Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = facet engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3909 KB  
Article
Tuning of Photocatalytic and Piezophotocatalytic Activity of Bi3TiNbO9 via Synthesis-Controlled Surface Defect Engineering
by Farid F. Orudzhev, Asiyat G. Magomedova, Sergei A. Kurnosenko, Vladislav E. Beklemyshev, Wei Li, Chuanyi Wang and Irina A. Zvereva
Molecules 2025, 30(20), 4136; https://doi.org/10.3390/molecules30204136 - 20 Oct 2025
Viewed by 234
Abstract
In this work, we investigate advanced photocatalyst Bi3TiNbO9 as promising piezophotocatalyst in terms of the effect of synthesis methods on the surface chemistry, structure, and catalytic performance in process of contaminant removal. Samples were prepared via solid-state reaction (BTNO-900) and [...] Read more.
In this work, we investigate advanced photocatalyst Bi3TiNbO9 as promising piezophotocatalyst in terms of the effect of synthesis methods on the surface chemistry, structure, and catalytic performance in process of contaminant removal. Samples were prepared via solid-state reaction (BTNO-900) and molten salt synthesis (BTNO-800), leading to distinct morphologies and defect distributions. SEM imaging revealed that BTNO-900 consists of agglomerated, irregular particles, while BTNO-800 exhibits well-faceted, plate-like grains. Nitrogen adsorption analysis showed that the molten-synthesized sample possesses a significantly higher specific surface area (5.9 m2/g vs. 1.4 m2/g) and slightly larger average pore diameter (2.8 nm vs. 2.6 nm). High-resolution XPS revealed systematic shifts in binding energies for Bi 4f, Ti 2p, Nb 3d, and O 1s peaks in BTNO-900, accompanied by a higher content of adsorbed oxygen species (57% vs. 7.2%), indicating an increased concentration of oxygen vacancies and surface hydroxylation due to the solid-state synthesis route. Catalytic testing demonstrated that BTNO exhibits enhanced piezocatalytic efficiency of Methylene Blue degradation (~78% for both samples), whereas BTNO-800 shows significantly reduced photocatalytic activity (45.6%) compared to BTNO-900 (84.1%), suggesting recombination effects dominate in the more defective material. Synergism of light and mechanical stress results in piezophotocatalytic degradation for both samples (92.4% and 93.4%, relatively). These findings confirm that synthesis-controlled defect engineering is a key parameter for optimizing the photocatalytic behavior of Bi3TiNbO9-based layered oxides and crucial role of its piezocatalytic activity. Full article
Show Figures

Graphical abstract

28 pages, 758 KB  
Review
Advances in Computational Modeling of Scaffolds for Bone Tissue Engineering: A Narrative Review of the Current Approaches and Challenges
by Ourania Ntousi, Maria Roumpi, Panagiotis K. Siogkas, Demosthenes Polyzos, Ioannis Kakkos, George K. Matsopoulos and Dimitrios I. Fotiadis
Biomechanics 2025, 5(4), 76; https://doi.org/10.3390/biomechanics5040076 - 2 Oct 2025
Viewed by 682
Abstract
Background/Objectives: The process of designing and fabricating bone tissue engineering scaffolds is a multi-faceted and intricate process. The scaffold is designed to attach cells to the required volume of regeneration to subsequently migrate, grow, differentiate, proliferate, and consequently develop tissue within the scaffold [...] Read more.
Background/Objectives: The process of designing and fabricating bone tissue engineering scaffolds is a multi-faceted and intricate process. The scaffold is designed to attach cells to the required volume of regeneration to subsequently migrate, grow, differentiate, proliferate, and consequently develop tissue within the scaffold which, in time, will degrade, leaving just the regenerated tissue. The fabrication of tissue scaffolds requires adapting the properties of the scaffolds to mimic, to a large extent, the specific characteristics of each type of bone tissue. However, there are some significant limitations due to the constrained scaffolds’ architecture and structural features that inhibit the optimization of bone scaffolds. Methods: To overcome these shortcomings, new computational approaches for scaffold design have been adopted through currently adopted computational methods such as finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI). Results: This paper presents a narrative review of the state of the art in the field of parametric numerical modeling and computational fluid dynamics geometry-based models used in bone tissue engineering. Computational methods for scaffold design improve the process of constructing scaffolds and contribute to tissue engineering. Conclusions: This paper highlights the benefits of computational methods on employing scaffolds with different architectures and inherent characteristics that can potentially contribute to a favorable environment for hosting cells and predict their behavior and response. By recognizing these benefits, researchers can enhance and optimize scaffold properties for future advancements in tissue engineering research that will lead to more accurate and robust outcomes. Full article
(This article belongs to the Section Tissue and Vascular Biomechanics)
Show Figures

Figure 1

34 pages, 2435 KB  
Article
Bridging Intuition and Data: A Unified Bayesian Framework for Optimizing Unmanned Aerial Vehicle Swarm Performance
by Ruiguo Zhong, Zidong Wang, Hao Wang, Yanghui Jin, Shuangxia Bai and Xiaoguang Gao
Entropy 2025, 27(9), 897; https://doi.org/10.3390/e27090897 - 25 Aug 2025
Viewed by 750
Abstract
The swift growth of the low-altitude economic ecosystem and Unmanned Aerial Vehicle (UAV) swarm applications across diverse sectors presents significant challenges for engineering managers in terms of effective performance evaluation and operational optimization. Traditional evaluation methods often struggle with the inherent complexities, dynamic [...] Read more.
The swift growth of the low-altitude economic ecosystem and Unmanned Aerial Vehicle (UAV) swarm applications across diverse sectors presents significant challenges for engineering managers in terms of effective performance evaluation and operational optimization. Traditional evaluation methods often struggle with the inherent complexities, dynamic nature, and multi-faceted performance criteria of UAV swarms. This study introduces a novel Bayesian Network (BN)-based multicriteria decision-making framework that systematically integrates expert intuition with real-time data. By employing variance decomposition, the framework establishes theoretically grounded, bidirectional mapping between expert-assigned weights and the network’s probabilistic parameters, creating a unified model of subjective expertise and objective data. Comprehensive validation demonstrates the framework’s efficacy in identifying critical performance drivers, including environmental awareness, communication ability, and a collaborative decision. Ultimately, our work provides engineering managers with a transparent and adaptive tool, offering actionable insights to inform resource allocation, guide technology adoption, and enhance the overall operational effectiveness of complex UAV swarm systems. Full article
(This article belongs to the Special Issue Bayesian Networks and Causal Discovery)
Show Figures

Figure 1

19 pages, 7045 KB  
Article
An Iterative Physical Acoustics Method for Modeling Acoustic Scattering by Penetrable Objects
by Wenhuan Wang, Yi Xie, Bin Wang and Jun Fan
J. Mar. Sci. Eng. 2025, 13(9), 1611; https://doi.org/10.3390/jmse13091611 - 23 Aug 2025
Viewed by 507
Abstract
Efficient modeling of acoustic scattering from water-filled thin shells remains challenging due to prohibitive computational costs of rigorous methods and oversimplifications in ray-based approximations. This paper develops an iterative physical acoustics (IPA) method, presenting simple and explicit formulations for scattering by penetrable objects [...] Read more.
Efficient modeling of acoustic scattering from water-filled thin shells remains challenging due to prohibitive computational costs of rigorous methods and oversimplifications in ray-based approximations. This paper develops an iterative physical acoustics (IPA) method, presenting simple and explicit formulations for scattering by penetrable objects immersed in fluids. The method combines Kirchhoff integral frameworks with thin-plate effective boundary conditions, discretizes mid-surfaces into triangular facets, and iteratively converges pressure fields to characterize the mechanisms of multiple reflections and transmissions. Validated against analytical solutions, numerical simulations, and scaled experiments, IPA provides comprehensive field predictions encompassing internal cavity fields, external near-fields, and far-field scattering patterns within a unified framework. It achieves significant computational efficiency gains while maintaining engineering practicality, successfully reproducing distant-range highlights from these mechanisms in time-domain spectra. Limitations are observed at low frequencies and high-curvature regions where elastic-wave effects become significant. The IPA framework enables engineering-efficient scattering analysis for complex thin-shell structures. Full article
(This article belongs to the Special Issue Underwater Acoustic Field Modulation Technology)
Show Figures

Figure 1

22 pages, 8987 KB  
Article
Microfluidic Synthesis of Magnetic Silica Aerogels for Efficient Pesticide Removal from Water
by Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Alexandra-Cătălina Bîrcă, Denisa Alexandra Florea, Marius Rădulescu, Bogdan-Ștefan Vasile, Roxana Trușcă, Dan-Eduard Mihaiescu, Tony Hadibarata and Alexandru-Mihai Grumezescu
Gels 2025, 11(6), 463; https://doi.org/10.3390/gels11060463 - 17 Jun 2025
Cited by 1 | Viewed by 1302
Abstract
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly [...] Read more.
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly correlated to their morpho-structural features, special consideration must be allocated to the fabrication method. An emerging technique for producing nanostructured materials with tailored morphology and dimensions is represented by continuous-flow microfluidics. In this context, this work explores the synergic combination of aerogel-based materials with microfluidic synthesis platforms to generate advanced nanocomposite adsorbents for water decontamination. Specifically, this study presents the novel synthesis of a magnetic silica-based aerogel using a custom-designed 3D microfluidic platform, offering enhanced control over nanoparticle incorporation and gelation compared to conventional sol–gel techniques. The resulting gel was further dried via supercritical CO2 extraction to preserve its unique nanostructure. The multi-faceted physicochemical investigations (XRD, DLS, FT-IR, RAMAN, SEM, and TEM) confirmed the material’s uniform morphology, high porosity, and surface functionalization. The HR-MS FT-ICR analysis has also demonstrated the advanced material’s adsorption capacity for various pesticides, suggesting its adequacy for further environmental applications. An exceptional 93.7% extraction efficiency was registered for triazophos, underscoring the potential of microfluidic synthesis approaches in engineering advanced, eco-friendly adsorbent materials for water decontamination of relevant organic pollutants. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

18 pages, 8696 KB  
Article
In Situ Ceramic Phase Reinforcement via Short-Pulsed Laser Cladding for Enhanced Tribo-Mechanical Behavior of Metal Matrix Composite FeNiCr-B4C (5 and 7 wt.%) Coatings
by Artem Okulov, Olga Iusupova, Alexander Stepchenkov, Vladimir Zavalishin, Elena Marchenkova, Kun Liu, Jie Li, Tushar Sonar, Aleksey Makarov, Yury Korobov, Evgeny Kharanzhevskiy, Ivan Zhidkov, Yulia Korkh, Tatyana Kuznetsova, Pei Wang and Yuefei Jia
Technologies 2025, 13(6), 231; https://doi.org/10.3390/technologies13060231 - 4 Jun 2025
Viewed by 677
Abstract
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced [...] Read more.
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced X-ray diffraction/Raman spectroscopy techniques, provided a comprehensive characterization of the coatings’ behavior under mechanical and scratch testing, shedding light on the mechanisms governing their wear resistance. Specifically, microstructural analysis revealed uniform coatings with a columnar structure and controlled defect density, showcasing an average thickness of 250 ± 20 μm and a transition zone of 80 ± 10 μm. X-ray diffraction and Raman spectroscopy confirmed the presence of α-Fe (Im-3m), γ-FeNiCr (Fm-3m), Fe2B (I-42m), and B4C (R-3m) phases, highlighting the successful incorporation of B4C reinforcement. The addition of 5 and 7 wt.% B4C significantly increased microhardness, showing enhancements up to 201% compared to the B4C-free FeNiCr coating and up to 351% relative to the AISI 1040 steel substrate, respectively. Boron carbide addition promoted a synergistic strengthening effect between the in situ formed Fe2B and the retained B4C phases. Furthermore, scratch test analysis clarified improved wear resistance, excellent adhesion, and a tailored hardness gradient. These findings demonstrated that optimized short-pulsed laser cladding, combined with moderate B4C reinforcement, is a promising route for creating robust, high-strength FeNiCr-B4C MMC coatings suitable for demanding engineering applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

14 pages, 4502 KB  
Article
Crystal Facet Engineering of 2D SnSe2 Photocatalysts for Efficient Degradation of Malachite Green Organic Dyes
by Liying Wen, Fangfang Cheng, Xinyu Zhao, Lin Han, Dongye Zhao and Shifeng Wang
Nanomaterials 2025, 15(11), 850; https://doi.org/10.3390/nano15110850 - 2 Jun 2025
Cited by 2 | Viewed by 993
Abstract
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor [...] Read more.
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor materials. While their narrow bandgap and unique structure confer exceptional optoelectronic properties, prior research has predominantly emphasized heterojunction systems. We synthesized SnSe2 with well-defined hexagonal plate-like structures via a one-step hydrothermal method by precisely controlling precursor ratios (Sn:Se = 1:2) and reaction temperatures (120–240 °C). Systematic investigations revealed that hydrothermal temperature modulates the van der Waals forces between crystal planes, enabling selective exposure of (001) and (011) facets, as confirmed by XRD, SEM, and XPS analyses, thereby influencing the exposure of specific crystal facets. Experiments demonstrated that pure SnSe2 synthesized at 150 °C achieved complete degradation of MG (40 mg/L) within 60 min under visible light irradiation, exhibiting a reaction rate constant (k) of 0.099 min⁻¹. By regulating the exposure ratio of the active (001)/(011) facets, we demonstrate that crystal facet engineering directly optimizes carrier separation efficiency, thereby substantially enhancing the catalytic performance of standalone SnSe2. This work proposes a novel strategy for designing noble-metal-free, high-efficiency standalone photocatalysts, providing crystal facet-dependent mechanistic insights for the targeted degradation of industrial dyes. Full article
Show Figures

Graphical abstract

14 pages, 3464 KB  
Article
Dual-Engineering Tailored Co3O4 Hollow Microspheres Assembled by Nanosheets for Boosting Oxygen Evolution Reaction
by Yinghan Cui, Shiduo Yang, Jianqiang Zhu, Zaidong Wang, Sen Chen, Jian Qi and Huan Wang
Molecules 2025, 30(10), 2181; https://doi.org/10.3390/molecules30102181 - 16 May 2025
Cited by 1 | Viewed by 676
Abstract
The development of efficient, low-cost electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable hydrogen production through water splitting. This study presents a dual-engineering strategy to enhance the OER performance of Co3O4 by synthesizing hollow microspheres assembled [...] Read more.
The development of efficient, low-cost electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable hydrogen production through water splitting. This study presents a dual-engineering strategy to enhance the OER performance of Co3O4 by synthesizing hollow microspheres assembled from nanosheets (HMNs) with abundant oxygen vacancies and highly active crystal facet exposure. Through a modified one-step hydrothermal process, Co3O4 HMNs with exposed (111) and (100) crystal facets were successfully fabricated, demonstrating superior OER activity compared to Co3O4 nanocubes (NCs) with only (100) facet exposure. The optimized Co3O4-5% HMNs exhibited a low overpotential of 330 mV at 10 mA cm−2 and a Tafel slope of 69 mV dec−1. The enhanced performance was attributed to the synergistic effects of crystal facet engineering and defect engineering, which optimized the Co-O bond energy, increased the number of active sites, and improved conductivity. The unique hollow structure further facilitated mass transport and prevented nanosheet stacking, exposing more edge sites for catalytic reactions. This work highlights the potential of geometric and electronic structure modulation in designing high-performance OER catalysts for sustainable energy applications. Full article
Show Figures

Graphical abstract

42 pages, 2328 KB  
Article
A Blockchain-Driven Cyber-Systemic Approach to Hybrid Reality
by Massimiliano Pirani, Alessandro Cucchiarelli, Tariq Naeem and Luca Spalazzi
Systems 2025, 13(4), 294; https://doi.org/10.3390/systems13040294 - 17 Apr 2025
Cited by 1 | Viewed by 1206
Abstract
Hybrid Reality (HyR) is the place where human beings and artificial entities interact. HyR modelling relies simultaneously on the cognitive power of humans and artificial entities. In addition, HyR is an evolving paradigm where natural and artificial intelligence can intervene in processes that [...] Read more.
Hybrid Reality (HyR) is the place where human beings and artificial entities interact. HyR modelling relies simultaneously on the cognitive power of humans and artificial entities. In addition, HyR is an evolving paradigm where natural and artificial intelligence can intervene in processes that demand proper control. This work aims to lay the foundation for a systematic approach to understanding and modeling present and future human–machine symbiosis under a systems engineering perspective. It introduces a novel cyber-systemic methodology for managing the engineering of purposeful regulation for HyR phenomena by integrating the Blockchain technology framework and principled methods of cybernetics. This formalized interdisciplinary methodology integrates system dynamics, agent-based computation, artificial intelligence, and Blockchain-powered security and safety layers. The Blockchain framework, seen under a new cyber-systemic perspective, provides new opportunities and tools for the organization and control of HyR. A Cybersystemic Security Kit is here defined as a major component of the methodology, representing a candidate to offer viable breakthroughs in the field with respect to the best practices of Industry 5.0 when a systemically augmented perspective is adopted. Ongoing research and experimentation in the real field of sustainable supply chains is used as a motivating use case to support the proposed position. The industrial target is the primary one in its multi-dimensional and multi-faceted sustainability impacts, but this study will also reveal other potential societal areas of intervention. Full article
(This article belongs to the Special Issue CyberSystemic Transformations for Social Good)
Show Figures

Figure 1

27 pages, 9284 KB  
Review
Recent Strategies for Ni3S2-Based Electrocatalysts with Enhanced Hydrogen Evolution Performance: A Tutorial Review
by Yucheng Shen, Jixing Bai, Huijie Wei, Jun Gu and Qi Cao
Int. J. Mol. Sci. 2025, 26(8), 3771; https://doi.org/10.3390/ijms26083771 - 16 Apr 2025
Cited by 5 | Viewed by 1461
Abstract
Water electrolysis represents one of the most environmentally friendly methods for hydrogen production, while its overall efficiency is primarily governed by the electrocatalyst. Nickel sulfides, e.g., Ni3S2, are considered to be highly promising catalysts for the hydrogen evolution reaction [...] Read more.
Water electrolysis represents one of the most environmentally friendly methods for hydrogen production, while its overall efficiency is primarily governed by the electrocatalyst. Nickel sulfides, e.g., Ni3S2, are considered to be highly promising catalysts for the hydrogen evolution reaction (HER) due to their distinctive chemical structure. However, the practical application of Ni3S2-based electrocatalysts is hindered by unsatisfactory high overpotential in the HER and weakened catalytic performance under alkaline conditions. Therefore, in this regard, further research on Ni3S2-based catalysts is being carried out to tackle these challenges. This review provides a comprehensive survey of the latest advancements in Ni3S2-based in improving the HER performance of Ni3S2-based electrocatalysts. The review may offer some inspiration for the rational design and synthesis of novel transition metal-based catalysts with enhanced water electrolysis performance. Full article
Show Figures

Figure 1

23 pages, 494 KB  
Article
Unleashing the Power of Biologics: Exploring the Governance and Regulation of Membrane-Based Virus Purification (MVP) Technologies
by Ben Galloway, Patrick A. Stewart, Camille Gilmore, Victor Akakpo, Nataliia Borozdina, Geoboo Song, Sumith Ranil Wickramasinghe, Xianghong Qian, Asingsa Lakmini Weerasinghe Wickramasinghe Arachchige and Sarah W. Harcum
Biologics 2025, 5(2), 9; https://doi.org/10.3390/biologics5020009 - 26 Mar 2025
Viewed by 1461
Abstract
Background: Biologics is an exciting and growing area of medicine. Within the larger field of biologics, the use of viral vectors and virus-like particles (VLPs) is increasingly common, making it crucial to develop innovative and practical unit operations for the related purification process. [...] Read more.
Background: Biologics is an exciting and growing area of medicine. Within the larger field of biologics, the use of viral vectors and virus-like particles (VLPs) is increasingly common, making it crucial to develop innovative and practical unit operations for the related purification process. Objective: Some scientists and engineers propose that membrane-based downstream virus purification (MVP) platforms would allow for more scalable and cost-effective production of these critical particles. However, the so-cial, political, and ethical implications of these advancements remain largely unex-plored. This paper aims to explore various pivotal facets of MVP technology govern-ance and regulations within the U.S. context, including (1) government policy ar-rangements related to the implementation of the technologies, (2) stakeholder atti-tudes, policy preferences, and behaviors, and (3) the fundamental factors that shape these attitudes, policy preferences, and behaviors. Methods: In doing so, we analyze publicly available federal and state government documents pertaining to biomanu-facturing, healthcare, and legislative attempts. Additionally, we will perform a stake-holder analysis on relevant industries, healthcare service providers, and recipients. Conclusions: Our goal is to outline the socio-political, ethical, and regulatory factors pertaining to the regulation and governance of these technologies. Full article
Show Figures

Figure 1

23 pages, 3130 KB  
Article
Examining Key Barriers and Relevant Promotion Strategies of Green Buildings Adoption in Tanzania
by Andrew Ikingura, Anna M. Grabiec and Bartosz Radomski
Energies 2025, 18(5), 1081; https://doi.org/10.3390/en18051081 - 23 Feb 2025
Cited by 1 | Viewed by 1701
Abstract
Green buildings (GBs) offer significant potential to address environmental challenges and support nations to meet their sustainable development goals. Numerous developed countries have prioritized green building technologies (GBTs) adoption in their construction industry, whilst other nations are still hampered by several issues that [...] Read more.
Green buildings (GBs) offer significant potential to address environmental challenges and support nations to meet their sustainable development goals. Numerous developed countries have prioritized green building technologies (GBTs) adoption in their construction industry, whilst other nations are still hampered by several issues that slow down the level of their adoption. To effectively promote the adoption of GBTs, it is crucial to identify the key barriers and to prioritize relevant promotion strategies suitable to be emphasized towards specific geographic locations. This study aims to examine the key barriers hindering the adoption of GBTs and recommend suitable strategies to promote GBT adoption in the context of Tanzania. A questionnaire survey was carried out with 61 experts (architects, engineers, urban planners, economists, and green technologists) from Tanzania working in the field related to green buildings. A ranking analysis technique was used to rank the barriers and relevant promotion strategies to be prioritized. Measures of descriptive statistics, including mean and standard deviation, were carried out to sort the barriers and promotion strategies in the order of their potentiality. A Spearman’s rank correlation test was conducted to verify the consistency of the mean scores and derived ranks, and cluster analysis was also performed to group factors that share similar characteristics into the same clusters. Unfamiliarity with GBTs; a lack of expertise or few professionals in the GB field; the presence of few successful demonstrative projects to convince clients; and a low promotion of GBTs together with limited user knowledge were noted as the most critical barriers hindering the adoption of GBTs in Tanzania. Cluster analysis shows that knowledge-related barriers are majorly hindering the adoption of GBTs in Tanzania. Thus, a multi-faceted approach of institutional interventions and broadening public awareness should majorly be taken into account simultaneously to enhance adoption rates. The analysis also revealed that the establishment of an institutional framework; educational programs for policymakers, developers, and contractors related to GB guidelines; providing awareness to clients through advertisements; and imposing mandatory regulations in shifting towards GBTs are the most relevant promotion strategies to widen the adoption of GBs. The findings of this study provide valuable insights to various stakeholders for policy development in the construction industry and the future implementation of GBs in Tanzania. Full article
Show Figures

Figure 1

22 pages, 958 KB  
Article
Nonparametric Probability Density Function Estimation Using the Padé Approximation
by Hamid Reza Aghamiri, S. Abolfazl Hosseini, James R. Green and B. John Oommen
Algorithms 2025, 18(2), 88; https://doi.org/10.3390/a18020088 - 6 Feb 2025
Viewed by 1562
Abstract
Estimating the Probability Density Function (PDF) of observed data is crucial as a problem in its own right, and also for diverse engineering applications. This paper utilizes two powerful mathematical tools, the concept of moments and the relatively little-known Padé approximation to achieve [...] Read more.
Estimating the Probability Density Function (PDF) of observed data is crucial as a problem in its own right, and also for diverse engineering applications. This paper utilizes two powerful mathematical tools, the concept of moments and the relatively little-known Padé approximation to achieve this. On the one hand, moments encapsulate crucial information that is central to both the “time-” and “frequency-”domain representations of the data. On the other hand, the Padé approximation provides an effective means of obtaining a convergent series from the data. In this paper, we invoke these established tools to estimate the PDF. As far as we know, the theoretical results that we have proven, and the experimental results that confirm them, are novel and rather pioneering. The method we propose is nonparametric. It leverages the concept of using the moments of the sample data—drawn from the unknown PDF that we aim to estimate—to reconstruct the original PDF. This is achieved through the application of the Padé approximation. Apart from the theoretical analysis, we have also experimentally evaluated the validity and efficiency of our scheme. The Padé approximation is asymmetric. The most unique facet of our work is that we have utilized this asymmetry to our advantage by working with two mirrored versions of the data to obtain two different versions of the PDF. We have then effectively “superimposed” them to yield the final composite PDF. We are not aware of any other research that utilizes such a composite strategy, in any signal processing domain. To evaluate the performance of the proposed method, we have employed synthetic samples obtained from various well-known distributions, including mixture densities. The accuracy of the proposed method has also been compared with that gleaned by several State-Of-The-Art (SOTA) approaches. The results that we have obtained underscore the robustness and effectiveness of our method, particularly in scenarios where the sample sizes are considerably reduced. Thus, this research confirms how the SOTA of estimating nonparametric PDFs can be enhanced by the Padé approximation, offering notable advantages over existing methods in terms of accuracy when faced with limited data. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (2nd Edition))
Show Figures

Figure 1

50 pages, 9829 KB  
Review
Substrate Engineering of Single Atom Catalysts Enabled Next-Generation Electrocatalysis to Power a More Sustainable Future
by Saira Ajmal, Junfeng Huang, Jianwen Guo, Mohammad Tabish, Muhammad Asim Mushtaq, Mohammed Mujahid Alam and Ghulam Yasin
Catalysts 2025, 15(2), 137; https://doi.org/10.3390/catal15020137 - 1 Feb 2025
Cited by 5 | Viewed by 2967
Abstract
Single-atom catalysts (SACs) are presently recognized as cutting-edge heterogeneous catalysts for electrochemical applications because of their nearly 100% utilization of active metal atoms and having well-defined active sites. In this regard, SACs are considered renowned electrocatalysts for electrocatalytic O2 reduction reaction (ORR), [...] Read more.
Single-atom catalysts (SACs) are presently recognized as cutting-edge heterogeneous catalysts for electrochemical applications because of their nearly 100% utilization of active metal atoms and having well-defined active sites. In this regard, SACs are considered renowned electrocatalysts for electrocatalytic O2 reduction reaction (ORR), O2 evolution reaction (OER), H2 evolution reaction (HER), water splitting, CO2 reduction reaction (CO2RR), N2 reduction reaction (NRR), and NO3 reduction reaction (NO3RR). Extensive research has been carried out to strategically design and produce affordable, efficient, and durable SACs for electrocatalysis. Meanwhile, persistent efforts have been conducted to acquire insights into the structural and electronic properties of SACs when stabilized on an adequate matrix for electrocatalytic reactions. We present a thorough and evaluative review that begins with a comprehensive analysis of the various substrates, such as carbon substrate, metal oxide substrate, alloy-based substrate, transition metal dichalcogenides (TMD)-based substrate, MXenes substrate, and MOF substrate, along with their metal-support interaction (MSI), stabilization, and coordination environment (CE), highlighting the notable contribution of support, which influences their electrocatalytic performance. We discuss a variety of synthetic methods, including bottom-up strategies like impregnation, pyrolysis, ion exchange, atomic layer deposition (ALD), and electrochemical deposition, as well as top-down strategies like host-guest, atom trapping, ball milling, chemical vapor deposition (CVD), and abrasion. We also discuss how diverse regulatory strategies, including morphology and vacancy engineering, heteroatom doping, facet engineering, and crystallinity management, affect various electrocatalytic reactions in these supports. Lastly, the pivotal obstacles and opportunities in using SACs for electrocatalytic processes, along with fundamental principles for developing fascinating SACs with outstanding reactivity, selectivity, and stability, have been highlighted. Full article
(This article belongs to the Special Issue Feature Review Papers in Electrocatalysis)
Show Figures

Figure 1

12 pages, 739 KB  
Review
iPSC Technology Revolutionizes CAR-T Cell Therapy for Cancer Treatment
by Jiepu Zong and Yan-Ruide Li
Bioengineering 2025, 12(1), 60; https://doi.org/10.3390/bioengineering12010060 - 13 Jan 2025
Cited by 6 | Viewed by 4635
Abstract
Chimeric Antigen Receptor (CAR)-engineered T (CAR-T) cell therapy represents a highly promising modality within the domain of cancer treatment. CAR-T cell therapy has demonstrated notable efficacy in the treatment of hematological malignancies, solid tumors, and various infectious diseases. However, current CAR-T cell therapy [...] Read more.
Chimeric Antigen Receptor (CAR)-engineered T (CAR-T) cell therapy represents a highly promising modality within the domain of cancer treatment. CAR-T cell therapy has demonstrated notable efficacy in the treatment of hematological malignancies, solid tumors, and various infectious diseases. However, current CAR-T cell therapy is autologous, which presents challenges related to high costs, time-consuming manufacturing processes, and the necessity for careful patient selection. A potential resolution to this restriction could be found by synergizing CAR-T technology with the induced pluripotent stem cell (iPSC) technology. iPSC technology has the inherent capability to furnish an inexhaustible reservoir of T cell resources. Experimental evidence has demonstrated the successful generation of various human CAR-T cells using iPSC technology, showcasing high yield, purity, robustness, and promising tumor-killing efficacy. Importantly, this technology enables the production of clinical-grade CAR-T cells, significantly reducing manufacturing costs and time, and facilitating their use as allogeneic cell therapies to treat multiple cancer patients simultaneously. In this review, we aim to elucidate essential facets of current cancer therapy, delineate its utility, enumerate its advantages and drawbacks, and offer an in-depth evaluation of a novel and pragmatic approach to cancer treatment. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

Back to TopTop