Myeloma
by Tugba Zorlu, Merve Apaydin Kayer, Nazik Okumus, Turgay Ulaş, Mehmet Sinan Dal and Fevzi Altuntas
Diagnostics 2025, 15(13), 1708; https://doi.org/10.3390/diagnostics15131708 - 4 Jul 2025
Viewed by 779
Abstract
Background: Multiple myeloma (MM) is a heterogeneous plasma cell malignancy with non-specific symptoms and disease heterogeneity at clinical and biological levels. This non-specific set of symptoms, including bone pain, anemia, renal failure, hypercalcemia, and neuropathy, can mislead diagnosis as chronic or benign conditions, [...] Read more.
Background: Multiple myeloma (MM) is a heterogeneous plasma cell malignancy with non-specific symptoms and disease heterogeneity at clinical and biological levels. This non-specific set of symptoms, including bone pain, anemia, renal failure, hypercalcemia, and neuropathy, can mislead diagnosis as chronic or benign conditions, resulting in a delay in diagnosis. Timely identification is paramount to prevent organ damage and reduce morbidity. Methods: In this review, we present an overview of recent literature concerning the factors leading to the delayed diagnosis of MM and the impact of delayed diagnosis. This includes factors relevant to physicians and systems, diagnostic processes, primary healthcare services, and laboratory and imaging data access and interpretation. Other emerging technologies to diagnose NCIs include AI-based decision support systems and biomarker-focused strategies. Findings: Delayed diagnosis can lead to presentation at advanced disease stages associated with life-threatening complications and shorter progression-free survival. Patients are often seen by many physicians before they are referred to hematology. Understanding of clinical red flags for MM in primary care is inadequate. Our findings indicate that limited access to diagnostic tests, inconsistent follow-up of MGUS/SMM patients, and a lack of interdepartmental coordination delay the diagnostic process. Conclusions: Multimodal tools for early diagnosis of MM. Educational campaigns to raise awareness of the disease, algorithms dedicated to routine care and novel technologies, including AI and big data analytics, and new biomarkers may serve this purpose, as well as genomic approaches to the premalignant MGUS stage. Full article
(This article belongs to the Special Issue Recent Advances in Hematology and Oncology)
Show Figures

Figure 1

26 pages, 9416 KiB  
Article
Multi-Component Remote Sensing for Mapping Buried Water Pipelines
by John Lioumbas, Thomas Spahos, Aikaterini Christodoulou, Ioannis Mitzias, Panagiota Stournara, Ioannis Kavouras, Alexandros Mentes, Nopi Theodoridou and Agis Papadopoulos
Remote Sens. 2025, 17(12), 2109; https://doi.org/10.3390/rs17122109 - 19 Jun 2025
Viewed by 574
Abstract
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV [...] Read more.
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV (unmanned aerial vehicle)-borne near-infrared (NIR) surveys, multi-temporal Sentinel-2 imagery, and historical Google Earth orthophotos to precisely map pipeline locations and establish a surface baseline for future monitoring. Each dataset was processed within a unified least-squares framework to delineate pipeline axes from surface anomalies (vegetation stress, soil discoloration, and proxies) and rigorously quantify positional uncertainty, with findings validated against RTK-GNSS (Real-Time Kinematic—Global Navigation Satellite System) surveys of an excavated trench. The combined approach yielded sub-meter accuracy (±0.3 m) with UAV data, meter-scale precision (≈±1 m) with Google Earth, and precision up to several meters (±13.0 m) with Sentinel-2, significantly improving upon inaccurate legacy maps (up to a 300 m divergence) and successfully guiding excavation to locate a pipeline segment. The methodology demonstrated seasonal variability in detection capabilities, with optimal UAV-based identification occurring during early-vegetation growth phases (NDVI, Normalized Difference Vegetation Index ≈ 0.30–0.45) and post-harvest periods. A Sentinel-2 analysis of 221 cloud-free scenes revealed persistent soil discoloration patterns spanning 15–30 m in width, while Google Earth historical imagery provided crucial bridging data with intermediate spatial and temporal resolution. Ground-truth validation confirmed the pipeline location within 0.4 m of the Google Earth-derived position. This integrated, cost-effective workflow provides a transferable methodology for enhanced pipeline mapping and establishes a vital baseline of surface signatures, enabling more effective future monitoring and proactive maintenance to detect leaks or structural failures. This methodology is particularly valuable for water utility companies, municipal infrastructure managers, consulting engineers specializing in buried utilities, and remote-sensing practitioners working in pipeline detection and monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Infrastructures)
Show Figures

Graphical abstract

25 pages, 1083 KiB  
Article
STALE: A Scalable and Secure Trans-Border Authentication Scheme Leveraging Email and ECDH Key Exchange
by Jiexin Zheng, Mudi Xu, Jianqing Li, Benfeng Chen, Zhizhong Tan, Anyu Wang, Shuo Zhang, Yan Liu, Kevin Qi Zhang, Lirong Zheng and Wenyong Wang
Electronics 2025, 14(12), 2399; https://doi.org/10.3390/electronics14122399 - 12 Jun 2025
Viewed by 421
Abstract
In trans-border data (data transferred or accessed across national jurisdictions) exchange scenarios, identity authentication mechanisms serve as critical components for ensuring data security and privacy protection, with their effectiveness directly impacting the compliance and reliability of transnational operations. However, existing identity authentication systems [...] Read more.
In trans-border data (data transferred or accessed across national jurisdictions) exchange scenarios, identity authentication mechanisms serve as critical components for ensuring data security and privacy protection, with their effectiveness directly impacting the compliance and reliability of transnational operations. However, existing identity authentication systems face multiple challenges in trans-border contexts. Firstly, the transnational transfer of identity data struggles to meet the varying data-compliance requirements across different jurisdictions. Secondly, centralized authentication architectures exhibit vulnerabilities in trust chains, where single points of failure may lead to systemic risks. Thirdly, the inefficiency of certificate verification in traditional Public Key Infrastructure (PKI) systems fails to meet the real-time response demands of globalized business operations. These limitations severely constrain real-time identity verification in international business scenarios. To address these issues, this study proposes a trans-border distributed certificate-free identity authentication framework (STALE). The methodology adopts three key innovations. Firstly, it utilizes email addresses as unique user identifiers combined with a Certificateless Public Key Cryptography (CL-PKC) system for key distribution, eliminating both single-point dependency on traditional Certificate Authorities (CAs) and the key escrow issues inherent in Identity-Based Cryptography (IBC). Secondly, an enhanced Elliptic Curve Diffie–Hellman (ECDH) key-exchange protocol is introduced, employing forward-secure session key negotiation to significantly improve communication security in trans-border network environments. Finally, a distributed identity ledger is implemented, using the FISCO BCOS blockchain, enabling decentralized storage and verification of identity information while ensuring data immutability, full traceability, and General Data Protection Regulation (GDPR) compliance. Our experimental results demonstrate that the proposed method exhibits significant advantages in authentication efficiency, communication overhead, and computational cost compared to existing solutions. Full article
Show Figures

Figure 1

12 pages, 706 KiB  
Article
The Performance of the Endurant Endoprosthesis in an Infrarenal Aortic Aneurysm with a Wide or Conical-Shaped Infrarenal Neck Anatomy
by Maaike Plug, Suzanne Holewijn, Armelle Meershoek, Daphne van der Veen and Michel M. P. J. Reijnen
J. Clin. Med. 2025, 14(12), 4133; https://doi.org/10.3390/jcm14124133 - 11 Jun 2025
Viewed by 438
Abstract
Background/Objectives: Wide and conical-shaped infrarenal necks are risk factors for neck-related complications after Endovascular Aorta Aneurysm Repair (EVAR). The aim of this study is to investigate the performance of the Endurant endoprosthesis in wide/conical-shaped aortic neck anatomies compared to its performance in a [...] Read more.
Background/Objectives: Wide and conical-shaped infrarenal necks are risk factors for neck-related complications after Endovascular Aorta Aneurysm Repair (EVAR). The aim of this study is to investigate the performance of the Endurant endoprosthesis in wide/conical-shaped aortic neck anatomies compared to its performance in a normal infrarenal neck (reference group). Methods: A single-center, retrospective observational cohort study was performed, including consecutive subjects with an infrarenal abdominal aortic aneurysm, treated electively with an Endurant endoprosthesis. The primary endpoint was the freedom from aneurysm-related reinterventions through 1 year. Secondary endpoints included proximal fixation failure, type IA endoleak, stent migration, aneurysm sac remodeling, aneurysm-related mortality, freedom from reinterventions throughout available follow-up, and rupture. Results: A total of 268 patients were included, with a mean age of 73.3 years, and 85.1% were male. Freedom from aneurysm-related reinterventions was significantly lower in the wide-neck group (60.0%) compared to the reference group (81.1%; p = 0.018) but not for the conical-neck group (70.3%; p = 0.286). Median time to first reintervention was 1.7 (IQR 0.8; 4.4 years) in the reference group, 2.9 years (IQR 0.3; 5.0 years) in the wide-neck group (p = 0.547) and 3.8 years (IQR 0.4; 6.5) in the conical-neck group (p = 0.123). The proximal fixation failure rate was 7.4% in the wide-neck group compared to 3.3% in the reference group (p = 0.155) and 1.7% in the conical-neck group (p = 0.525). The type IA endoleak rate was 4.9% in the wide-neck group versus 3.3% in the reference group (p = 0.250). Conclusions: In the group with wide necks, reintervention-free survival was lower compared to the reference group, which seems to be driven by proximal fixation failure. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

12 pages, 788 KiB  
Article
Triage-HF Validation in Heart Failure Clinical Practice: Importance of Episode Duration
by Daniel García Iglesias, David Ledesma Oloriz, Diego Pérez Diez, David Calvo Cuervo, Rut Álvarez Velasco, Alejandro Junco-Vicente and José Manuel Rubín López
Diagnostics 2025, 15(12), 1476; https://doi.org/10.3390/diagnostics15121476 - 10 Jun 2025
Viewed by 444
Abstract
Introduction: The prevention of heart failure (HF) exacerbation is crucial for patient prognosis, and preventive treatment for potential symptoms and warning signs is essential in this context. The TriageHF © algorithm has been retrospectively validated and has demonstrated good correlation with HF episodes. [...] Read more.
Introduction: The prevention of heart failure (HF) exacerbation is crucial for patient prognosis, and preventive treatment for potential symptoms and warning signs is essential in this context. The TriageHF © algorithm has been retrospectively validated and has demonstrated good correlation with HF episodes. This study analyzes the effectiveness of the TriageHF © algorithm in routine clinical practice, emphasizing the role of episode duration in its predictive capacity. Materials and methods: From October 2017 to October 2020, all patients who received a Medtronic Amplia DR implant were prospectively selected for analysis. To evaluate the algorithm’s diagnostic capacity, it was compared with the clinical diagnosis of HF episodes during follow-up. Results: The sustained moderate-risk (more than 7 days) and high-risk alerts both showed high positive predictive values (11.25% and 27.27%, respectively), along with an increase in the relative risk of HF, particularly in high-risk alerts (hazard ratio is 46.21 times higher than for sustained moderate-risk alerts). Furthermore, there was higher event-free survival in real low-risk alerts than in both sustained medium-risk and high-risk alerts (p < 0.01). Conclusions: TriageHF © can predict the worsening of patients with ICD CRT. Medium-risk alerts lasting less than 7 days do not pose a greater risk of HF episodes, while high-risk alerts, regardless of their duration, are highly correlated with HF episodes. Full article
(This article belongs to the Special Issue Artificial Intelligence in Cardiovascular Diseases (2024))
Show Figures

Figure 1

21 pages, 3980 KiB  
Article
Binding Capacity and Adsorption Stability of Uremic Metabolites to Albumin-Modified Magnetic Nanoparticles
by Indu Sharma, Agatha Milley, Lun Zhang, Jiamin Zheng, Ethan Lockwood, David S. Wishart, Marcello Tonelli and Larry D. Unsworth
Int. J. Mol. Sci. 2025, 26(11), 5366; https://doi.org/10.3390/ijms26115366 - 3 Jun 2025
Viewed by 410
Abstract
Kidney disease causes the retention of uremic metabolites in blood, which is associated with many comorbidities. Hemodialysis does not properly clear many metabolites, including large, middle-sized, and small protein-bound uremic toxins (PBUTs). Adsorption strategies for metabolite removal require the development of engineered adsorbents [...] Read more.
Kidney disease causes the retention of uremic metabolites in blood, which is associated with many comorbidities. Hemodialysis does not properly clear many metabolites, including large, middle-sized, and small protein-bound uremic toxins (PBUTs). Adsorption strategies for metabolite removal require the development of engineered adsorbents with tailored surfaces to increase the binding of desired metabolites. Albumin is uniquely positioned for modifying blood-contacting surfaces to absorb uremic metabolites, as it (i) minimizes non-specific protein adsorption and (ii) binds a range of molecules at Sudlow Sites I and II with different affinities. It is unknown if albumin-modified surfaces retain the adsorption qualities of solution-free albumin, namely, adsorption stability or specificity. Herein, albumin was covalently attached to iron oxide nanoparticles and characterized using multiple methods. Metabolite adsorption was conducted by incubating particles in a model solution of thirty-three uremic metabolites associated with kidney failure. Adsorption efficiency, selectivity, and stability were affected by albumin concentration and incubation time. Metabolite adsorption was found to change with time, and it was more effective on albumin-modified particles than unmodified controls. The findings outlined in this paper are crucial for the design of next-generation advanced blood-contacting materials to enhance dialysis and blood purification for patients with kidney disease. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

Back to TopTop