Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = extremely low frequency magnetic field (ELF-MF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3099 KiB  
Article
Proteomic Characterization of Human Peripheral Blood Mononuclear Cells Exposed to a 50 Hz Magnetic Field
by Massimo Bracci, Raffaella Lazzarini, Francesco Piva, Matteo Giulietti, Elena Marinelli Busilacchi, Elisa Rossi, Fabio Di Criscio, Lory Santarelli and Antonella Poloni
Int. J. Mol. Sci. 2025, 26(13), 6035; https://doi.org/10.3390/ijms26136035 - 24 Jun 2025
Viewed by 496
Abstract
Exposure to extremely low-frequency magnetic fields (ELF-MF) can induce biological alterations in human cells, including peripheral blood mononuclear cells (PBMCs). However, the molecular mechanisms and key regulatory factors underlying this cellular response remain largely unknown. In this study, we analyzed the proteomic profiles [...] Read more.
Exposure to extremely low-frequency magnetic fields (ELF-MF) can induce biological alterations in human cells, including peripheral blood mononuclear cells (PBMCs). However, the molecular mechanisms and key regulatory factors underlying this cellular response remain largely unknown. In this study, we analyzed the proteomic profiles of PBMCs isolated from three human subjects. PBMCs were exposed to 50 Hz, 1 mT of ELF-MF for 24 h and compared to unexposed PBMCs from the same individuals. ELF-MF exposure altered the expression levels of several PBMC proteins without affecting cell proliferation, cell viability, or cell cycle progression. A total of 51 proteins were upregulated, 36 of which were intercorrelated and associated with the Cellular Metabolic Process (GO:0044237) and Metabolic Process (GO:0008152). Among them, solute carrier family 25 member 4 (SLC25A4), which catalyzes the exchange of cytoplasmic ADP for mitochondrial ATP across the inner mitochondrial membrane, was consistently upregulated in all ELF-MF–exposed samples. Additionally, 67 proteins were downregulated, many of which are linked to T cell costimulation (GO:0031295), Cell activation (GO:0001775), and Immune system processes (GO:0002376) included ASPSCR1, PCYT1A, PCYT2, QRAS, and REPS1. In conclusion, ELF-MF exposure induces metabolic reprogramming in human PBMCs, characterized by the upregulation of mitochondrial proteins and downregulation of immune-activation-related proteins, without compromising cell viability or proliferation. Full article
(This article belongs to the Special Issue Genomics and Proteomics of Cancer)
Show Figures

Graphical abstract

11 pages, 1149 KiB  
Article
Effect of Low-Frequency Magnetic Field Stimulation on Physical Performance and Inflammation in Post-Stroke Patients: A Feasibility and Safety Study
by Renata Marchewka, Tomasz Trzmiel and Katarzyna Hojan
Appl. Sci. 2025, 15(6), 3182; https://doi.org/10.3390/app15063182 - 14 Mar 2025
Viewed by 939
Abstract
Background: Strokes are a major public health concern, responsible for high mortality and long-term disability rates. Rehabilitation techniques aim to harness neuroplasticity—brain self-repair mechanisms that restore lost functions. Beyond traditional methods, therapies like Repetitive Transcranial Magnetic Stimulation (rTMS) and Extremely Low-Frequency Magnetic Fields [...] Read more.
Background: Strokes are a major public health concern, responsible for high mortality and long-term disability rates. Rehabilitation techniques aim to harness neuroplasticity—brain self-repair mechanisms that restore lost functions. Beyond traditional methods, therapies like Repetitive Transcranial Magnetic Stimulation (rTMS) and Extremely Low-Frequency Magnetic Fields (ELF-MFs) show promise in enhancing neuroplasticity. This pilot study explored the feasibility and safety of ELF-MFs in stroke rehabilitation. Methods: The study involved 44 patients randomized into three groups: magnetotherapy applied to the head (MT1), pelvis (MT2), or standard rehabilitation (control). Assessments included functional measures (FIM, Barthel Index, Tinetti Scale, SPPB, and Berg Balance Scale) and inflammatory markers (CRP, PCT). Results: All groups showed functional improvement, with CRP and PCT reductions highlighting potential benefits of ELF-MFs. No adverse effects or changes in blood or organ function were observed. Conclusions: ELF-MFs could be safely conducted in this group allowing for further research to confirm their efficacy in larger studies. Full article
(This article belongs to the Special Issue Advanced Physical Therapy for Rehabilitation)
Show Figures

Figure 1

17 pages, 1922 KiB  
Systematic Review
The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
by Renata Marchewka, Tomasz Trzmiel and Katarzyna Hojan
Brain Sci. 2024, 14(5), 430; https://doi.org/10.3390/brainsci14050430 - 26 Apr 2024
Cited by 1 | Viewed by 2352
Abstract
Background: The aim of this study was to review the current state of scientific evidence on the effect of extremely low-frequency magnetic fields stimulation (ELF-MFs) on stroke patients. Methods: A systematic review of PubMed, ScienceDirect, PeDro and Embase databases was conducted. Only articles [...] Read more.
Background: The aim of this study was to review the current state of scientific evidence on the effect of extremely low-frequency magnetic fields stimulation (ELF-MFs) on stroke patients. Methods: A systematic review of PubMed, ScienceDirect, PeDro and Embase databases was conducted. Only articles published in English, involving adult participants and focusing on individuals who had experienced a stroke, specifically examining the impact of ELF-MFs on post-stroke patients and had well-defined criteria for inclusion and exclusion of participants, were included. The methodological quality of the included studies was assessed using the Quality Assessment Tool for Quantitative Studies (QATQS). Results: A total of 71 studies were identified through database and reference lists’ search, from which 9 were included in the final synthesis. All included studies showed a beneficial effect of ELF-MFs on stroke patients, however seven of the included studies were carried by the same research group. Improvements were observed in domains such as oxidative stress, inflammation, ischemic lesion size, functional status, depressive symptoms and cognitive abilities. Conclusions: The available literature suggests a beneficial effect of ELF-MFs on post-stroke patients; however, the current data are too limited to broadly recommend the use of this method. Further research with improved methodological quality is necessary. Full article
(This article belongs to the Special Issue Stroke and Acute Stroke Care: Looking Ahead)
Show Figures

Figure 1

89 pages, 8713 KiB  
Review
Biological Effects of Magnetic Storms and ELF Magnetic Fields
by Ruslan M. Sarimov, Dmitry A. Serov and Sergey V. Gudkov
Biology 2023, 12(12), 1506; https://doi.org/10.3390/biology12121506 - 8 Dec 2023
Cited by 24 | Viewed by 8925
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) [...] Read more.
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular–cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas. Full article
(This article belongs to the Special Issue The Rules of Life Rethought: Latest Progress in Quantum Biology)
Show Figures

Graphical abstract

16 pages, 3547 KiB  
Article
50 Hz Magnetic Field Exposure Inhibited Spontaneous Movement of Zebrafish Larvae through ROS-Mediated syn2a Expression
by Yixin Guo, Yiti Fu and Wenjun Sun
Int. J. Mol. Sci. 2023, 24(8), 7576; https://doi.org/10.3390/ijms24087576 - 20 Apr 2023
Cited by 6 | Viewed by 2683
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) exists widely in public and occupational environments. However, its potential adverse effects and the underlying mechanism on nervous system, especially behavior are still poorly understood. In this study, zebrafish embryos (including a transfected synapsin IIa (syn2a) overexpression [...] Read more.
Extremely low frequency electromagnetic field (ELF-EMF) exists widely in public and occupational environments. However, its potential adverse effects and the underlying mechanism on nervous system, especially behavior are still poorly understood. In this study, zebrafish embryos (including a transfected synapsin IIa (syn2a) overexpression plasmid) at 3 h post-fertilization (hpf) were exposed to a 50-Hz magnetic field (MF) with a series of intensities (100, 200, 400 and 800 μT, respectively) for 1 h or 24 h every day for 5 days. Results showed that, although MF exposure did not affect the basic development parameters including hatching rate, mortality and malformation rate, yet MF at 200 μT could significantly induce spontaneous movement (SM) hypoactivity in zebrafish larvae. Histological examination presented morphological abnormalities of the brain such as condensed cell nucleus and cytoplasm, increased intercellular space. Moreover, exposure to MF at 200 μT inhibited syn2a transcription and expression, and increased reactive oxygen species (ROS) level as well. Overexpression of syn2a could effectively rescue MF-induced SM hypoactivity in zebrafish. Pretreatment with N-acetyl-L-cysteine (NAC) could not only recover syn2a protein expression which was weakened by MF exposure, but also abolish MF-induced SM hypoactivity. However, syn2a overexpression did not affect MF-increased ROS. Taken together, the findings suggested that exposure to a 50-Hz MF inhibited spontaneous movement of zebrafish larvae via ROS-mediated syn2a expression in a nonlinear manner. Full article
Show Figures

Figure 1

10 pages, 1497 KiB  
Communication
Intermittent ELF-MF Induce an Amplitude-Window Effect on Umbilical Cord Blood Lymphocytes
by Lucián Zastko, Leonardo Makinistian, Andrea Tvarožná and Igor Belyaev
Int. J. Mol. Sci. 2022, 23(22), 14391; https://doi.org/10.3390/ijms232214391 - 19 Nov 2022
Cited by 3 | Viewed by 2124
Abstract
In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This [...] Read more.
In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This suggested the existence of an amplitude window. In this brief communication, we further tested this hypothesis. UCBLs from healthy newborns were isolated and exposed for 72 h to an intermittent ELF-MF (triangular, 7.8 Hz, 250 s ON/250 s OFF) with 6 different amplitudes between 3 µT and 12 µT, utilizing an oblong coil. Percentage of viable, early apoptotic (EA), and late apoptotic/necrotic (LAN) cells were determined by flow cytometry. Moreover, reactive oxygen species (ROS) were determined at 1 h and 3 h of the exposure. Like in our previous work, neither EA, nor LAN, nor ROS were statistically significantly affected by the intermittent ELF-MF. However, the percentage of viable cells was decreased by exposure to the fields with intensities of 6.5 µT and 12 µT (p < 0.05; and p = 0.057 for 8.5 µT). ELF-MF decreased the percentage of viable cells for fields down to 6.5 µT, but not for 5 µT, 4 µT, or 3 µT. Combined with our previous findings, the results reported here indicate an amplitude window effect between 6 µT and 13 µT. The obtained data are in line with a notion of amplitude and frequency windows, which request scanning of both amplitude and frequency while studying the ELF-MF effects. Full article
Show Figures

Figure 1

18 pages, 1689 KiB  
Brief Report
A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures
by Michael Ronniger, Blanche Aguida, Christina Stacke, Yangmengfan Chen, Sabrina Ehnert, Niklas Erdmann, Georg Eschenburg, Karsten Falldorf, Marootpong Pooam, Anthony Wing and Margaret Ahmad
Bioengineering 2022, 9(10), 595; https://doi.org/10.3390/bioengineering9100595 - 21 Oct 2022
Cited by 5 | Viewed by 2713
Abstract
The effects of extremely low-frequency electromagnetic field (ELF-MF) exposure on living systems have been widely studied at the fundamental level and also claimed as beneficial for the treatment of diseases for over 50 years. However, the underlying mechanisms and cellular targets of ELF-MF [...] Read more.
The effects of extremely low-frequency electromagnetic field (ELF-MF) exposure on living systems have been widely studied at the fundamental level and also claimed as beneficial for the treatment of diseases for over 50 years. However, the underlying mechanisms and cellular targets of ELF-MF exposure remain poorly understood and the field has been plagued with controversy stemming from an endemic lack of reproducibility of published findings. To address this problem, we here demonstrate a technically simple and reproducible EMF exposure protocol to achieve a standardized experimental approach which can be readily adopted in any lab. As an assay system, we chose a commercially available inflammatory model human cell line; its response to magnetic fields involves changes in gene expression which can be monitored by a simple colorimetric reporter gene assay. The cells were seeded and cultured in microplates and inserted into a custom-built, semi-automated incubation and exposure system which accurately controls the incubation (temperature, humidity, CO2) and magnetic-field exposure conditions. A specific alternating magnetic field (<1.0% spatial variance) including far-field reduction provided defined exposure conditions at the position of each well of the microplate. To avoid artifacts, all environmental and magnetic-field exposure parameters were logged in real time throughout the duration of the experiment. Under these extensively controlled conditions, the effect of the magnetic field on the cell cultures as assayed by the standardized operating procedure was highly reproducible between experiments. As we could fully define the characteristics (frequency, intensity, duration) of the pulsed magnetic field signals at the position of the sample well, we were, for the first time, able to accurately determine the effect of changing single ELF-MF parameters such as signal shape, frequency, intensity and duty cycle on the biological response. One signal in particular (10 Hz, 50% duty cycle, rectangular, bipolar, 39.6μT) provided a significant reduction in cytokine reporter gene expression by 37% in our model cell culture line. In sum, the accuracy, environmental control and data-logging capacity of the semi-automated exposure system should greatly facilitate research into fundamental cellular response mechanisms and achieve the consistency necessary to bring ELF-MF/PEMF research results into the scientific mainstream. Full article
Show Figures

Graphical abstract

19 pages, 14325 KiB  
Case Report
ELF-MF Exposure, Actual and Perceived, and Associated Health Symptoms: A Case Study of an Office Building in Tel Aviv-Yafo, Israel
by Liran Shmuel Raz-Steinkrycer, Jonathan Dubnov, Stelian Gelberg, Peng Jia and Boris A. Portnov
Sustainability 2022, 14(17), 11065; https://doi.org/10.3390/su141711065 - 5 Sep 2022
Cited by 3 | Viewed by 3769
Abstract
Empirical studies link exposure to extremely low frequency magnetic fields (ELF-MFs) to several health symptoms. However, it is unclear whether these symptoms are associated with actual or perceived exposure. In this study we attempted to answer this question by studying the health complaints [...] Read more.
Empirical studies link exposure to extremely low frequency magnetic fields (ELF-MFs) to several health symptoms. However, it is unclear whether these symptoms are associated with actual or perceived exposure. In this study we attempted to answer this question by studying the health complaints of employees working in a multi-story office building located near a major high-voltage power line. ELF-MF measurements were conducted in the building using a triaxial sensor coil device on all 15 floors. In parallel, questionnaires were administered to evaluate the prevalence of various health symptoms among the employees. Multivariate logistic regressions were used next to quantify the associations between actual and perceived ELF-MF exposure and the employees’ health complaints. The analysis revealed that feelings of weakness, headache, frustration, and worry were associated with both measured and perceived ELF-MF exposure (p < 0.01), while perceived ELF-MF exposure was also found to be associated with eye pain and irritation (OR = 1.4, 95% CI = 1.2–1.6), sleepiness (OR = 1.3, 95% CI = 1.1–1.5), dizziness and ear pain (OR = 1.2, 95% CI = 1.0–1.4). We conclude that high-voltage power lines produce both physiological and psychological effects in nearby workers, and, hence, proximity to such power lines should become a public health issue. Full article
Show Figures

Figure 1

16 pages, 13973 KiB  
Article
A Magnetic Field Canceling System Design for Diminishing Electromagnetic Interference to Avoid Environmental Hazard
by Yu-Lin Song, Hung-Yi Lin, Saravanan Manikandan and Luh-Maan Chang
Int. J. Environ. Res. Public Health 2022, 19(6), 3664; https://doi.org/10.3390/ijerph19063664 - 19 Mar 2022
Cited by 9 | Viewed by 3013
Abstract
Electromagnetic interference is a serious and increasing form of environmental pollution, creating many issues in the areas of health care and industrial manufacturing. The performance of high-precision measurement equipment used in health care and the manufacturing industry is sensitive to electromagnetic interference. However, [...] Read more.
Electromagnetic interference is a serious and increasing form of environmental pollution, creating many issues in the areas of health care and industrial manufacturing. The performance of high-precision measurement equipment used in health care and the manufacturing industry is sensitive to electromagnetic interference. However, extremely low-frequency magnetic fields (ELFMF), with a frequency range from 3 to 30 Hz, generated by high-power lines have become the main interference source in high-tech foundries. This paper presents a magnetic cancelling system that works by combining active cancelling technology and passive cancelling technology to reduce the ELFMF around high-precision measurement equipment. The simulation and experimental results show the validity and feasibility of the proposed system. Full article
Show Figures

Figure 1

22 pages, 4001 KiB  
Article
Change in H+ Transport across Thylakoid Membrane as Potential Mechanism of 14.3 Hz Magnetic Field Impact on Photosynthetic Light Reactions in Seedlings of Wheat (Triticum aestivum L.)
by Ekaterina Sukhova, Ekaterina Gromova, Lyubov Yudina, Anastasiia Kior, Yana Vetrova, Nikolay Ilin, Evgeny Mareev, Vladimir Vodeneev and Vladimir Sukhov
Plants 2021, 10(10), 2207; https://doi.org/10.3390/plants10102207 - 18 Oct 2021
Cited by 6 | Viewed by 2780
Abstract
Natural and artificial extremely low-frequency magnetic fields (ELFMFs) are important factors influencing physiological processes in living organisms including terrestrial plants. Earlier, it was experimentally shown that short-term and long-term treatments by ELFMFs with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) influenced parameters [...] Read more.
Natural and artificial extremely low-frequency magnetic fields (ELFMFs) are important factors influencing physiological processes in living organisms including terrestrial plants. Earlier, it was experimentally shown that short-term and long-term treatments by ELFMFs with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) influenced parameters of photosynthetic light reactions in wheat leaves. The current work is devoted to an analysis of potential ways of this ELFMF influence on the light reactions. Only a short-term wheat treatment by 14.3 Hz ELFMF was used in the analysis. First, it was experimentally shown that ELFMF-induced changes (an increase in the effective quantum yield of photosystem II, a decrease in the non-photochemical quenching of chlorophyll fluorescence, a decrease in time of changes in these parameters, etc.) were observed under the action of ELFMF with widely ranging magnitudes (from 3 to 180 µT). In contrast, the potential quantum yield of photosystem II and time of relaxation of the energy-dependent component of the non-photochemical quenching were not significantly influenced by ELFMF. Second, it was shown that the ELFMF treatment decreased the proton gradient across the thylakoid membrane. In contrast, the H+ conductivity increased under this treatment. Third, an analysis of the simplest mathematical model of an H+ transport across the thylakoid membrane, which was developed in this work, showed that changes in H+ fluxes related to activities of the photosynthetic electron transport chain and the H+-ATP synthase were not likely a mechanism of the ELFMF influence. In contrast, changes induced by an increase in an additional H+ flux (probably, through the proton leakage and/or through the H+/Ca2+ antiporter activity in the thylakoid membrane) were in good accordance with experimental results. Thus, we hypothesized that this increase is the mechanism of the 14.3 Hz ELFMF influence (and, maybe, influences of other low frequencies) on photosynthetic light reactions in wheat. Full article
Show Figures

Figure 1

20 pages, 690 KiB  
Review
Extremely Low-Frequency Magnetic Field as a Stress Factor—Really Detrimental?—Insight into Literature from the Last Decade
by Angelika Klimek and Justyna Rogalska
Brain Sci. 2021, 11(2), 174; https://doi.org/10.3390/brainsci11020174 - 31 Jan 2021
Cited by 32 | Viewed by 11285
Abstract
Biological effects of extremely low-frequency magnetic field (ELF-MF) and its consequences on human health have become the subject of important and recurrent public debate. ELF-MF evokes cell/organism responses that are characteristic to a general stress reaction, thus it can be regarded as a [...] Read more.
Biological effects of extremely low-frequency magnetic field (ELF-MF) and its consequences on human health have become the subject of important and recurrent public debate. ELF-MF evokes cell/organism responses that are characteristic to a general stress reaction, thus it can be regarded as a stress factor. Exposure to ELF-MF “turns on” different intracellular mechanisms into both directions: compensatory or deleterious ones. ELF-MF can provoke morphological and physiological changes in stress-related systems, mainly nervous, hormonal, and immunological ones. This review summarizes the ELF-MF-mediated changes at various levels of the organism organization. Special attention is placed on the review of literature from the last decade. Most studies on ELF-MF effects concentrate on its negative influence, e.g., impairment of behavior towards depressive and anxiety disorders; however, in the last decade there was an increase in the number of research studies showing stimulating impact of ELF-MF on neuroplasticity and neurorehabilitation. In the face of numerous studies on the ELF-MF action, it is necessary to systematize the knowledge for a better understanding of the phenomenon, in order to reduce the risk associated with the exposure to this factor and to recognize the possibility of using it as a therapeutic agent. Full article
(This article belongs to the Special Issue Brain Stimulation and Neuroplasticity)
Show Figures

Graphical abstract

18 pages, 4723 KiB  
Article
Influence of Magnetic Field with Schumann Resonance Frequencies on Photosynthetic Light Reactions in Wheat and Pea
by Vladimir Sukhov, Ekaterina Sukhova, Yulia Sinitsyna, Ekaterina Gromova, Natalia Mshenskaya, Anastasiia Ryabkova, Nikolay Ilin, Vladimir Vodeneev, Evgeny Mareev and Colin Price
Cells 2021, 10(1), 149; https://doi.org/10.3390/cells10010149 - 13 Jan 2021
Cited by 16 | Viewed by 6651
Abstract
Photosynthesis is an important target of action of numerous environmental factors; in particular, stressors can strongly affect photosynthetic light reactions. Considering relations of photosynthetic light reactions to electron and proton transport, it can be supposed that extremely low frequency magnetic field (ELFMF) may [...] Read more.
Photosynthesis is an important target of action of numerous environmental factors; in particular, stressors can strongly affect photosynthetic light reactions. Considering relations of photosynthetic light reactions to electron and proton transport, it can be supposed that extremely low frequency magnetic field (ELFMF) may influence these reactions; however, this problem has been weakly investigated. In this paper, we experimentally tested a hypothesis about the potential influence of ELFMF of 18 µT intensity with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) on photosynthetic light reactions in wheat and pea seedlings. It was shown that ELFMF decreased non-photochemical quenching in wheat and weakly influenced quantum yield of photosystem II at short-term treatment; in contrast, the changes in potential and effective quantum yields of photosystem II were observed mainly under chronic action of ELFMF. It is interesting that both short-term and chronic treatment decreased the time periods for 50% activation of quantum yield and non-photochemical quenching under illumination. Influence of ELFMF on pea was not observed at both short-term and chronic treatment. Thus, we showed that ELFMF with Schumann resonance frequencies could influence photosynthetic light processes; however, this effect depends on plant species (wheat or pea) and type of treatment (short-term or chronic). Full article
(This article belongs to the Special Issue Photosynthesis under Biotic and Abiotic Environmental Stress)
Show Figures

Figure 1

17 pages, 910 KiB  
Review
Magnetic Field (MF) Applications in Plants: An Overview
by Mohammad Sarraf, Sunita Kataria, Houda Taimourya, Lucielen Oliveira Santos, Renata Diane Menegatti, Meeta Jain, Muhammad Ihtisham and Shiliang Liu
Plants 2020, 9(9), 1139; https://doi.org/10.3390/plants9091139 - 3 Sep 2020
Cited by 129 | Viewed by 20182
Abstract
Crop yield can be raised by establishment of adequate plant stand using seeds with high germination ratio and vigor. Various pre-sowing treatments are adopted to achieve this objective. One of these approaches is the exposure of seeds to a low-to-medium level magnetic field [...] Read more.
Crop yield can be raised by establishment of adequate plant stand using seeds with high germination ratio and vigor. Various pre-sowing treatments are adopted to achieve this objective. One of these approaches is the exposure of seeds to a low-to-medium level magnetic field (MF), in pulsed and continuous modes, as they have shown positive results in a number of crop seeds. On the basis of the sensitivity of plants to MF, different types of MF have been used for magnetopriming studies, such as weak static homogeneous magnetic fields (0–100 μT, including GMF), strong homogeneous magnetic fields (milliTesla to Tesla), and extremely low frequency (ELF) magnetic fields of low-to-moderate (several hundred μT) magnetic flux densities. The agronomic application of MFs in plants has shown potential in altering conventional plant production systems; increasing mean germination rates, and root and shoot growth; having high productivity; increasing photosynthetic pigment content; and intensifying cell division, as well as water and nutrient uptake. Furthermore, different studies suggest that MFs prevent the large injuries produced/inflicted by diseases and pests on agricultural crops and other economically important plants and assist in reducing the oxidative damage in plants caused by stress situations. An improved understanding of the interactions between the MF and the plant responses could revolutionize crop production through increased resistance to disease and stress conditions, as well as the superiority of nutrient and water utilization, resulting in the improvement of crop yield. In this review, we summarize the potential applications of MF and the key processes involved in agronomic applications. Furthermore, in order to ensure both the safe usage and acceptance of this new opportunity, the adverse effects are also discussed. Full article
Show Figures

Figure 1

13 pages, 1223 KiB  
Article
Extremely Low-Frequency Magnetic Fields Exposure Measurement during Lessons in Elementary Schools
by JinKyung Park, EunHye Jeong and GyeongAe Seomun
Int. J. Environ. Res. Public Health 2020, 17(15), 5284; https://doi.org/10.3390/ijerph17155284 - 22 Jul 2020
Cited by 8 | Viewed by 4057
Abstract
Schools are an important place for children’s exposure to electromagnetic fields, which may cause adverse health effects. To better understand environmental extremely low-frequency magnetic fields (ELF-MFs) exposure among elementary school students, we measured numeric values of ELF-MFs in five classrooms at four schools [...] Read more.
Schools are an important place for children’s exposure to electromagnetic fields, which may cause adverse health effects. To better understand environmental extremely low-frequency magnetic fields (ELF-MFs) exposure among elementary school students, we measured numeric values of ELF-MFs in five classrooms at four schools during digital learning class hours. The measurement of ELF-MFs was taken with an EMDEX II field analyzer. Specifically, we examined the level of exposure to ELF-MFs for each student’s seating position in the classroom. The results showed that ELF-MFs exposure levels were lower than those in the International Commission on Non-Ionizing Radiation Protection guidelines; however, there were significant differences in the level of magnetic field exposure at each school and at each student’s seat. The exposure to ELF-MFs at students’ seat positions was mostly caused by electrical appliances, electronic wiring, and distribution boxes, but the exposure level decreased as the distance increased. Therefore, it is important to design safe and appropriate environments for digital learning in schools, such as proper seating arrangements, to avoid ELF-MFs exposure to students as much as possible. Future studies should measure ELF-MFs levels in other areas and investigate the effects of exposure to ELF-MFs during school hours on children’s health. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

14 pages, 351 KiB  
Article
Cluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of Environmental Variables
by Gabriella Tognola, Emma Chiaramello, Marta Bonato, Isabelle Magne, Martine Souques, Serena Fiocchi, Marta Parazzini and Paolo Ravazzani
Int. J. Environ. Res. Public Health 2019, 16(22), 4363; https://doi.org/10.3390/ijerph16224363 - 8 Nov 2019
Cited by 14 | Viewed by 2745
Abstract
Personal exposure to Extremely Low Frequency Magnetic Fields (ELF MF) in children is a very timely topic. We applied cluster analysis to 24 h indoor personal exposures of 884 children in France to identify possible common patterns of exposures. We investigated how electric [...] Read more.
Personal exposure to Extremely Low Frequency Magnetic Fields (ELF MF) in children is a very timely topic. We applied cluster analysis to 24 h indoor personal exposures of 884 children in France to identify possible common patterns of exposures. We investigated how electric networks near child home and other variables potentially affecting residential exposure, such as indoor sources of ELF MF, the age and type of the residence and family size, characterized the magnetic field exposure patterns. We identified three indoor personal exposure patterns: children living near overhead lines of high (63–150 kV), extra-high (225 kV) and ultra-high voltage (400 kV) were characterized by the highest exposures; children living near underground networks of low (400 V) and mid voltage (20 kV) and substations (20 kV/400 V) were characterized by mid exposures; children living far from electric networks had the lowest level of exposure. The harmonic component was not relevant in discriminating the exposure patterns, unlike the 50 Hz or broadband (40–800 Hz) component. Children using electric heating appliances, or living in big buildings or in larger families had generally a higher level of personal indoor exposure. Instead, the age of the residence was not relevant in differentiating the exposure patterns. Full article
Back to TopTop