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Abstract: Extremely low frequency electromagnetic field (ELF-EMF) exists widely in public and
occupational environments. However, its potential adverse effects and the underlying mechanism
on nervous system, especially behavior are still poorly understood. In this study, zebrafish embryos
(including a transfected synapsin IIa (syn2a) overexpression plasmid) at 3 h post-fertilization (hpf)
were exposed to a 50-Hz magnetic field (MF) with a series of intensities (100, 200, 400 and 800 µT,
respectively) for 1 h or 24 h every day for 5 days. Results showed that, although MF exposure did
not affect the basic development parameters including hatching rate, mortality and malformation
rate, yet MF at 200 µT could significantly induce spontaneous movement (SM) hypoactivity in
zebrafish larvae. Histological examination presented morphological abnormalities of the brain such
as condensed cell nucleus and cytoplasm, increased intercellular space. Moreover, exposure to
MF at 200 µT inhibited syn2a transcription and expression, and increased reactive oxygen species
(ROS) level as well. Overexpression of syn2a could effectively rescue MF-induced SM hypoactivity
in zebrafish. Pretreatment with N-acetyl-L-cysteine (NAC) could not only recover syn2a protein
expression which was weakened by MF exposure, but also abolish MF-induced SM hypoactivity.
However, syn2a overexpression did not affect MF-increased ROS. Taken together, the findings
suggested that exposure to a 50-Hz MF inhibited spontaneous movement of zebrafish larvae via
ROS-mediated syn2a expression in a nonlinear manner.

Keywords: 50 Hz magnetic-field (MF); zebrafish; spontaneous movement (SM); window effect;
synapsin IIa (syn2a); ROS

1. Introduction

Extremely low frequency electromagnetic fields (ELF-EMFs), which frequency ranges
from 0 to 300 Hz, are generated widely by electricity generation, transmission, and kinds of
domestic and industrial electric devices. Since Wertheimer and Leeper first reported that
60-Hz MF exposure, which was produced by high-current configurations, was associated
with increased incidence of childhood leukemia in 1979 [1], the potential adverse effects of
ELF-EMF on human health has aroused public concern. Studies over the past four decades
have identified the nervous system as a target organ of ELF-EMF. Epidemiological studies
found that there existed close associations between ELF-EMF exposure and diseases of
the nervous system such as brain tumor [2], Alzheimer’s disease (AD) [3–5], amyotrophic
lateral sclerosis (ALS) [6,7] and poor sleep quality [8]. Due to the fact that function impair-
ment of the nervous system could consequently show behavioral changes, the behavior is
generally recognized as an integrated sensitive indicator in neurotoxicity evaluation [9].
Studies on behavioral effects also showed that ELF-EMF exposure could induce anxiety,
stress-like behaviors, depressed behaviors, impairment of learning, memory and cognitive
function [10]. However, research on locomotor behavior has not reached a consensus. Some
studies found that ELF-EMF exposure inhibited locomotor behavior [11–13], but some
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believed that ELF-EMF exposure promoted it [14–16], ever others considered that ELF-EMF
has no effect on locomotor behavior [17–23].

On the other hand, the mechanism of behavioral abnormalities induced by ELF-EMF
exposure has also been explored. Özgün et al. [24] reported that N-methyl-D-aspartate
(NMDA) receptor activation mediated 50-Hz MF-induced human neuronal differentiation.
ELF-EMF exposure could decrease acetylcholinesterase (AChE) activity [25] and degen-
eration of the cholinergic pathways [26]. Other studies found that exposure to ELF-EMF
could affect the reactivity of D-1 dopamine receptors [16,27], and potentiate morphine-
induced decrease in D-2 dopamine receptor density [28]. In addition, an increase in free
radicals such as reactive oxygen species (ROS) and nitric oxide (NO) in hypothalamus
was involved in obsessive compulsive disorder- and anxiety-like behavior induced by
ELF-EMF exposure [29–31]. A 50-Hz MF was even considered as a “stressor” that elevated
proopiomelanocortin mRNA level and led to depressive-like behavior [32]. However, it is
far from clarifying clearly the relationship between ELF-EMF and behavioral effects.

As a vertebrate animal model for investigating the developmental neurotoxicity, the
zebrafish (Danio rerio) has received increased popularity in recent years [33,34]. Especially,
the swimming behavior of zebrafish is the sum of activities that are controlled by the
nervous system in response to external stimuli [35]. To determine the possible influence
of ELF-EMF exposure on locomotor behavior, in the present study, the effects and related
mechanisms of 50-Hz MF exposure on the swimming behavior were investigated and
verified in zebrafish embryos and larvae.

2. Results
2.1. Exposure to a 50-Hz MF Did Not Affect the Basic Development on Zebrafish

To study the possible effects of 50-Hz MF exposure on development, wild-type ze-
brafish embryos at 3 h postfertilization (hpf) were exposed to a 50-Hz MF with a series of
intensities (100, 200, 400 and 800 µT, respectively) for 1 h or 24 h every day for 5 days. The
hatching rate at 72 hpf, mortality and malformation rate at 120 hpf were scored. However,
results did not show any significant differences among treatment groups under current
exposure conditions compared to the sham (p > 0.05) (Table 1). It means that 50-Hz MF
exposure did not affect the basic development of zebrafish embryos/larvae.

Table 1. Effects of 50-Hz MF exposure on embryonic development of zebrafish (M ± SD).

Developmental
Index

100 µT 200 µT 400 µT 800 µT

Sham MF1h MF24h Sham MF1h MF24h Sham MF1h MF24h Sham MF1h MF24h

Hatching rate
(72 hpf)

95.40
±2.17

96.17
±1.36

92.90
±1.57

84.64
±4.12

89.52
±4.28

94.11
±2.91

95.99
±2.07

94.71
±2.24

94.38
±2.41

94.50
±2.01

93.30
±1.59

92.80
±1.47

Mortality
(120 hpf)

9.72
±0.83

8.82
±2.36

7.10
±1.57

4.84
±3.30

5.99
±2.30

8.72
±2.30

7.63
±1.76

9.63
±0.74

11.01
±1.19

7.60
±3.10

6.50
±0.95

9.44
±1.25

Malformation rate
(120 hpf)

5.57
±0.74

5.39
±0.33

6.67
±0.53

6.43
±1.50

5.89
±2.10

7.41
±1.70

6.51
±0.73

5.88
±1.53

5.04
±1.02

5.78
±0.94

6.33
±0.23

6.82
±0.91

2.2. Effects of 50-Hz MF Exposure on Locomotor Behavior

Locomotor behavior of zebrafish appears sequentially during development, which
include an early, transient period of spontaneous tail coiling, followed by escape response
to touch, and free swimming [36]. To determine the effect of 50-Hz MF exposure on
the development of locomotor behavior, zebrafish embryos at 3 hpf were exposed to
a 50-Hz MF with a series of intensities (100, 200, 400 and 800 µT, respectively) for 1 h
or 24 h every day for 5 days, and three types of locomotion behavior: spontaneous tail
coiling of embryos at 24 hpf, spontaneous movement (SM) at 120 hpf, and swimming
in response to light-dark transition at 120 hpf were evaluated. Results showed that, in
general, the frequency of spontaneous tail coiling of embryos at 24 hpf was diminished
after exposure to a 50-Hz MF with different intensities and time, while there was no
statistical significance compared with the sham group (p > 0.05) (Figure 1A). However,
exposure zebrafish embryos to 50-Hz MF with 200 µT for either 1 h or 24 h everyday could
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significantly decrease movement distance and average speed at 120 hpf during 10 min
SM, yet the other intensities of MF could not produce inhibitory effects on SM (Figure 1B)
(Table 2). The results of light-dark transition test demonstrated a higher swimming speed
in dark period followed by a decreased swimming speed after the light stimulus, which is
a normal movement rhythm and periodic changes, and there was no statistical significance
between different intensities of MF exposure (Figure 1C). Namely, exposure to a 50-Hz MF
could significantly inhibit spontaneous movement but did not affect light-dark transition
locomotor response in zebrafish larvae.
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Figure 1. Effects of 50-Hz MF exposure on locomotor activity in zebrafish embryos/larvae. (A) MF
exposure did not affect SM (spontaneous tail coiling) at 24 hpf within 1 min; (B) Exposure to MF with
200 µT decreased movement distance and average speed of SM at 120 hpf within 10 min; (C) MF
exposure did not affect locomotor response to light-dark transition at 120 hpf. * p < 0.05, compared
with sham.

Table 2. The spontaneous movement of 50-Hz MF exposure on zebrafish (M ± SD).

Index
100 µT 200 µT 400 µT 800 µT

Sham MF1h MF24h Sham MF1h MF24h Sham MF1h MF24h Sham MF1h MF24h

Distances
(mm)

1410.68
±202.78

1417.06
±274.08

1330.37
±252.76

1471.30
±163.95

1152.28
±182.56 *

1132.64
±195.43 *

1566.67
±160.14

1512.73
±33.98

1661.28
±213.11

1237.34
±275.94

1339.10
±371.74

1437.65
±169.00

Average speed
(mm/s)

2.35
±0.34

2.36
±0.46

2.22
±0.42

2.45
±0.23

1.96
±0.37 *

2.01
±0.22 *

2.61
±0.26

2.52
±0.06

2.77
±0.36

2.06
±0.46

2.23
±0.62

2.40
±0.28

Exposure to MF with 200 µT decreased movement distance and average speed of SM at 120 hpf within 10 min.
* p < 0.05, compared with sham.

2.3. The Effects of 50-Hz MF Exposure on Brain Tissue Morphology and Neurodevelopment-Related
Gene Expression in Zebrafish

In order to explore the mechanisms underlying MF-induced SM inhibition, zebrafish
embryos were exposed to a 50-Hz MF with 200 µT for 1 h or 24 h every day for 5 days.
The brain tissue morphology was observed by HE staining, and the expression of
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neurodevelopment-related genes at 120 hpf were analyzed by qRT-PCR and Western
blot. The results of HE staining of the zebrafish brain revealed that neurons were
arranged neatly and densely, the structure was intact and clear, the intercellular space was
dense and without edema in sham group. However, the nucleus and cytoplasm of cells
in the brain tissue was concentrated and the intercellular space was expanded after MF
exposure (Figure 2A). Results of qRT-PCR showed that there was no significant alteration
of elavl3, gap43 and shha transcription, while gfap transcription was down-regulated by MF
exposure for 24 h every day for 5 days, and mbp transcription was down-regulated only
when MF exposure for 1 h every day for 5 days. Interestingly, the transcriptional level of
α1-tubulin and syn2a (synapsin IIa) were down-regulated significantly in both MF exposure
modes (Figure 2B), but only the syn2a protein expression was down-regulated significantly
(Figure 2C), indicating that syn2a would be closely related to MF-induced SM hypoactivity
in zebrafish.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 16 
 

 

Average speed 
(mm/s) 

2.35 
±0.34 

2.36 
±0.46 

2.22 
±0.42 

2.45 
±0.23 

1.96 
±0.37 * 

2.01 
±0.22 * 

2.61 
±0.26 

2.52 
±0.06 

2.77 
±0.36 

2.06 
±0.46 

2.23 
±0.62 

2.40 
±0.28 

Exposure to MF with 200 μT decreased movement distance and average speed of SM at 120 hpf 
within 10 min. * p < 0.05, compared with sham. 

2.3. The Effects of 50-Hz MF Exposure on Brain Tissue Morphology and Neurodevelopment-
related Gene Expression in Zebrafish 

In order to explore the mechanisms underlying MF-induced SM inhibition, zebrafish 
embryos were exposed to a 50-Hz MF with 200 μT for 1 h or 24 h every day for 5 days. 
The brain tissue morphology was observed by HE staining, and the expression of neuro-
development-related genes at 120 hpf were analyzed by qRT-PCR and Western blot. The 
results of HE staining of the zebrafish brain revealed that neurons were arranged neatly 
and densely, the structure was intact and clear, the intercellular space was dense and with-
out edema in sham group. However, the nucleus and cytoplasm of cells in the brain tissue 
was concentrated and the intercellular space was expanded after MF exposure (Figure 2A). 
Results of qRT-PCR showed that there was no significant alteration of elavl3, gap43 and shha 
transcription, while gfap transcription was down-regulated by MF exposure for 24 h every 
day for 5 days, and mbp transcription was down-regulated only when MF exposure for 1 h 
every day for 5 days. Interestingly, the transcriptional level of α1-tubulin and syn2a (synapsin 
IIa) were down-regulated significantly in both MF exposure modes (Figure 2B), but only the 
syn2a protein expression was down-regulated significantly (Figure 2C), indicating that 
syn2a would be closely related to MF-induced SM hypoactivity in zebrafish. 

 
Figure 2. 50-Hz MF exposure caused neurodevelopmental toxicity in zebrafish larvae. (A) MF ex-
posure impacted the brain tissue morphology of zebrafish; (B) Exposure to MF decreased the 

Figure 2. 50-Hz MF exposure caused neurodevelopmental toxicity in zebrafish larvae. (A) MF
exposure impacted the brain tissue morphology of zebrafish; (B) Exposure to MF decreased the
transcription levels of neurodevelopment-related genes; (C) MF exposure inhibited significantly the
expression level of syn2a. * p < 0.05, ** p < 0.01, *** p < 0.001, compared with sham.

2.4. Overexpression of syn2a Restored MF-Induced SM Hypoactivity in Zebrafish

In order to confirm the possibility that a reduced syn2a protein expression mediates
MF-induced SM hypoactivity in zebrafish, pCS2+-syn2a-EGFP plasmid which could over-
express syn2a was microinjected into one-cell-stage zebrafish embryos before 1 hpf. The
pCS2+ plasmid vector containing only EGFP (pCS2+-EGFP plasmid) served as a control.
Results showed that both pCS2+-syn2a-EGFP and pCS2+-EGFP plasmids could express
green fluorescence protein in zebrafish embryos at 24 hpf (Figure 3A) and pCS2+-syn2a-
EGFP plasmid significantly overexpressed syn2a in zebrafish larvae at 120 hpf (p < 0.01)
(Figure 3B), indicating that both pCS2+-EGFP and pCS2+-syn2a-EGFP plasmids worked
well in zebrafish embryos and larvae.
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Figure 3. Overexpression of syn2a could restore MF-weakened SM in zebrafish. (A) EGFP could be
expressed in zebrafish larvae which transfected with pCS2+ plasmid vector or pCS2+-syn2a-EGFP
plasmid. Scale bar represents 500 µm; (B) Syn2a was overexpressed in zebrafish larvae transfected
with pCS2+-syn2a-EGFP plasmid; (C) All of zebrafish embryos, which were transfected plasmid
vector or syn2a overexpression plasmid and used in MF exposure experiment could express EGFP.
Scale bar represents 500 µm; (D) Syn2a overexpression plasmid could restore MF-inhibited SM
distances of zebrafish at 120 hpf. * p < 0.05, ** p < 0.01, compared with sham.

The embryos transfected with plasmid vector or syn2a-overexpressed plasmid were
cultured to 3 hpf, divided into groups randomly and exposed to a 50-Hz MF with 200 µT
for 1 h or 24 h for 5 days. After removing the embryos without green fluorescence under
blue excitation light at 24 hpf, the rest of embryos (Figure 3C) were cultured to 120 hpf for
SM detection. The results showed that plasmid vector did not affect the MF-induced SM
hypoactivity, while syn2a-overexpressed plasmid could mitigate MF-induced SM hypoac-
tivity of zebrafish larvae (Figure 3D). It suggested that syn2a mediated SM hypoactivity
caused by MF exposure.

2.5. MF-Induced SM Hypoactivity Depended on ROS

Previous studies demonstrated that ROS is a definite target molecule for MF interact-
ing with biological system [37]. To explore the possible role of ROS in MF-induced SM
hypoactivity, zebrafish embryos at 3 hpf were exposed to a 50-Hz MF at 200 µT with or
without 200 µmol/L N-acetyl-L-cysteine (NAC) (a ROS scavenger) for 1 h or 24 h every
day for 5 days. The ROS level in zebrafish larvae was analyzed by oxidation sensitive
probe. Results found that MF exposure significantly increased ROS level in the head of
zebrafishes (Figure 4A,B). Pretreatment with NAC, the MF-enhanced ROS in the head
was descended to the normal level (Figure 4C,D), and MF-caused SM hypoactivity also
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could be restored in zebrafish (Figure 4E). It means that 50-Hz MF exposure-induced SM
hypoactivity depended on ROS.
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Figure 4. 50-Hz MF exposure-induced SM hypoactivity depended on ROS. (A) MF exposure increased
ROS level in the brain in zebrafish larvae. The left were photos in bright field light and the right were
photos in blue excitation light under a fluorescence microscope. The dotted box was the location of
the brain. Scale bar represents 200 µm; (B) The fluorescence intensity of ROS in the brain (dotted box)
was increased after exposure to MF 1 h and 24 h every day for 5 days; (C) NAC pretreatment could
inhibit MF-induced ROS in zebrafish larvae. The left were photos in bright field light and the right
were photos in blue excitation light under a fluorescence microscope. The dotted box was the location
of the brain. Scale bar represents 200 µm; (D) Pretreatment with NAC inhibited MF-increased ROS in
the brain (dotted box) of zebrafish; (E) Pretreatment with NAC restored MF-inhibited SM distance of
zebrafish at 120 hpf. * p < 0.05, compared with sham.

2.6. MF Regulated syn2a Expression via ROS

Since both syn2a and ROS were involved in MF-induced SM hypoactivity in zebrafish,
in the present experiment, the relationship between syn2a and ROS was investigated.
Zebrafish embryos at 3 hpf were exposed to a 50-Hz MF at 200 µT with 200 µmol/L
NAC for 1 h or 24 h every day for 5 days. The syn2a expression in zebrafish larvae was
analyzed by Western blot. Results showed that there was no significant difference in syn2a
expression among all groups (Figure 5A), suggesting that pretreatment with NAC could
effectively restore MF-inhibited syn2a expression. In addition, exposed zebrafish embryos
at 3 hpf, which were transfected with plasmid vector or syn2a-overexpressed plasmid, to
a 50-Hz MF at 200 µT for 1 h or 24 h every day for 5 days showed that syn2a overexpression
did not affect MF-enhanced ROS level in zebrafish larvae (Figure 5B). All of the results
indicated that MF-inhibited syn2a expression was mediated by ROS.
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MF-inhibited syn2a expression in zebrafish larvae; (B) Syn2a overexpression did not affect MF-
enhanced ROS in zebrafish larvae. * p < 0.05, ** p < 0.01, compared with sham.

3. Discussion

Numerous studies confirmed that exposure to ELF-EMF could affect the function of
nervous system, especially behavior, although the mechanism is still confusing [10]. SM
is an important endpoint that reflects the developmental status and behavioral ability of
zebrafish embryos/larvae. In the present study, the effects and underlying mechanisms of
50-Hz MF exposure on SM were investigated for the first time in zebrafish embryos/larvae.
Results revealed that exposure of zebrafish embryos to a 50-Hz MF in two different modes
with a series of intensities did not affect the basic developmental status, but could lead to
early life-stage SM hypoactivity in a non-linear manner (at 200 µT). Since heat is an additive
magnitude, an effect due to heat (i.e., a thermal effect) has to obey to a dose-response
relationship, thus the non-linear trend of the detected MF effect on zebrafish larvae might
be considered non-thermal. According to international standards (see ICNIRP 1998) [38],
we assumed 50 Hz 100 µT (exposure limits) MF is the threshold for thermal/non-thermal
exposure in humans, given the small size of the zebrafish larvae, a corresponding “man
equivalent dose” (MEN) can be derived. The exposure of zebrafish, in our experiment
(200 µT), resulting in a calculated current density of 190.99 nA/m2, was lower than the
thermal threshold normalized for humans (about 1% MEN) (Giuliani L, 2023 personal
communication), so this non-linear effect is non-thermal. The non-linear dose-response of
MF, namely “window effect”, was first reported by Blackman et al. in 1980 [39]. It is defined
as a biological response that occurs only under specific frequency, amplitude, intensity,
and/or exposure mode criteria of MF. Outside these criteria, the biological response to MF
is moderated or eliminated. The findings showed that 50-Hz MF-induced the “window
effect” on SM hypoactivity in zebrafish was associated with intensity, but not exposure
mode. Besides, it should be noted that, compared to the “frequency window effect”
remaining relatively consistent (around 50/60 Hz), the “flux density/intensity window
effect” discovered in studies for decades presented a significant heterogeneity. In the
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current experiment, we found that 50-Hz MF only at 200 µT could excite the inhibitory
effect on SM, but other studies showed that 50/60 Hz MF, which affected the locomotor
activity of animal, ranged in intensity from 95 µT to 4 mT [11,12,15,16,40,41]. Moreover,
the effect of MF on SM was various. Some studies found that MF exposure inhibited
locomotor activity [11,12,41], but others reported that MF promoted it [15,16,40]. Except of
the diversity of animal species, the reason which caused the different effects on SM might
be related to MF exposure duration. Available evidences indicated that the short-term
(less than 4 days) exposure of MF was associated with SM inhibition [11,12,41], whereas
long-term (more than two weeks) exposure would promote locomotor activity [15,16,40].
Additionally, the present study showed that exposing zebrafishes by MF in early life-stage
could cause SM hypoactivity. Dimitrijević et al. also reported that MF exposure in early
life-stage would decrease locomotor activity in Drosophila subobscura [13]. It suggested that
the exposure stage in animal might influence the effect of MF on SM as well. Thus, the total
effect of MF exposure on SM should be judged from multiple factors, at least including
biological species, MF exposure duration and stage.

One of the main mechanisms studies on SM hypoactivity induced by environmental
factors focus on the expression of neurodevelopment-related genes, such as α1-tubulin,
gap43, gfap, mbp, shha, syn2a and so on [42–49]. The present study found that exposure to
50-Hz MF could down-regulate transcriptional levels of α1-tubulin, gfap, mbp, and syn2a, but
only syn2a was down-regulated at the protein level, and confirmed for the first time that
syn2a mediated the SM hypoactivity induced by 50-Hz MF in zebrafish. Syn2a is a subtype
of the synapsins family, the first identified presynaptic neuronal phosphate protein and the
most abundant protein on synaptic vesicles (SVs) involved in synaptogenesis and neuronal
plasticity [50,51]. All isoforms of synapsins are involved in regulating γ-aminobutyric acid
(GABA) release [50], but only syn2a regulates simultaneously glutamate (Glu) release by
maintaining the stability of the SVs reserve pool of glutamatergic synapses [52]. Studies
reported that ELF-EMF exposure could increase the ratio of Glu/GABA [53] and NMDA
receptor activity [24,53–55] in the postsynaptic membrane. We could explore the expres-
sion of Glu and GABA in zebrafish larvae after MF exposure. As the major excitatory
and inhibitory neurotransmitters in the central nervous system (CNS) respectively, the
imbalance of Glu and GABA could influence locomotor behavior, even lead to neuro-
logical disorders such as ALS [56], epilepsy [57] and schizophrenia [58]. Interestingly,
previous studies showed an increased risk of ALS in workers occupationally exposed to
ELF-EMF [6,7,59], but the mechanism is still unclear. To some extent, the present findings
suggest that MF exposure might induce ALS characterized by SM hypoactivity via disturb-
ing syn2a-mediated the release of Glu and GABA. Regulating the balance of Glu/GABA
by increasing the expression of syn2a might be a preventive measure for ALS occurred in
workers occupationally exposed to ELF-EMF.

ROS is a definite target molecule for MF interacting with biological systems [37].
Hu et al. reported that ROS was involved in neurobehavioral disorders induced by nanopar-
ticles in zebrafish larvae [42]. In the current study, results showed that ROS mediated
MF-induced decrease in syn2a protein expression and caused SM hypoactivity. However,
the exact mechanism is obscure. Our previous studies found that 50-Hz MF exposure
could promote ROS production by increasing the intracellular Ca2+ level [60,61]. Cole-
man et al. reported that synapsin II actively delivered SVs from the reserve pool to the
readily releasable pool in cooperation with Ca2+-dependent mechanisms [62], and Ca2+

could regulate Glu releasing from glutamatergic synapses [63]. All of these evidences
indicated that MF-increased intracellular Ca2+ might participate in the inhibition of syn2a
expression through regulation of ROS-mediated signaling, thereby affecting reserve pool
stability at glutamatergic synapses, and accelerated SVs cycling to promote Glu release,
ultimately lead to SM hypoactivity. But it requires further exploration. Additionally, related
studies confirmed that syn2a is a substrate for some protein kinases activated by ROS,
including cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and
extracellular signal-regulated kinase (Erk) [60,64–66], which are sensitive to ELF-EMF ex-
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posure [53,67,68]. Meanwhile, studies reported that both PKA [69,70] and Erk [71–73] were
involved in locomotor behavioral regulation. Thus, it is possible that MF inhibits syn2a
expression through these kinases, such as PKA and Erk, regulated by ROS, and causes SM
hypoactivity finally. It provides a clue for the further investigation.

4. Materials and Methods
4.1. Chemicals and Antibodies

The main chemicals used in this study were N-acetyl-L-cysteine (NAC) (Adamas-
Beta, Shanghai, China), Tricaine methanesulfonate (MedChemExpress, Shanghai, China)
and E3 embryo medium (containing 5 mM NaCl, 0.17 mM KCl,0.33 mM CaCl2, 0.33 mM
MgSO4, 0.01% methylene blue in water). The antibodies for Western blot analysis included
rabbit anti-synapsin 1/2 antibody (Synaptic Systems, Goettingen, Germany), rabbit anti-
alpha tubulin antibody (Abcam, Cambridge, UK), rabbit anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) antibody (Bioss, Beijing, China), and horseradish peroxidases
(HRPs)-conjugated secondary antibodies (Beyotime Biotech, Shanghai, China).

4.2. Zebrafish Husbandry, Spawning and Egg Collection

Adult zebrafish (wild-type AB strain, purchased from Zebrafish sub-platform of
Zhejiang University Medical College Public Technology Platform) were cultured in tanks in
a flow-through system (28 ± 1 ◦C,14 h:10 h light/dark cycle) according to the Institutional
Animal Care and Use Committee protocols [74], and fed twice per day with freshly hatched
live brine shrimp. Adult male and female zebrafishes were moved into the spawning tanks
with a ratio of 1:1 in the afternoon of the day before spawning. The spawning was induced
in the light after removing the baffle in the tank the next morning. Embryos were collected
within 30 min, washed with E3 embryo medium, dead or unfertilized eggs were eliminated
using a SMZ-168 stereo microscope (Nikon, Tokyo, Japan), incubated at 28 ◦C and marked
as 0 hpf. Under microscopic observation, embryos at 3 hpf were randomly transferred into
5 mL E3 embryo medium in 6-well plates for the follow-up exposure experiments. The
medium was changed daily and dead embryos were picked out. When experiment finished,
20 embryos or larvae from each well were collected and washed twice with standard water.
All samples were stored at −80 ◦C for use.

This study was approved by the Experimental Animal Welfare Ethics Committee of
Zhejiang University (Hangzhou, China) (Ethical batch No. ZJU20220209), and all of the
experimental procedures were conducted in strict conformity with the guidelines for care
and treatment of laboratory animals.

4.3. Magnetic Field Exposure System, Treatment of Zebrafish Embryos, and Observation of the
Basic Developmental Parameters

The magnetic field exposure system (sXc-ELF) used in this study was purchased
from the Foundation for Information Technologies in Society (IT’IS, Zurich, Switzerland).
The detailed construction of the system was described in previous paper [75]. Briefly, it
consisted of two exposure chambers in an incubator which could keep uniform tempera-
ture, and a set of control devices outside the incubator. One chamber was used for “MF
exposure” and another for “sham exposure” (Figure 6A). The intensity of 50-Hz MF and
the random selection of MF exposure chamber could be set by control devices for double
blind experiments and there is no variation in the intensity of the magnetic field in every
experiment (Figure 6B).

During MF exposure, the zebrafish embryos or larvae were put in the center of
chambers, and the incubator is lighted. Temperature in the chambers was recorded in
real time and kept at 28.0 ± 0.1 ◦C. The difference of temperature between the MF- and
sham-exposure groups did not exceed 0.1 ◦C throughout the entire exposure period. The
exposure system was turned on at least 2 h before an experiment for the conditions to
stabilize. In the present study, zebrafish embryos were exposed to a 50-Hz MF with a series
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of intensities (100, 200, 400 and 800 µT, respectively) for 1 h or 24 h every day for 3 or 5 days.
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After MF exposure, the larvae at 72 hpf or 120 hpf were collected for morphological
observation, and the hatching rate at 72 hpf, mortality and malformation rate at 120 hpf
were recorded using an optical microscope with camera (Nikon, Tokyo, Japan).

4.4. Overexpressing syn2a in Zebrafish

The synapsin IIa (syn2a) DNA sequences of zebrafish was downloaded from National
Center for Biotechnology Information (NCBI). After synthesized, the DNA fragments were
cloned into plasmid vector (pCS2+ plasmid) (Figure 7A) (Guannan Biological Technology
Co., Hangzhou, China). An intact syn2a overexpression plasmid (pCS2+-CMVIE94-syn2a-
EGFP plasmid) contains a green fluorescent protein (GFP) expression cassette composed
of the Xenopus SP6 promoter for ubiquitous expression, the syn2a gene, the EGFP gene,
and the SV40 polyA (Figure 7B). Plasmids were extracted using E.Z.N.A.® Plasmid DNA
Mini Kit I (Omega, NY, USA). The quality (OD260/280) and concentration of plasmids
were measured by Nanodrop spectrophotometry (Thermo scientific, MA, USA). Total
of 25 ng overexpression plasmid or plasmid vector was microinjected into the one-cell-
stage zebrafish embryo before 1 hpf using the ASI pressure injection system under SMZ
745T stereo microscope (Nikon, Tokyo, Japan). Injected embryos were screened for green
fluorescence at 24 hpf. The fluorescent images were observed and photographed by
a SMZ18 microscope (Nikon, Tokyo, Japan).

4.5. Locomotion Analysis

At 24 hpf, six of live embryos in each group were selected randomly to count the times
of spontaneous movement (SM, free swimming activity independent of any stimuli) within
1 min under microscope. Experiment was repeated at least three times.

At 120 hpf, a total of 12 healthy larvae randomly selected from each group were
transferred into 96-well plates with one larva and 200 µL E3 embryo medium per well,
which was placed in the Noldus DanioScope Observation Chamber (Noldus Industrial
Co., Shanghai, China). After 10 min of acclimatization in the chamber, SM was monitored
within 10 min with a Noldus EthoVision system (Noldus Industrial Co., Shanghai, China)
at 28 ◦C. Besides, larva response to photoperiod stimulation was tracked during a cycle
of two alternating periods of 10 min light (LED illumination) and 10 min dark (infrared
illumination), after 10 min of acclimatization too. Using a Basler GenICam acA 130,060 g
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camera, the infrared movement traces were recorded at a rate of 25 frames per second
and analyzed with the Noldus EthoVision XT 15 software. The total moving distance and
average speed were determined during dark and light periods, respectively. Experiment
was repeated at least three times.
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4.6. Histological Examination

After exposure to a 50-Hz MF for 1 h or 24 h every day for 3 days, the larvae at
72 hpf were fixed with 4% (w/v) paraformaldehyde at 4 ◦C overnight, dehydrated in
graded ethanol, cleared in xylene, embedded in paraffin, and then sectioned to 7 µm
thickness. Subsequently, the sections were deparaffinized, rehydrated with graded ethanol,
and stained with hematoxylin-eosin (HE) following the standard procedures. Finally,
histopathological change of the brain was observed using a Ni-U microscope (Nikon,
Tokyo, Japan).

4.7. ROS Assay

The ROS level in zebrafish larvae was analyzed by an oxidation sensitive probe, 2′,7′-
dichlorofluorescein diacetate (DCFH-DA) (Beyotime Biotech, Shanghai, China) in vivo and
in vitro. For ROS detection in vivo, the living larvae at 120 hpf which have been exposed
to 50-Hz MF with or without 200 µmol/L NAC for 5 days were incubated with 5 µM
DCFH-DA (final concentration in E3 embryo medium) for 1 h in the dark at 28 ◦C. After
washing three times with E3 embryo medium, the larvae were anesthetized by MS-222
and observed using the fluorescence microscope (SMZ18, Nikon, Tokyo, Japan). The
fluorescence intensity in the brain area was quantified by Image J software version 1.8.0.112
(NIH, Rockville, MD, USA).

For ROS assay in vitro, the heads of larvae which were treated in experiments were
homogenized in ice and mixed with 600 µL 0.1 mol/L phosphate buffered saline (PBS,
pH = 7.4). The supernatant was extracted by centrifugation at 12,500× g for 15 min at 4 ◦C,
and the protein concentration was measured by a bicinchoninic-acid (BCA) protein assay
kit (Beyotime Biotech, Shanghai, China). Each well of the 96-well blk/clr btm plate was
added of 10 µL supernatant, 190 µL PBS and 0.1 µL 10 mM DCFH-DA respectively, and
then incubated for 30 min at 37 ◦C in the dark. The intensity of fluorescence was detected
by a SpectraMax® iD5 multi-mode microplate reader (Molecular Devices, Sunnyvale, USA)
at 480 nm excitation/530 nm emission and standardized to total protein levels. Experiment
was repeated at least three times.
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4.8. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA of zebrafish larva was isolated using RNAiso Plus (TAKARA BIO INC,
Dalian, China). The quality (OD A260/A280) and concentration of RNA was measured
by Nanodrop spectrophotometry (Thermo scientific, MA, USA). For each sample, cDNA
was synthesized from 50 ng of total RNA using Prime Script® RT reagent Kit with gDNA
Eraser (TAKARA BIO Inc., Dalian, China) according to the manufacturer’s protocols [76].
Quantitative real-time PCR was performed by LightCycler® 480 II System (Roche, Basel,
Switzerland). The reaction system (total volume 10 µL) consisted of 5 µL of SYBR® Green
Realtime PCR Master Mix (TOYOBIO, Dalian, China), 1 µL of cDNA, 0.4 µL of forward
and reverse primers (10 µM), and 3.2 µL of RNase-free H2O. Amplification was performed
with the following cycling parameters: 95 ◦C for 30 s, 40 cycles of 95 ◦C for 5 s, 60 ◦C
for 10 s, 72 ◦C for 15 s, followed by melt curve analysis to validate the specificity of the
PCR amplicons. Aiming at evaluating the relative mRNA levels of genes, normalized to
housekeeping gene β-actin, the comparative threshold cycle (2−∆∆Ct) method [77] was used.
For each tested gene, the qRT-PCR reactions were performed on three technical replicates.
The primer sequences of genes used in this study were presented in Table 3.

Table 3. Primer sequences of genes for quantitative real-time PCR analysis.

Gene
Name

Primer Sequence (5′-3′)

Forward Reverse

elavl3 GTCAGAAAGACATGGAGCAGTTG GAACCGAATGAAACCTACCCC
gap43 TGCTGCATCAGAAGAACTAA CCTCCGGTTTGATTCCATC
gfap GGATGCAGCCAATCGTAAT TTCCAGGTCACAGGTCAG
mbp AATCAGCAGGTTCTTCGGAGGAGA AAGAAATGCACGACAGGGTTGACG
shha AGACCGAGACTCCACGACGC TGCAGTCACTGGTGCGAACG

syn2a GTACCATGCCAGCATTTC TGGTTCTCCACTTTCACCTT
α1-tubulin AATCACCAATGCTTGCTTCGAGCC TTCACGTCTTTGGGTACCACGTCA

β-actin ATGGATGAGGAAATCGCTGCC CTCCCTGATGTCTGGGTCGTC

4.9. Western Blot Analysis

After treatment, zebrafishes were homogenized and lysed with 200 µL radioimmuno-
precipitation assay (RIPA) buffer (Beyotime Biotech, Shanghai, China) containing 1 mM
phenylmethylsulfonyl fluoride (PMSF) (Beyotime Biotech, Shanghai, China) and 4 mM
cOmplete™-free protease inhibitor cocktail (Roche, Basel, Switzerland). Protein was ex-
tracted by centrifugation at 12,500× g for 15 min at 4 ◦C, and the concentration was
measured using a BCA protein assay kit (Beyotime Biotech, Shanghai, China). Equal
amounts of protein (30 µg/lane) were mixed with 5× loading buffer, resolved on 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to nitrocellulose membranes (Whatman GmbH, Dassel, Germany). Then, the membranes
were blocked with 5% bovine serum albumin (BSA) in tris-buffered saline (TBS) for 2 h,
incubated overnight at 4 ◦C with rabbit anti-synapsin 1/2 antibody (1:1000), rabbit anti-
alpha Tubulin antibody (1:2000) or rabbit anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) antibody (1:2000), washed with TBST (TBS with 0.1% Tween-20) for 3 times
(10 min per time) and incubated with goat anti-rabbit HRP (1:2000) for 1 h. Finally, the
grey scale of protein bands was analyzed with BeyoECL on a Bio-Rad Chemiluminescence
Imager (Bio-Rad, Hercules, CA, USA). Experiment was repeated at least three times.

4.10. Statistical Analysis

Data were presented as mean ± standard deviation (SD) from at least three inde-
pendent experiments and analyzed using SPSS software version 26.0 (IBM, Armonk, NY,
USA). After a normality test, the one-way analysis of variance (ANOVA) followed
by least-significant difference or Dunnett post hoc comparison was performed to
analyze the statistical differences among multiple groups. p < 0.05 was considered
statistically significant.
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5. Conclusions

The study demonstrated for the first time that 50-Hz MF exposure could induce
zebrafish SM hypoactivity via ROS-inhibited syn2a expression in a nonlinear manner. The
findings might provide new insights into the molecular mechanisms of ELF-EMF related
neurodegenerative diseases such as ALS.
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