Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,600)

Search Parameters:
Keywords = fabric construction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2425 KiB  
Article
Single-Layer High-Efficiency Metasurface for Multi-User Signal Enhancement
by Hui Jin, Peixuan Zhu, Rongrong Zhu, Bo Yang, Siqi Zhang and Huan Lu
Micromachines 2025, 16(8), 911; https://doi.org/10.3390/mi16080911 (registering DOI) - 6 Aug 2025
Abstract
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. [...] Read more.
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. A high-efficiency metasurface array is fabricated based on PCB technology, which utilizes subwavelength units for wide-range phase modulation to construct a multi-user energy convergence model in the WiFi band. By optimizing phase gradients through the geometric phase principle, the metasurface achieves collaborative wavefront manipulation for multiple target regions with high transmission efficiency, reducing system complexity compared to traditional multi-layer structures. Measurements in a microwave anechoic chamber and tests in an office environment demonstrate that the metasurface can simultaneously create signal enhancement zones for multiple users, featuring stable focusing capability and environmental adaptability. This lightweight design facilitates deployment in dense networks, providing an effective solution for signal optimization in indoor distributed systems and IoT communications. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

24 pages, 11545 KiB  
Article
Workpiece Coordinate System Measurement for a Robotic Timber Joinery Workflow
by Francisco Quitral-Zapata, Rodrigo García-Alvarado, Alejandro Martínez-Rocamora and Luis Felipe González-Böhme
Buildings 2025, 15(15), 2712; https://doi.org/10.3390/buildings15152712 - 31 Jul 2025
Viewed by 126
Abstract
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an [...] Read more.
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an eye-in-hand configuration on a KUKA industrial robot. The proposed algorithm applies a geometric method that strategically crops the point cloud and fits planes to the workpiece surfaces to define a reference frame, calculate the corresponding transformation between coordinate systems, and measure the cross-section of the workpiece. This enables reliable toolpath generation by dynamically updating WCS and effectively accommodating real-world geometric deviations in timber components. The workflow includes camera-to-robot calibration, point cloud acquisition, robust detection of workpiece features, and precise alignment of the WCS. Experimental validation confirms that the proposed method is efficient and improves milling accuracy. By dynamically identifying the workpiece geometry, the system successfully addresses challenges posed by irregular timber shapes, resulting in higher accuracy for timber joints. This method contributes to advanced manufacturing strategies in robotic timber construction and supports the processing of diverse workpiece geometries, with potential applications in civil engineering for building construction through the precise fabrication of structural timber components. Full article
(This article belongs to the Special Issue Architectural Design Supported by Information Technology: 2nd Edition)
Show Figures

Figure 1

40 pages, 1638 KiB  
Review
Cardiac Tissue Bioprinting: Integrating Structure and Functions Through Biomimetic Design, Bioinks, and Stimulation
by Silvia Marino, Reem Alheijailan, Rita Alonaizan, Stefano Gabetti, Diana Massai and Maurizio Pesce
Gels 2025, 11(8), 593; https://doi.org/10.3390/gels11080593 - 31 Jul 2025
Viewed by 331
Abstract
Pathologies of the heart (e.g., ischemic disease, valve fibrosis and calcification, progressive myocardial fibrosis, heart failure, and arrhythmogenic disorders) stem from the irreversible deterioration of cardiac tissues, leading to severe clinical consequences. The limited regenerative capacity of the adult myocardium and the architectural [...] Read more.
Pathologies of the heart (e.g., ischemic disease, valve fibrosis and calcification, progressive myocardial fibrosis, heart failure, and arrhythmogenic disorders) stem from the irreversible deterioration of cardiac tissues, leading to severe clinical consequences. The limited regenerative capacity of the adult myocardium and the architectural complexity of the heart present major challenges for tissue engineering. However, recent advances in biomaterials and biofabrication techniques have opened new avenues for recreating functional cardiac tissues. Particularly relevant in this context is the integration of biomimetic design principles, such as structural anisotropy, mechanical and electrical responsiveness, and tissue-specific composition, into 3D bioprinting platforms. This review aims to provide a comprehensive overview of current approaches in cardiac bioprinting, with a focus on how structural and functional biomimicry can be achieved using advanced hydrogels, bioprinting techniques, and post-fabrication stimulation. By critically evaluating materials, methods, and applications such as patches, vasculature, valves, and chamber models, we define the state of the art and highlight opportunities for developing next-generation bioengineered cardiac constructs. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (3rd Edition))
Show Figures

Figure 1

18 pages, 2981 KiB  
Article
Development and Evaluation of Mesoporous SiO2 Nanoparticle-Based Sustained-Release Gel Breaker for Clean Fracturing Fluids
by Guiqiang Fei, Banghua Liu, Liyuan Guo, Yuan Chang and Boliang Xue
Polymers 2025, 17(15), 2078; https://doi.org/10.3390/polym17152078 - 30 Jul 2025
Viewed by 232
Abstract
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous [...] Read more.
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous silica (MSN) carriers with distinct pore sizes are synthesized via the sol-gel method using CTAB, P123, and F127 as structure-directing agents, respectively. Following hydrophobic modification with octyltriethoxysilane, n-butanol breaker agents are loaded into the carriers, and a temperature-responsive controlled-release system is constructed via paraffin coating technology. The pore size distribution was analyzed by the BJH model, confirming that the average pore diameters of CTAB-MSNs, P123-MSNs, and F127-MSNs were 5.18 nm, 6.36 nm, and 6.40 nm, respectively. The BET specific surface areas were 686.08, 853.17, and 946.89 m2/g, exhibiting an increasing trend with the increase in pore size. Drug-loading performance studies reveal that at the optimal loading concentration of 30 mg/mL, the loading efficiencies of n-butanol on the three carriers reach 28.6%, 35.2%, and 38.9%, respectively. The release behavior study under simulated reservoir temperature conditions (85 °C) reveals that the paraffin-coated system exhibits a distinct three-stage release pattern: a lag phase (0–1 h) caused by paraffin encapsulation, a rapid release phase (1–8 h) induced by high-temperature concentration diffusion, and a sustained release phase (8–30 h) attributed to nano-mesoporous characteristics. This intelligent controlled-release breaker demonstrates excellent temporal compatibility with coalbed methane fracturing processes, providing a novel technical solution for the efficient and clean development of coalbed methane. Full article
Show Figures

Figure 1

21 pages, 1652 KiB  
Article
Antimicrobial and Physicochemical Properties of Hemicellulose-Based Films Incorporating Carvacrol
by Syed Ammar Hussain, Brajendra K. Sharma, Phoebe X. Qi, Madhav P. Yadav and Tony Z. Jin
Polymers 2025, 17(15), 2073; https://doi.org/10.3390/polym17152073 - 29 Jul 2025
Viewed by 316
Abstract
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent [...] Read more.
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent through micro-emulsification produced by high-pressure homogenization (M-films). For comparison, films with the same formula were constructed using coarse emulsions (C-films) without high-pressure homogenization. These films were investigated for their antimicrobial efficacy, mechanical and barrier properties, and physicochemical attributes to explore their potential as sustainable antimicrobial packaging solutions. The M-films demonstrated superior antimicrobial activity, achieving reductions exceeding 4 Log CFU/mL against Listeria monocytogenes, Escherichia coli, and Salmonella enterica, compared to the C-films. High-pressure homogenization significantly reduced the emulsion’s particle size, from 11.59 to 2.55 μm, and considerably enhanced the M-film’s uniformity, hydrophobicity, and structural quality. Most importantly, the M-films exhibited lower oxygen transmission (35.14 cc/m2/day) and water vapor transmission rates (52.12 g/m2/day) than the C-films at 45.1 and 65.5 cc/m2/day, respectively, indicating superior protection against gas and moisture diffusion. Markedly improved mechanical properties, including foldability, toughness, and bubble-free surfaces, were also observed, making the M-films suitable for practical applications. This study highlights the potential of high-pressure homogenization as a method for enhancing the functional properties of hemicellulose-based films (i.e., M-films). The fabricated films offer a viable alternative to conventional plastic packaging, paving the way for safer and greener solutions tailored to modern industry needs. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

25 pages, 5536 KiB  
Review
Progress in Bi2WO6-Based Materials for Electrochemical Sensing and Supercapacitor Applications
by Khursheed Ahmad, Dhanabalan Karmegam and Tae Hwan Oh
Molecules 2025, 30(15), 3149; https://doi.org/10.3390/molecules30153149 - 28 Jul 2025
Viewed by 273
Abstract
Recently, the design and fabrication of novel electrode materials for electrochemical and electronic devices have received the widespread attention of the scientific community. In particular, electrochemical sensors and supercapacitors (SCs) involve the use of catalysts, which can enhance the electrochemical reactions at the [...] Read more.
Recently, the design and fabrication of novel electrode materials for electrochemical and electronic devices have received the widespread attention of the scientific community. In particular, electrochemical sensors and supercapacitors (SCs) involve the use of catalysts, which can enhance the electrochemical reactions at the surface of the electrode. Bismuth tungstate (Bi2WO6) is a cost-effective and efficient electrode material with decent optoelectronic properties and stability. The properties of Bi2WO6 can be improved by incorporating carbon-based materials, and the resulting composite may be a promising electrode material for electrochemical sensing and SCs. As per the available reports, Bi2WO6 has been combined with various nanostructured and conductive materials for electrochemical sensing and SC applications. This review discusses synthetic methods for the preparation of Bi2WO6. Progress in the construction of hybrid composites for electrochemical sensing and SC applications is reviewed. The Conclusion section discusses the role of electrode materials and their limitations with future perspectives for electrochemical sensing and SCs. It is believed that the present review may be useful for researchers working on Bi2WO6-based materials for electrochemical sensing and SC applications. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

25 pages, 6357 KiB  
Article
Investigation of a Composite Material Painting Method: Assessment of the Mixture Curing of Organic Coatings
by Anca Barbu, Anamaria Ioana Feier, Edward Petzek and Marilena Gheorghe
Processes 2025, 13(8), 2394; https://doi.org/10.3390/pr13082394 - 28 Jul 2025
Viewed by 278
Abstract
The present investigation highlights the importance of evaluating the painting process on a composite material, namely the Kevlar validation process. Kevlar, a synthetic fabric, is well known for its remarkable strength and durability. Kevlar is used in the construction of spaceships and airplanes [...] Read more.
The present investigation highlights the importance of evaluating the painting process on a composite material, namely the Kevlar validation process. Kevlar, a synthetic fabric, is well known for its remarkable strength and durability. Kevlar is used in the construction of spaceships and airplanes because it is lightweight and five times stronger than steel. This paper will present the methods for measuring paint layer thickness in accordance with EN ISO 2808:2019, confirming that organic coatings have fully cured, and coating thickness will be measured using magnetic currents. This study will also address the topic of determining liquid resistance. The protocols for manufacturing the Kevlar specimen are in accordance with ISO 2812-2:2018 using the water immersion method and structural testing. The investigation also demonstrates the progress of the framing test following immersion in Airbus PTP metal test tubes. Full article
Show Figures

Figure 1

23 pages, 7095 KiB  
Article
Development of a Dual-Input Hybrid Wave–Current Ocean Energy System: Design, Fabrication, and Performance Evaluation
by Farooq Saeed, Tanvir M. Sayeed, Mohammed Abdul Hannan, Abdullah A. Baslamah, Aedh M. Alhassan, Turki K. Alarawi, Osama A. Alsaadi, Muhanad Y. Alharees and Sultan A. Alshehri
J. Mar. Sci. Eng. 2025, 13(8), 1435; https://doi.org/10.3390/jmse13081435 - 27 Jul 2025
Viewed by 429
Abstract
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations [...] Read more.
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations include a custom designed and built dual-rotor generator that accepts independent mechanical input from both subsystems without requiring complex mechanical coupling and a bi-directional mechanical motion rectifier with an overdrive. Numerical simulations using ANSYS AQWA (2024R2) and QBLADE(2.0.4) guided the design optimization of the buoy and turbine, respectively. Wave resource assessment for the Khobar coastline, Saudi Arabia, was conducted using both historical data and field measurements. The prototype was designed and built using readily available 3D-printed components, ensuring cost-effective construction. This mechanically simple system was tested in both laboratory and outdoor conditions. Results showed reliable operation and stable power generation under simultaneous wave and current input. The performance is comparable to that of existing hybrid ocean wave–current energy converters that employ more complex flywheel or dual degree-of-freedom systems. This work provides a validated pathway for low-cost, compact, and modular hybrid ocean energy systems suited for remote coastal applications or distributed marine sensing platforms. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

20 pages, 10028 KiB  
Article
The Fabrication of Cu2O-u/g-C3N4 Heterojunction and Its Application in CO2 Photoreduction
by Jiawei Lu, Yupeng Zhang, Fengxu Xiao, Zhikai Liu, Youran Li, Guiyang Shi and Hao Zhang
Catalysts 2025, 15(8), 715; https://doi.org/10.3390/catal15080715 - 27 Jul 2025
Viewed by 436
Abstract
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. [...] Read more.
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. Graphitic carbon nitride (g-C3N4) was synthesized via thermal polymerization of urea at 550 °C, while pre-dispersed Cu2O derived from urea pyrolysis (Cu2O-u) was prepared by thermal reduction of urea and CuCl2·2H2O at 180 °C. The heterojunction Cu2O-u/g-C3N4 was subsequently constructed through hydrothermal treatment at 180 °C. This heterojunction exhibited a bandgap of 2.10 eV, with dual optical absorption edges at 485 nm and above 800 nm, enabling efficient harvesting of solar light. Under 175 W mercury lamp irradiation, the heterojunction catalyzed liquid-phase CO2 photoreduction to formic acid, acetic acid, and methanol. Its formic acid production activity surpassed that of pristine g-C3N4 by 3.14-fold and TiO2 by 8.72-fold. Reaction media, hole scavengers, and reaction duration modulated product selectivity. In acetonitrile/isopropanol systems, formic acid and acetic acid production reached 579.4 and 582.8 μmol·h−1·gcat−1. Conversely, in water/triethanolamine systems, methanol production reached 3061.6 μmol·h−1·gcat−1, with 94.79% of the initial conversion retained after three cycles. Finally, this work ends with the conclusions of the CO2 photocatalytic reduction to formic acid, acetic acid, and methanol, and recommends prospects for future research. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

22 pages, 7901 KiB  
Article
Research on the Load Characteristics of Aerostatic Spindle Considering Straightness Errors
by Guoqing Zhang, Yu Guo, Guangzhou Wang, Wenbo Wang, Youhua Li, Hechun Yu and Suxiang Zhang
Lubricants 2025, 13(8), 326; https://doi.org/10.3390/lubricants13080326 - 26 Jul 2025
Viewed by 206
Abstract
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model [...] Read more.
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model of the unbalanced air film, considering the straightness errors of the rotor’s radial and thrust surfaces, was constructed. Unlike conventional studies that rely solely on idealized error assumptions, this research integrates actual straightness measurement data into the simulation process, enabling a more realistic and precise prediction of bearing performance. Rotors with different tolerance specifications were fabricated, and static performance simulations were carried out based on the measured geometry data. An experimental setup was built to evaluate the performance of the aerostatic spindle assembled with these rotors. The experimental results were compared with the simulation outcomes, confirming the validity of the proposed model. To further quantify the influence of straightness errors on the static characteristics of aerostatic spindles, ideal functions were used to define representative manufacturing error profiles. The results show that a barrel-shaped error on the radial bearing surface can cause a load capacity variation of up to 46.6%, and its positive effect on air film load capacity is more significant than that of taper or drum shapes. For the thrust bearing surface, a concave-shaped error can lead to a load capacity variation of up to 13.4%, and its enhancement effect is superior to those of the two taper and convex-shaped errors. The results demonstrate that the straightness errors on the radial and thrust bearing surfaces are key factors affecting the radial and axial load capacities of the spindle. Full article
Show Figures

Figure 1

31 pages, 11649 KiB  
Article
Development of Shunt Connection Communication and Bimanual Coordination-Based Smart Orchard Robot
by Bin Yan and Xiameng Li
Agronomy 2025, 15(8), 1801; https://doi.org/10.3390/agronomy15081801 - 25 Jul 2025
Viewed by 194
Abstract
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of [...] Read more.
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of a six-degree-of-freedom bimanual apple-harvesting robot. Leveraging the kinematic architecture of the AUBO-i5 manipulator, three spatial layout configurations for dual-arm systems were evaluated, culminating in the adoption of a “workspace-overlapping Type B” arrangement. A functional prototype of the bimanual apple-harvesting system was subsequently fabricated. The study further involved developing control architectures for two end-effector types: a compliant gripper and a vacuum-based suction mechanism, with corresponding operational protocols established. A networked communication framework for parallel arm coordination was implemented via Ethernet switching technology, enabling both independent and synchronized bimanual operation. Additionally, an intersystem communication protocol was formulated to integrate the robotic vision system with the dual-arm control architecture, establishing a modular parallel execution model between visual perception and motion control modules. A coordinated bimanual harvesting strategy was formulated, incorporating real-time trajectory and pose monitoring of the manipulators. Kinematic simulations were executed to validate the feasibility of this strategy. Field evaluations in modern Red Fuji apple orchards assessed multidimensional harvesting performance, revealing 85.6% and 80% success rates for the suction and gripper-based arms, respectively. Single-fruit retrieval averaged 7.5 s per arm, yielding an overall system efficiency of 3.75 s per fruit. These findings advance the technological foundation for intelligent apple-harvesting systems, offering methodologies for the evolution of precision agronomic automation. Full article
(This article belongs to the Special Issue Smart Farming: Advancing Techniques for High-Value Crops)
Show Figures

Figure 1

34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 529
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

36 pages, 5625 KiB  
Article
Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties
by Wanwan Xia, Yujie Gao, Zhenkai Zhang, Yuhan Jie, Jingwen Zhang, Yueying Cao, Qiuyue Wu, Tao Li, Wentao Ji and Yaoyuan Gao
Sustainability 2025, 17(15), 6753; https://doi.org/10.3390/su17156753 - 24 Jul 2025
Viewed by 359
Abstract
This study employed multiple machine learning and hyperparameter optimization techniques to analyze and predict the mechanical properties of self-drilling screw connections in thin-walled steel–ply–bamboo shear walls, leveraging the renewable and eco-friendly nature of bamboo to enhance structural sustainability and reduce environmental impact. The [...] Read more.
This study employed multiple machine learning and hyperparameter optimization techniques to analyze and predict the mechanical properties of self-drilling screw connections in thin-walled steel–ply–bamboo shear walls, leveraging the renewable and eco-friendly nature of bamboo to enhance structural sustainability and reduce environmental impact. The dataset, which included 249 sets of measurement data, was derived from 51 disparate connection specimens fabricated with engineered bamboo—a renewable and low-carbon construction material. Utilizing factor analysis, a ranking table recording the comprehensive score of each connection specimen was established to select the optimal connection type. Eight machine learning models were employed to analyze and predict the mechanical performance of these connection specimens. Through comparison, the most efficient model was selected, and five hyperparameter optimization algorithms were implemented to further enhance its prediction accuracy. The analysis results revealed that the Random Forest (RF) model demonstrated superior classification performance, prediction accuracy, and generalization ability, achieving approximately 61% accuracy on the test set (the highest among all models). In hyperparameter optimization, the RF model processed through Bayesian Optimization (BO) further improved its predictive accuracy to about 67%, outperforming both its non-optimized version and models optimized using the other algorithms. Considering the mechanical performance of connections within TWS composite structures, applying the BO algorithm to the RF model significantly improved the predictive accuracy. This approach enables the identification of the most suitable specimen type based on newly provided mechanical performance parameter sets, providing a data-driven pathway for sustainable bamboo–steel composite structure design. Full article
Show Figures

Figure 1

25 pages, 2183 KiB  
Article
Advancing Semantic Enrichment Compliance in BIM: An Ontology-Based Framework and IDS Evaluation
by Tomo Cerovšek and Mohamed Omar
Buildings 2025, 15(15), 2621; https://doi.org/10.3390/buildings15152621 - 24 Jul 2025
Viewed by 409
Abstract
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of [...] Read more.
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of the Information Delivery Specification (IDS) and its associated tools. The controlled vocabularies are important as they provide support to standardization, information retrieval, data-driven workflows, and AI integration. Information requirements are classified by input type and project interaction context (phase, origin, project role, and communication), as well as by applicability (data management function, model granularity, BIM usage, and checkability). The ontology comprises seven categories: identity, geometry, design/performance, fabrication/construction, operation/maintenance, cost, and regulatory category, each linked to verification principles such as uniqueness and consistency. This enables systematic implementation of validation checks aligned with company and project needs. We introduce three ICC workflows in relation to the BIM authoring tools (inside, outside, and hybrid) and suggest key criteria for the functional and non-functional evaluation of IDS tools. Empirical results from a real project using five IDS tools reveal implementation issues with the classification facet, regular expressions, and issue reporting. The proposed ontology and framework lay the foundation for a scalable, transparent ICC within openBIM. The results also provide ICC process guidance for practitioners, a SWOT analysis that can inform enhancements to the existing IDS schema, identify possible inputs for certification of IDS tools, and generate innovative ideas for research and development. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

Back to TopTop