Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = facility disruption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7764 KiB  
Article
Techno-Economic Analysis of Decarbonized Backup Power Systems Using Scenario-Based Stochastic Optimization
by Jonas Schweiger and Ruaridh Macdonald
Energies 2025, 18(16), 4388; https://doi.org/10.3390/en18164388 - 18 Aug 2025
Viewed by 351
Abstract
In the context of growing concerns about power disruptions, grid reliability and the need for decarbonization, this study evaluates a broad range of clean backup power systems (BPSs) to replace traditional emergency diesel generators. A scenario-based stochastic optimization framework using actual load profiles [...] Read more.
In the context of growing concerns about power disruptions, grid reliability and the need for decarbonization, this study evaluates a broad range of clean backup power systems (BPSs) to replace traditional emergency diesel generators. A scenario-based stochastic optimization framework using actual load profiles and outage probabilities is proposed to assess the most promising options from a pool of 27 technologies. This framework allows a comparison of the cost effectiveness and environmental impact of individual technologies and hybrid BPSs across various scenarios. The results highlight the trade-off between total annual system cost and emissions. Significant emission reductions can be achieved at moderate cost increases but deep decarbonization levels incur higher costs. Primary and secondary batteries are included in optimal clean fuel-based systems across all decarbonization levels, combining cost-effective power delivery and long-term storage benefits. The findings highlight the often-overlooked importance of fuel replacement on both emissions and costs. Among the assessed technologies, ammonia generators and hydrogen fuel cells combined with secondary iron–air batteries emerge as cost-effective solutions for achieving decarbonization goals. To ensure a broad range of applicability, the study outlines the impact of emergency fuel purchases, varying demand patterns and demand response options on the optimal BPS. The research findings are valuable for optimizing the design of clean BPSs to economically meet the needs of many facility types and decarbonization targets. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Graphical abstract

21 pages, 3549 KiB  
Article
Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa
by Yazeed Alabbad, Atiye Beyza Cikmaz, Enes Yildirim and Ibrahim Demir
Appl. Sci. 2025, 15(16), 8992; https://doi.org/10.3390/app15168992 - 14 Aug 2025
Viewed by 289
Abstract
Floods pose a substantial risk to human well-being. These risks encompass economic losses, infrastructural damage, disruption of daily life, and potential loss of life. This study presents a state-wide and county-level spatial exposure assessment of the Iowa railway network, emphasizing the resilience and [...] Read more.
Floods pose a substantial risk to human well-being. These risks encompass economic losses, infrastructural damage, disruption of daily life, and potential loss of life. This study presents a state-wide and county-level spatial exposure assessment of the Iowa railway network, emphasizing the resilience and reliability of essential services during such disasters. In the United States, the railway network is vital for the distribution of goods and services. This research specifically targets the railway network in Iowa, a state where the impact of flooding on railways has not been extensively studied. We employ comprehensive GIS analysis to assess the vulnerability of the railway network, bridges, rail crossings, and facilities under 100- and 500-year flood scenarios at the state level. Additionally, we conducted a detailed investigation into the most flood-affected counties, focusing on the susceptibility of railway bridges. Our state-wide analysis reveals that, in a 100-year flood scenario, up to 9% of railroads, 8% of rail crossings, 58% of bridges, and 6% of facilities are impacted. In a 500-year flood scenario, these figures increase to 16%, 14%, 61%, and 13%, respectively. Furthermore, our secondary analysis using flood depth maps indicates that approximately half of the railway bridges in the flood zones of the studied counties could become non-functional in both flood scenarios. These findings are crucial for developing effective disaster risk management plans and strategies, ensuring adequate preparedness for the impacts of flooding on railway infrastructure. Full article
Show Figures

Figure 1

22 pages, 830 KiB  
Article
Spatial Differentiation of EU Countries in Terms of Energy Security
by Iwona Bąk, Katarzyna Wawrzyniak, Beata Szczecińska, Emilia Barej-Kaczmarek and Maciej Oesterreich
Energies 2025, 18(16), 4310; https://doi.org/10.3390/en18164310 - 13 Aug 2025
Viewed by 318
Abstract
Global discussion on energy security remains deeply embedded in social, political, and economic discourse, especially in light of ongoing geopolitical instability and disruptions in supply chains. The aim of this study is to assess the degree of differentiation in the energy security of [...] Read more.
Global discussion on energy security remains deeply embedded in social, political, and economic discourse, especially in light of ongoing geopolitical instability and disruptions in supply chains. The aim of this study is to assess the degree of differentiation in the energy security of EU countries and to distinguish typological groups of the studied facilities based on the level of this phenomenon in 2023. This article uses a three-stage research procedure to assess the energy security of EU countries. In the first stage, statistical data were collected for 21 diagnostic features belonging to three groups: energy production and consumption, energy imports and exports, and economic and social factors. Next, using the TOPSIS method, three synthetic measures were constructed: separately for each group of features, taking into account features from the first and second groups, and taking into account features from all three groups. Based on these measures, typological groups of countries were identified using the three-median method. In the final stage, the impact of socio-economic characteristics on energy security was assessed. The results presented in this paper confirm the varied level of energy security in EU countries and indicate that it is linked not only to categories directly related to the energy economy but also to the level of socio-economic development of a given country. The top places in the ranking are occupied by countries such as Sweden, Finland, the Netherlands and Austria, while the last places in the ranking include Malta, Greece, Cyprus and Ireland. Full article
Show Figures

Figure 1

29 pages, 909 KiB  
Article
Sustainability-Reliable Emergency Facility Location Determination with Consideration of Complex Polygonal Barriers and the Risk of Facility Disruption
by Mingyuan Liu, Lintao Liu and Guocheng Wang
Appl. Sci. 2025, 15(16), 8910; https://doi.org/10.3390/app15168910 - 13 Aug 2025
Viewed by 346
Abstract
This paper presents a reliable emergency facility location optimization model that considers complex polygon barriers and the risk of facility disruption. From a sustainable perspective, with capacity, cost, and demand constraints, the model maximizes time satisfaction and minimizes cost as the objective function [...] Read more.
This paper presents a reliable emergency facility location optimization model that considers complex polygon barriers and the risk of facility disruption. From a sustainable perspective, with capacity, cost, and demand constraints, the model maximizes time satisfaction and minimizes cost as the objective function to determine the optimal facility location and allocation. The paper proposes the barrier path optimization algorithm and the Kepler optimization algorithm (KOA) to solve the model and validates the model and algorithm through simulation experiments of various scales. Finally, the paper conducts a sensitivity analysis of the disruption probability using the control variable method to explore the impact of parameter changes on the decision results and compare the advantages of considering a sustainable perspective versus not considering it. The results show that the model and algorithm designed in this paper can effectively optimize the barrier path and obtain the optimal location-allocation scheme. The research findings will provide mathematical models and methodological strategies for emergency facility location decision-making. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

16 pages, 1119 KiB  
Article
An Integrated Synthesis Approach for Emergency Logistics System Optimization of Hazardous Chemical Industrial Parks
by Daqing Ma, Fuming Yang, Zhongwang Chen, Fengyi Liu, Haotian Ye and Mingshu Bi
Processes 2025, 13(8), 2513; https://doi.org/10.3390/pr13082513 - 9 Aug 2025
Viewed by 337
Abstract
The rapid clustering of Chemical Industrial Parks (CIPs) has escalated the risk of cascading disasters (e.g., toxic leaks and explosions), underscoring the need for resilient emergency logistics systems. However, traditional two-stage optimization models often yield suboptimal outcomes due to decoupled facility location and [...] Read more.
The rapid clustering of Chemical Industrial Parks (CIPs) has escalated the risk of cascading disasters (e.g., toxic leaks and explosions), underscoring the need for resilient emergency logistics systems. However, traditional two-stage optimization models often yield suboptimal outcomes due to decoupled facility location and routing decisions. To address this issue, we propose a unified mixed-integer nonlinear programming (MINLP) model that integrates site selection and routing decisions in a single framework. The model accounts for multi-source supply allocation, enforces minimum safety distance constraints, and incorporates heterogeneous economic factors (e.g., regional land costs) to ensure risk-aware, cost-efficient planning. Two deployment scenarios are considered: (1) incremental augmentation of an existing emergency network and (2) full network reconstruction after a systemic failure. Simulations on a regional CIP cluster (2400 × 2400 km) were conducted to validate the model. The integrated approach reduced facility and operational costs by 9.77% (USD 13.68 million saved) in the incremental scenario and achieved a 15.10% (USD 21.13 million saved) total cost reduction over decoupled planning in the reconstruction scenario while maintaining an 8 km minimum safety distance. This integrated approach can enhance cost-effectiveness and strengthen the resilience of high-risk industrial emergency response networks. Overall, the proposed modeling framework, which integrates spatial constraints, time-sensitive supply mechanisms, and disruption risk considerations, is not only tailored for hazardous chemical zones but also exhibits strong potential for adaptation to a variety of high-risk scenarios, such as natural disasters, industrial accidents, or critical infrastructure failures. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Viewed by 395
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 382
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 258
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 3781 KiB  
Article
Review of NFPA 780 Standard Compliance for Improved Lightning Protection in Indonesia’s Oil and Gas Industry
by Bryan Denov and Reynaldo Zoro
Energies 2025, 18(15), 4002; https://doi.org/10.3390/en18154002 - 28 Jul 2025
Viewed by 575
Abstract
Lightning represents a critical danger to facilities such as oil tank farms, with the potential to cause major explosive incidents. To address this risk, Indonesia’s oil and gas industry has adopted the NFPA 780 Standard for lightning protection systems. However, tank explosions and [...] Read more.
Lightning represents a critical danger to facilities such as oil tank farms, with the potential to cause major explosive incidents. To address this risk, Indonesia’s oil and gas industry has adopted the NFPA 780 Standard for lightning protection systems. However, tank explosions and refinery disruptions caused by lightning strikes continue to occur annually, highlighting the need to reassess the standard’s self-protection criteria, particularly in Indonesia’s tropical climate. The NFPA 780 standard was primarily developed based on lightning characteristics in subtropical regions. This study evaluates its effectiveness in tropical environments, where lightning parameters such as peak currents, frequencies, and ground flash densities differ significantly. By analyzing specific incidents of tank explosions in Indonesia, the research reveals that compliance with the NFPA 780 standard alone may not be adequate to protect critical infrastructure. To address these challenges, this study proposes a novel approach to lightning protection by designing solutions tailored to the unique characteristics of tropical climates. By incorporating local lightning parameters, the proposed measures aim to enhance safety and resilience in oil and gas facilities. This research provides a framework for adapting international standards to regional needs, improving the effectiveness of lightning protection in tropical environments. Full article
(This article belongs to the Topic EMC and Reliability of Power Networks)
Show Figures

Figure 1

17 pages, 1359 KiB  
Article
More Care, More Workers? Gauging the Impact of Child Care Access on Labor Force Participation
by John Reaves, Hope O. Akaeze, Holli A. Schlukebir, Steven R. Miller, Henry O. Akaeze and Jamie Heng-Chieh Wu
Soc. Sci. 2025, 14(8), 458; https://doi.org/10.3390/socsci14080458 - 24 Jul 2025
Viewed by 1345
Abstract
This study investigates the critical link between child care accessibility and local labor force participation, addressing a gap in current research that often lacks local spatial granularity. While over half of the U.S. population resides in child care deserts, disproportionately affecting rural, low-income, [...] Read more.
This study investigates the critical link between child care accessibility and local labor force participation, addressing a gap in current research that often lacks local spatial granularity. While over half of the U.S. population resides in child care deserts, disproportionately affecting rural, low-income, and minority communities, the economic implications for local labor markets remain underexplored. Leveraging Michigan child care license data and Census tract-level demographic and employment characteristics, this research employs a spatial econometric approach to estimate the impact of geographic distance to child care facilities on labor supply using descriptive data. Our findings consistently demonstrate that increased distance to child care is significantly associated with reduced labor force participation. While female labor force participation is lower in areas with constrained access to child care, we also found that households with two parents are also less likely to have full labor force participation when access to child care is constrained. The cost-effective framework used here can be replicated to identify specific communities most impacted by child care-related employment disruptions. The analytical findings can be instrumental in targeting and prioritizing child care policy interventions. Full article
(This article belongs to the Section Childhood and Youth Studies)
Show Figures

Figure 1

18 pages, 1768 KiB  
Article
Comparative Risk Assessment of Legionella spp. Colonization in Water Distribution Systems Across Hotels, Passenger Ships, and Healthcare Facilities During the COVID-19 Era
by Antonios Papadakis, Eleftherios Koufakis, Elias Ath Chaidoutis, Dimosthenis Chochlakis and Anna Psaroulaki
Water 2025, 17(14), 2149; https://doi.org/10.3390/w17142149 - 19 Jul 2025
Viewed by 1474
Abstract
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare [...] Read more.
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare facilities, public hospitals, and private clinics. A total of 1081 water samples were collected and analyzed, and the overall positivity was calculated using culture-based methods. Only 16.46% of the samples exceeded the regulatory limit (>103 CFU/L) in the total sample, with 44.59% overall Legionella positivity. Colonization by facility category showed the highest rates in primary healthcare facilities with 85.96%, followed by public hospitals (46.36%), passenger ships with 36.93%, hotels with 38.08%, and finally private clinics (21.42%). The association of environmental risk factors with Legionella positivity revealed a strong effect at hot water temperatures < 50 °C (RR = 2.05) and free chlorine residuals < 0.2 mg/L (RR = 2.22) (p < 0.0001). Serotyping analysis revealed the overall dominance of Serogroups 2–15 of L. pneumophila; nevertheless, Serogroup 1 was particularly prevalent in hospitals, passenger ships, and hotels. Based on these findings, the requirement for continuous environmental monitoring and risk management plans with preventive thermochemical controls tailored to each facility is highlighted. Finally, operational disruptions, such as those experienced during the COVID-19 pandemic, especially in primary care facilities and marine systems, require special attention. Full article
(This article belongs to the Special Issue Legionella: A Key Organism in Water Management)
Show Figures

Figure 1

21 pages, 1088 KiB  
Review
Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance
by George Cosmin Nadăş, Alice Mathilde Manchon, Cosmina Maria Bouari and Nicodim Iosif Fiț
Antibiotics 2025, 14(7), 720; https://doi.org/10.3390/antibiotics14070720 - 17 Jul 2025
Viewed by 748
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen with significant clinical relevance in both human and veterinary medicine. Despite its well-documented role in hospital-acquired infections in human healthcare settings, its persistence and transmission within veterinary clinics remain underexplored. This review highlights the overlooked [...] Read more.
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen with significant clinical relevance in both human and veterinary medicine. Despite its well-documented role in hospital-acquired infections in human healthcare settings, its persistence and transmission within veterinary clinics remain underexplored. This review highlights the overlooked status of veterinary facilities as environmental reservoirs and amplification points for multidrug-resistant (MDR) P. aeruginosa, emphasizing their relevance to One Health surveillance. We examine the bacterium’s environmental survival strategies, including biofilm formation, resistance to disinfectants, and tolerance to nutrient-poor conditions that facilitate the long-term colonization of moist surfaces, drains, medical equipment, and plumbing systems. Common transmission vectors are identified, including asymptomatic animal carriers, contaminated instruments, and the hands of veterinary staff. The review synthesizes current data on antimicrobial resistance in environmental isolates, revealing frequent expression of efflux pumps and mobile resistance genes, and documents the potential for zoonotic transmission to staff and pet owners. Key gaps in environmental monitoring, infection control protocols, and genomic surveillance are identified, with a call for standardized approaches tailored to the veterinary context. Control strategies, including mechanical biofilm disruption, disinfectant cycling, effluent monitoring, and staff hygiene training, are evaluated for feasibility and impact. The article concludes with a One Health framework outlining cross-species and environmental transmission pathways. It advocates for harmonized surveillance, infrastructure improvements, and intersectoral collaboration to reduce the risk posed by MDR P. aeruginosa within veterinary clinical environments and beyond. By addressing these blind spots, veterinary facilities can become proactive partners in antimicrobial stewardship and global resistance mitigation. Full article
Show Figures

Figure 1

26 pages, 354 KiB  
Article
Book–Tax Differences and Earnings Persistence: The Moderating Role of Sales Decline
by Mark Anderson and Sina Rahiminejad
J. Risk Financial Manag. 2025, 18(7), 389; https://doi.org/10.3390/jrfm18070389 - 14 Jul 2025
Viewed by 451
Abstract
This study investigates why firms with large book–tax differences (BTDs) exhibit lower earnings persistence, particularly during periods of revenue declines. While prior literature has linked BTDs, especially large positive BTDs (LPBTDs), to earnings management, we propose an alternative explanation rooted in operational disruptions. [...] Read more.
This study investigates why firms with large book–tax differences (BTDs) exhibit lower earnings persistence, particularly during periods of revenue declines. While prior literature has linked BTDs, especially large positive BTDs (LPBTDs), to earnings management, we propose an alternative explanation rooted in operational disruptions. Using a large panel of U.S. firms from 1995 to 2016, we examine whether short-term earnings persistence is affected by sales trends and the direction of BTDs. Our findings reveal that both large positive and large negative BTDs are significantly associated with reduced earnings persistence when sales decline. The effect is pronounced in both accrual and cash flow components of earnings. We develop and test a framework based on “operations theory,” which attributes this reduction to real business shocks, such as asset write-downs, facility closures, and reserve adjustments, that arise during sales decline periods. These results highlight the importance of distinguishing operationally driven BTDs from those arising through discretionary accruals. Our findings have implications for investors, regulators, and researchers seeking to interpret BTDs more accurately in volatile economic environments. Full article
(This article belongs to the Special Issue Tax Avoidance and Earnings Management)
25 pages, 2820 KiB  
Article
Fault Detection of Cyber-Physical Systems Using a Transfer Learning Method Based on Pre-Trained Transformers
by Pooya Sajjadi, Fateme Dinmohammadi and Mahmood Shafiee
Sensors 2025, 25(13), 4164; https://doi.org/10.3390/s25134164 - 4 Jul 2025
Viewed by 719
Abstract
As industries become increasingly dependent on cyber-physical systems (CPSs), failures within these systems can cause significant operational disruptions, underscoring the critical need for effective Prognostics and Health Management (PHM). The large volume of data generated by CPSs has made deep learning (DL) methods [...] Read more.
As industries become increasingly dependent on cyber-physical systems (CPSs), failures within these systems can cause significant operational disruptions, underscoring the critical need for effective Prognostics and Health Management (PHM). The large volume of data generated by CPSs has made deep learning (DL) methods an attractive solution; however, imbalanced datasets and the limited availability of fault-labeled data continue to hinder their effective deployment in real-world applications. To address these challenges, this paper proposes a transfer learning approach using a pre-trained transformer architecture to enhance fault detection performance in CPSs. A streamlined transformer model is first pre-trained on a large-scale source dataset and then fine-tuned end-to-end on a smaller dataset with a differing data distribution. This approach enables the transfer of diagnostic knowledge from controlled laboratory environments to real-world operational settings, effectively addressing the domain shift challenge commonly encountered in industrial CPSs. To evaluate the effectiveness of the proposed method, extensive experiments are conducted on publicly available datasets generated from a laboratory-scale replica of a modern industrial water purification facility. The results show that the model achieves an average F1-score of 93.38% under K-fold cross-validation, outperforming baseline models such as CNN and LSTM architectures, and demonstrating the practicality of applying transformer-based transfer learning in industrial settings with limited fault data. To enhance transparency and better understand the model’s decision process, SHAP is applied for explainable AI (XAI). Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

18 pages, 8570 KiB  
Article
Exploring Urban Water Management Solutions for Mitigating Water Cycle Issues: Application to Bogotá, Colombia
by Yoonkyung Park, Inkyeong Sim, Changyeon Won, Jongpyo Park and Reeho Kim
Water 2025, 17(13), 1992; https://doi.org/10.3390/w17131992 - 2 Jul 2025
Viewed by 395
Abstract
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities [...] Read more.
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities as structural measures to address these challenges in the upper watershed of the Fucha River in Bogotá, Colombia. The methodology involved analyzing watershed characteristics, defining circulation problems, setting hydrological targets, selecting facility types and locations, evaluating performance, and conducting an economic analysis. To manage the target rainfall of 26.5mm under normal conditions, LID facilities such as vegetated swales, rain gardens, infiltration channels, and porous pavements were applied, managing approximately 2362 m3 of runoff. For flood control, five detention tanks were proposed, resulting in a 31.8% reduction in peak flow and a 7.3% decrease in total runoff volume. The flooded area downstream was reduced by 46.8ha, and the benefit–cost ratio was calculated at 1.02. These findings confirm that strategic application of LID and detention facilities can contribute to effective urban water cycle management and disaster risk reduction. While the current disaster management approach in Bogotá primarily focuses on post-event response, this study highlights the necessity of transitioning toward proactive disaster preparedness. In particular, the introduction and expansion of flood forecasting and warning systems are recommended as non-structural measures, especially in urban areas with complex infrastructure and climate-sensitive hydrology. Full article
(This article belongs to the Special Issue Urban Water Management: Challenges and Prospects)
Show Figures

Figure 1

Back to TopTop