Endothelial Activation and Permeability in Patients on VV-ECMO Support: An Exploratory Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Plasma Analyses
2.3. In Vitro Endothelial Permeability
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Circulating Markers in Patients on VV-ECMO over Time
3.3. Circulating Markers in Survivors and Non-Survivors
3.4. Plasma from VV-ECMO Patients Induced In Vitro Endothelial Hyperpermeability
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARDS | Acute respiratory distress syndrome |
CFHb | Cell-free hemoglobin |
COVID-19 | Coronavirus disease 19 |
ECIS | Electric cell-substrate impedance sensing |
ECMO | Extracorporeal membrane oxygenation |
ELSO | Extracorporeal life support organization |
HMVEC | Human microvascular endothelial cell |
ICAM-1 | Intracellular adhesion molecule 1 |
ICU | Intensive care unit |
IL-6 | Interleukin-6 |
LDH | Lactate dehydrogenase |
LME | Linear mixed-effects model |
MV | Mechanical ventilation |
SMD | Standardized mean difference |
sTie2 | Soluble Tie2 |
TNFα | Tumor necrosis factor α |
VV-ECMO | Veno-venous extracorporeal membrane oxygenation |
vWF | von Willebrand factor |
References
- Tonna, J.E.; Boonstra, P.S.; MacLaren, G.; Paden, M.; Brodie, D.; Anders, M.; Hoskote, A.; Ramanathan, K.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal Life Support Organization Registry International Report 2022: 100,000 Survivors. ASAIO J. 2024, 70, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, D.E.; Cooper, S.W.; Hugli, T.E.; Stewart, R.W.; Blackstone, E.H.; Kirklin, J.W. Complement activation during cardiopulmonary bypass: Evidence for generation of C3a and C5a anaphylatoxins. N. Engl. J. Med. 1981, 304, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Dekker, N.A.M.; van Meurs, M.; van Leeuwen, A.L.I.; Hofland, H.M.; van Slyke, P.; Vonk, A.B.A.; Boer, C.; van den Brom, C.E. Vasculotide, an angiopoietin-1 mimetic, reduces pulmonary vascular leakage and preserves microcirculatory perfusion during cardiopulmonary bypass in rats. Br. J. Anaesth. 2018, 121, 1041–1051. [Google Scholar] [CrossRef]
- Dekker, N.A.M.; van Leeuwen, A.L.I.; van Strien, W.W.J.; Majolée, J.; Szulcek, R.; Vonk, A.B.A.; Hordijk, P.L.; Boer, C.; van den Brom, C.E. Microcirculatory perfusion disturbances following cardiac surgery with cardiopulmonary bypass are associated with in vitro endothelial hyperpermeability and increased angiopoietin-2 levels. Crit. Care 2019, 23, 117. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Volleman, C.; Dubelaar, D.P.C.; Vlaar, A.P.J.; van den Brom, C.E. Exploring the Impact of Extracorporeal Membrane Oxygenation on the Endothelium: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 10680. [Google Scholar] [CrossRef]
- Koning, N.J.; de Lange, F.; Vonk, A.B.; Ahmed, Y.; van den Brom, C.E.; Bogaards, S.; van Meurs, M.; Jongman, R.M.; Schalkwijk, C.G.; Begieneman, M.P.; et al. Impaired microcirculatory perfusion in a rat model of cardiopulmonary bypass: The role of hemodilution. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H550–H558. [Google Scholar] [CrossRef]
- Meegan, J.E.; Bastarache, J.A.; Ware, L.B. Toxic effects of cell-free hemoglobin on the microvascular endothelium: Implications for pulmonary and nonpulmonary organ dysfunction. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L429–L439. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, D.L.; Gold, W.; Biever, P.M.; Bode, C.; Wengenmayer, T. Early fluid resuscitation and volume therapy in venoarterial extracorporeal membrane oxygenation. J. Crit. Care 2017, 37, 130–135. [Google Scholar] [CrossRef]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef]
- Zangrillo, A.; Landoni, G.; Biondi-Zoccai, G.; Greco, M.; Greco, T.; Frati, G.; Patroniti, N.; Antonelli, M.; Pesenti, A.; Pappalardo, F. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit. Care Resusc. 2013, 15, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Vallelian, F.; Buehler, P.W.; Schaer, D.J. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022, 140, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Tomasek, T.; Ware, L.B.; Bastarache, J.A.; Meegan, J.E. Cell-free hemoglobin-mediated human lung microvascular endothelial barrier dysfunction is not mediated by cell death. Biochem. Biophys. Res. Commun. 2021, 556, 199–206. [Google Scholar] [CrossRef]
- Kuck, J.L.; Bastarache, J.A.; Shaver, C.M.; Fessel, J.P.; Dikalov, S.I.; May, J.M.; Ware, L.B. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin. Biochem. Biophys. Res. Commun. 2018, 495, 433–437. [Google Scholar] [CrossRef]
- Raasveld, S.J.; Volleman, C.; Combes, A.; Broman, L.M.; Taccone, F.S.; Peters, E.; Ten Berg, S.; van den Brom, C.E.; Thiele, H.; Lorusso, R.; et al. Knowledge gaps and research priorities in adult veno-arterial extracorporeal membrane oxygenation: A scoping review. Intensive Care Med. Exp. 2022, 10, 50. [Google Scholar] [CrossRef]
- van Leeuwen, A.L.I.; Naumann, D.N.; Dekker, N.A.M.; Hordijk, P.L.; Hutchings, S.D.; Boer, C.; van den Brom, C.E. In vitro endothelial hyperpermeability occurs early following traumatic hemorrhagic shock. Clin. Hemorheol. Microcirc. 2020, 75, 121–133. [Google Scholar] [CrossRef]
- Szulcek, R.; Bogaard, H.J.; van Nieuw Amerongen, G.P. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J. Vis. Exp. 2014, 28, 51300. [Google Scholar]
- Volleman, C.; Ibelings, R.; Vlaar, A.P.J.; van den Brom, C.E. Endothelial Permeability and the Angiopoietin/Tie2 System Following Mild and Severe COVID-19. Artery Res. 2023, 29, 83–93. [Google Scholar] [CrossRef]
- Risnes, I.; Wagner, K.; Ueland, T.; Mollnes, T.E.; Aukrust, P.; Svennevig, J.L. Interleukin-6 may predict survival in extracorporeal membrane oxygenation treatment. Perfusion 2008, 23, 173–178. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, S.; Bos, L.D.; van Roon, M.A.; Tuip-de Boer, A.M.; Schuurman, A.R.; Koel-Simmelinck, M.J.A.; Bogaard, H.J.; Tuinman, P.R.; van Agtmael, M.A.; Hamann, J.; et al. Clinical features and prognostic factors in Covid-19: A prospective cohort study. EBioMedicine 2021, 67, 103378. [Google Scholar] [CrossRef]
- Parikh, S.M. Angiopoietins and Tie2 in vascular inflammation. Curr. Opin. Hematol. 2017, 24, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Sack, K.D.; Kellum, J.A.; Parikh, S.M. The Angiopoietin-Tie2 Pathway in Critical Illness. Crit. Care Clin. 2020, 36, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-Y.; Tu, K.-H.; Tsai, F.-C.; Nan, Y.-Y.; Fan, P.-C.; Chang, C.-H.; Tian, Y.-C.; Fang, J.-T.; Yang, C.-W.; Chen, Y.-C. Prognostic value of endothelial biomarkers in refractory cardiogenic shock with ECLS: A prospective monocentric study. BMC Anesthesiol. 2019, 19, 73. [Google Scholar] [CrossRef]
- Nesseler, N.; Gouin-Thibaut, I.; Parasido, A.; Flécher, E.; Mansour, A. Early endothelial injury in cardiogenic shock patients on venoarterial ECMO. Intensive Care Med. 2024, 50, 1929–1930. [Google Scholar] [CrossRef]
- Aird, W.C. Endothelium in health and disease. Pharmacol. Rep. 2008, 60, 139–143. [Google Scholar]
- van der Poll, T.; van de Veerdonk, F.L.; Scicluna, B.P.; Netea, M.G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 2017, 17, 407–420. [Google Scholar] [CrossRef]
- Xu, S.W.; Ilyas, I.; Weng, J.P. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2023, 44, 1695–1709. [Google Scholar] [CrossRef] [PubMed]
- Stahl, K.; Gronski, P.A.; Kiyan, Y.; Seeliger, B.; Bertram, A.; Pape, T.; Welte, T.; Hoeper, M.M.; Haller, H.; David, S. Injury to the Endothelial Glycocalyx in Critically Ill Patients with COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 1178–1181. [Google Scholar] [CrossRef]
- Yamaoka-Tojo, M. Vascular Endothelial Glycocalyx Damage in COVID-19. Int. J. Mol. Sci. 2020, 21, 9712. [Google Scholar] [CrossRef]
- Durak, K.; Zayat, R.; Grottke, O.; Dreher, M.; Autschbach, R.; Marx, G.; Marx, N.; Spillner, J.; Kalverkamp, S.; Kersten, A. Extracorporeal membrane oxygenation in patients with COVID-19: 1-year experience. J. Thorac. Dis. 2021, 13, 5911–5924. [Google Scholar] [CrossRef]
- Graw, J.A.; Hildebrandt, P.; Krannich, A.; Balzer, F.; Spies, C.; Francis, R.C.; Kuebler, W.M.; Weber-Carstens, S.; Menk, M.; Hunsicker, O. The role of cell-free hemoglobin and haptoglobin in acute kidney injury in critically ill adults with ARDS and therapy with VV ECMO. Crit. Care 2022, 26, 50. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 42) | VV-ECMO Patients (n = 14) | MV Patients (n = 28) | |||||||
---|---|---|---|---|---|---|---|---|---|
n # | n # | n # | |||||||
Male sex, n (%) | 32 | (76) | 42 | 10 | (71) | 14 | 22 | (79) | 28 |
Age (years) | 54 | (46–62) | 42 | 54 | (45–61) | 14 | 54 | (50–62) | 28 |
BMI (kg/m2) | 27.8 | (24.8–34.2) | 42 | 27.3 | (24.9–28.1) | 14 | 31.6 | (25.1–34.8) | 28 |
BSA (m2) | 2.00 | (1.90–2.20) | 42 | 1.95 | (1.80–2.00) | 14 | 2.05 | (2.00–2.30) | 28 |
Smoking, n (%) | 1 | (4) | 26 | 0 | (0) | 9 | 1 | (6) | 17 |
Comorbidities, n (%) | |||||||||
Diabetes mellitus II | 35 | (83) | 42 | 12 | (86) | 14 | 23 | (82) | 28 |
Hypertension | 32 | (76) | 42 | 12 | (86) | 14 | 20 | (71) | 28 |
SOFA score | 6 | (5-8) | 42 | 5 | (4-8) | 14 | 8 | (5-9) | 28 |
ECMO duration (days) | - | - | 15 | (8–33) | 14 | - | - | 0 | |
ICU stay (days) | 14 | (8-30) | 42 | 30 | (10–52) | 14 | 12 | (8–18) | 28 |
In-hospital mortality, n (%) | 16 | (38) | 42 | 8 | (57) | 14 | 8 | (29) | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volleman, C.; Li, Y.; Tuip-de Boer, A.M.; Polet, C.A.; Ibelings, R.; Slim, M.A.; Hamer, H.M.; Vlaar, A.P.J.; van den Brom, C.E. Endothelial Activation and Permeability in Patients on VV-ECMO Support: An Exploratory Study. J. Clin. Med. 2025, 14, 4866. https://doi.org/10.3390/jcm14144866
Volleman C, Li Y, Tuip-de Boer AM, Polet CA, Ibelings R, Slim MA, Hamer HM, Vlaar APJ, van den Brom CE. Endothelial Activation and Permeability in Patients on VV-ECMO Support: An Exploratory Study. Journal of Clinical Medicine. 2025; 14(14):4866. https://doi.org/10.3390/jcm14144866
Chicago/Turabian StyleVolleman, Carolien, Yakun Li, Anita M. Tuip-de Boer, Chantal A. Polet, Roselique Ibelings, Marleen A. Slim, Henrike M. Hamer, Alexander P. J. Vlaar, and Charissa E. van den Brom. 2025. "Endothelial Activation and Permeability in Patients on VV-ECMO Support: An Exploratory Study" Journal of Clinical Medicine 14, no. 14: 4866. https://doi.org/10.3390/jcm14144866
APA StyleVolleman, C., Li, Y., Tuip-de Boer, A. M., Polet, C. A., Ibelings, R., Slim, M. A., Hamer, H. M., Vlaar, A. P. J., & van den Brom, C. E. (2025). Endothelial Activation and Permeability in Patients on VV-ECMO Support: An Exploratory Study. Journal of Clinical Medicine, 14(14), 4866. https://doi.org/10.3390/jcm14144866