A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Magnetic-Field Exposure System
2.1.1. Incubator Design
2.1.2. Coil Specifications
2.1.3. Magnetic-Field Signal Generation
2.1.4. Software
2.2. Magnetic-Field Exposure Conditions
2.3. The Biological Reporter System
2.3.1. Cell-Culture Conditions
2.3.2. Alkaline Phosphatase Assay for Monitoring Inflammation
2.4. Statistical Analysis
3. Results
3.1. Technical Experimental Setup
3.2. Effects of Pulsed Magnetic Field on the Inflammatory Response
3.3. Effect of Varying the Altered Magnetic-Field Duration and Frequency f on the Inflammatory Response
3.4. Effect of Short-Pulsed Magnetic-Field Signals
4. Discussion
4.1. Technical System
- Flexible, modular design;
- Automated control and logging of exposure and incubation conditions;
- Same setup and handling for control vs. exposed condition;
- Reduction of noisy ELF-magnetic background fields during incubation;
- Ability to manipulate well-known magnetic field parameters;
- Continuous technical remote support and monitoring.
4.2. Biological Assay
- Low biological sample variation due to reporter cell line instead of primary cells;
- Suitable experimental procedure to see phenological markers within a short time period;
- Easy to handle, robust but highly sensitive assay.
4.3. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MF | Magnetic field |
EMF | Electromagnetic field |
ELF-MF | Extreme low-frequency magnetic field |
PEMF | Pulsed electromagnetic field |
TLR | Toll-like receptor |
CIT | Cell information therapy |
OD | Optical density |
IC | Incubator |
NTC | Negative temperature coefficient |
MSM | Multisensor-module |
HEK | Human embryonic kidney |
PMMA | Poly(methyl methacrylate), acrylic glass |
References
- Markov, M.S. Pulsed electromagnetic field therapy history, state of the art and future. Environmentalist 2007, 27, 465–475. [Google Scholar] [CrossRef]
- Markov, M. XXIst century magnetotherapy. Electromagn. Biol. Med. 2015, 34, 190–196. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields; International Agency for Research on Cancer: Lyon, France, 2013; Volume 102, pp. 1–460. [Google Scholar]
- Ganguly, K.S.; Sarkar, A.K.; Datta, A.K.; Rakshit, A. A study of the effects of pulsed electromagnetic field therapy with respect to serological grouping in rheumatoid arthritis. J. Indian Med. Assoc. 1998, 96, 272–275. [Google Scholar] [PubMed]
- Shupak, N.M.; McKay, J.C.; Nielson, W.R.; Rollman, G.B.; Prato, F.S.; Thomas, A.W. Exposure to a specific pulsed low-frequency magnetic field: A double-blind placebo-controlled study of effects on pain ratings in rheumatoid arthritis and fibromyalgia patients. Pain Res. Manag. 2006, 11, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Gengadharan, A.C.; Balachandran, C.; Manohar, B.M.; Puvanakrishnan, R. Low frequency pulsed electromagnetic field–a viable alternative therapy for arthritis. Indian J. Exp. Biol. 2009, 47, 939–948. [Google Scholar]
- Veronesi, F.; Torricelli, P.; Giavaresi, G.; Sartori, M.; Cavani, F.; Setti, S.; Cadossi, M.; Ongaro, A.; Fini, M. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J. Orthop. Res. 2014, 32, 677–685. [Google Scholar] [CrossRef]
- Wu, Z.; Ding, X.; Lei, G.; Zeng, C.; Wei, J.; Li, J.; Li, H.; Yang, T.; Cui, Y.; Xiong, Y.; et al. Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis. BMJ Open 2018, 8, e022879. [Google Scholar] [CrossRef]
- Ross, C.L.; Ang, D.C.; Almeida-Porada, G. Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis. Front. Immunol. 2019, 10, 266. [Google Scholar] [CrossRef]
- Sutbeyaz, S.T.; Sezer, N.; Koseoglu, B.F. The effect of pulsed electromagnetic fields in the treatment of cervical osteoarthritis: A randomized, double-blind, sham-controlled trial. Rheumatol. Int. 2006, 26, 320–324. [Google Scholar] [CrossRef]
- Jing, D.; Shen, G.; Huang, J.; Xie, K.; Cai, J.; Xu, Q.; Wu, X.; Luo, E. Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone 2010, 46, 487–495. [Google Scholar] [CrossRef]
- Beaulieu, K.; Beland, P.; Pinard, M.; Handfield, G.; Handfield, N.; Goffaux, P.; Corriveau, H.; Léonard, G. Effect of pulsed electromagnetic field therapy on experimental pain: A double-blind, randomized study in healthy young adults. Electromagn. Biol. Med. 2016, 35, 237–244. [Google Scholar] [CrossRef]
- Markovic, L.; Wagner, B.; Crevenna, R. Effects of pulsed electromagnetic field therapy on outcomes associated with osteoarthritis: A systematic review of systematic reviews. Wien. Klin. Wochenschr. 2022, 134, 425–433. [Google Scholar] [CrossRef]
- Bassett, C.A.; Pawluk, R.J.; Pilla, A.A. Augmentation of bone repair by inductively coupled electromagnetic fields. Science 1974, 184, 575–577. [Google Scholar] [CrossRef]
- Chang, K.; Chang, W.H.S. Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: A prostaglandin E2-associated process. Bioelectromagnetics 2003, 24, 189–198. [Google Scholar] [CrossRef]
- Chang, K.; Chang, W.H.S.; Wu, M.L.; Shih, C. Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics 2003, 24, 431–439. [Google Scholar] [CrossRef]
- Chang, W.H.S.; Chen, L.T.; Sun, J.S.; Lin, F.H. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 2004, 25, 457–465. [Google Scholar] [CrossRef]
- Midura, R.J.; Ibiwoye, M.O.; Powell, K.A.; Sakai, Y.; Doehring, T.; Grabiner, M.D.; Patterson, T.E.; Zborowski, M.; Wolfman, A. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J. Orthop. Res. 2005, 23, 1035–1046. [Google Scholar] [CrossRef]
- Grana, D.R.; Marcos, H.J.A.; Kokubu, G.A. Pulsed electromagnetic fields as adjuvant therapy in bone healing and peri-implant bone formation: An experimental study in rats. Acta Odontol. Latinoam. AOL 2008, 21, 77–83. [Google Scholar]
- Yuan, J.; Xin, F.; Jiang, W. Underlying Signaling Pathways and Therapeutic Applications of Pulsed Electromagnetic Fields in Bone Repair. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 46, 1581–1594. [Google Scholar] [CrossRef]
- Ehnert, S.; Schröter, S.; Aspera-Werz, R.H.; Eisler, W.; Falldorf, K.; Ronniger, M.; Nussler, A.K. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J. Clin. Med. 2019, 8, 2028. [Google Scholar] [CrossRef] [Green Version]
- Seeliger, C.; Falldorf, K.; Sachtleben, J.; van Griensven, M. Low-frequency pulsed electromagnetic fields significantly improve time of closure and proliferation of human tendon fibroblasts. Eur. J. Med. Res. 2014, 19, 37. [Google Scholar] [CrossRef] [Green Version]
- Selvam, R.; Ganesan, K.; Narayana Raju, K.V.S.; Gangadharan, A.C.; Manohar, B.M.; Puvanakrishnan, R. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sci. 2007, 80, 2403–2410. [Google Scholar] [CrossRef]
- Pooam, M.; Aguida, B.; Drahy, S.; Jourdan, N.; Ahmad, M. Therapeutic application of light and electromagnetic fields to reduce hyper-inflammation triggered by COVID-19. Commun. Integr. Biol. 2021, 14, 66–77. [Google Scholar] [CrossRef]
- Ehnert, S.; Fentz, A.K.; Schreiner, A.; Birk, J.; Wilbrand, B.; Ziegler, P.; Reumann, M.K.; Wang, H.; Falldorf, K.; Nussler, A.K. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2− and H2O2. Sci. Rep. 2017, 7, 14544. [Google Scholar] [CrossRef] [Green Version]
- Falone, S.; Marchesi, N.; Osera, C.; Fassina, L.; Comincini, S.; Amadio, M.; Pascale, A. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. Int. J. Radiat. Biol. 2016, 92, 281–286. [Google Scholar] [CrossRef]
- Woo, S.H.; Kim, B.; Kim, S.H.; Jung, B.C.; Lee, Y.; Kim, Y.S. Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death. BMB Rep. 2022, 55, 148–153. [Google Scholar] [CrossRef]
- Pi, Y.; Liang, H.; Yu, Q.; Yin, Y.; Xu, H.; Lei, Y.; Han, Z.; Tian, J. Low-frequency pulsed electromagnetic field inhibits RANKL-induced osteoclastic differentiation in RAW264.7 cells by scavenging reactive oxygen species. Mol. Med. Rep. 2019, 19, 4129–4136. [Google Scholar] [CrossRef] [Green Version]
- Storch, K.; Dickreuter, E.; Artati, A.; Adamski, J.; Cordes, N. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage. PLoS ONE 2016, 11, e0167931. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.Q.; Wang, C.; Lu, D.F.; Zhao, X.D.; Tan, L.H.; Chen, X. Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging 2020, 12, 3662–3681. [Google Scholar] [CrossRef]
- Santini, S.J.; Cordone, V.; Falone, S.; Mijit, M.; Tatone, C.; Amicarelli, F.; Di Emidio, G. Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. Oxid. Med. Cell. Longev. 2018, 2018, 5076271. [Google Scholar] [CrossRef] [Green Version]
- Sherrard, R.M.; Morellini, N.; Jourdan, N.; El-Esawi, M.; Arthaut, L.D.; Niessner, C.; Rouyer, F.; Klarsfeld, A.; Doulazmi, M.; Witczak, J.; et al. Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species. PLoS Biol. 2018, 16, e2006229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, X.; Sun, L.; Feng, B.; Sun, W. Acid sphingomyelinase mediates 50-Hz magnetic field-induced EGF receptor clustering on lipid raft. J. Recept. Signal Transduct. Res. 2016, 36, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, C.; Panzarini, E.; Tenuzzo, B.A.; Mariano, S.; Tata, A.M.; Dini, L. Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes. Molecules 2020, 25, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckner, C.A.; Buckner, A.L.; Koren, S.A.; Persinger, M.A.; Lafrenie, R.M. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS ONE 2015, 10, e0124136. [Google Scholar] [CrossRef]
- Galland, P.; Pazur, A. Magnetoreception in plants. J. Plant Res. 2005, 118, 371–389. [Google Scholar] [CrossRef]
- Liburdy, R.P. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett. 1992, 301, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Astumian, R.D.; Adair, R.K.; Weaver, J.C. Stochastic resonance at the single-cell level. Nature 1997, 388, 632–633. [Google Scholar] [CrossRef]
- Weaver, J.C.; Vaughan, T.E.; Martin, G.T. Biological effects due to weak electric and magnetic fields: The temperature variation threshold. Biophys. J. 1999, 76, 3026–3030. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, J.P.; Blackman, C.F. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 1994, 15, 217–238. [Google Scholar] [CrossRef]
- Blackman, C.F.; Blanchard, J.P.; Benane, S.G.; House, D.E. The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. FASEB J. 1995, 9, 547–551. [Google Scholar] [CrossRef]
- Binghy, V.N. Interference of Ion Quantum States Within a Protein Explains Weak Magnetic Field’s Effect on Biosystems. Electro- Magnetobiol. 1997, 16, 203–214. [Google Scholar] [CrossRef]
- Rodgers, C.T.; Hore, P.J. Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 353–360. [Google Scholar] [CrossRef]
- Hore, P.J. Are biochemical reactions affected by weak magnetic fields? Proc. Natl. Acad. Sci. USA 2012, 109, 1357–1358. [Google Scholar] [CrossRef] [Green Version]
- Hore, P.J.; Mouritsen, H. The Radical-Pair Mechanism of Magnetoreception. Annu. Rev. Biophys. 2016, 45, 299–344. [Google Scholar] [CrossRef]
- Winklhofer, M. Biogenic Magnetite as a Basis for tion in Animals. In Biomineralization; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; Chapter 7; pp. 12–118. [Google Scholar] [CrossRef]
- Bingi, V.N.; Savin, A.V. Effects of weak magnetic fields on biological systems: Physical aspects. Physics-Uspekhi 2003, 46, 259–291. [Google Scholar] [CrossRef] [Green Version]
- Golbach, L.A.; Portelli, L.A.; Savelkoul, H.F.J.; Terwel, S.R.; Kuster, N.; de Vries, R.B.M.; Verburg-van Kemenade, B.M.L. Calcium homeostasis and low-frequency magnetic and electric field exposure: A systematic review and meta-analysis of in vitro studies. Environ. Int. 2016, 92–93, 695–706. [Google Scholar] [CrossRef]
- Baker, M. 1500 scientists lift the lid on reproducibility. Nature 2016, 533, 452–454. [Google Scholar] [CrossRef] [Green Version]
- Baker, M. Reproducibility: Respect your cells! Nature 2016, 537, 433–435. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Duellman, S.J.; Niles, A.L. Treating Cells as Reagents to Design Reproducible Assays. SLAS Discov. Adv. Life Sci. R&D 2021, 26, 1256–1267. [Google Scholar] [CrossRef]
- Portelli, L.A.; Schomay, T.E.; Barnes, F.S. Inhomogeneous background magnetic field in biological incubators is a potential confounder for experimental variability and reproducibility. Bioelectromagnetics 2013, 34, 337–348. [Google Scholar] [CrossRef]
- Thomas, A.W.; Kavaliers, M.; Prato, F.S.; Ossenkopp, K.P. Antinociceptive effects of a pulsed magnetic field in the land snail, Cepaea nemoralis. Neurosci. Lett. 1997, 222, 107–110. [Google Scholar] [CrossRef]
- Ehnert, S.; Falldorf, K.; Fentz, A.K.; Ziegler, P.; Schröter, S.; Freude, T.; Ochs, B.G.; Stacke, C.; Ronniger, M.; Sachtleben, J.; et al. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure—Clinical implication possible. Bone Rep. 2015, 3, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Portelli, L.A.; Falldorf, K.; Thuróczy, G.; Cuppen, J. Retrospective estimation of the electric and magnetic field exposure conditions in in vitro experimental reports reveal considerable potential for uncertainty. Bioelectromagnetics 2018, 39, 231–243. [Google Scholar] [CrossRef]
- Chen, Y.; Menger, M.M.; Braun, B.J.; Schweizer, S.; Linnemann, C.; Falldorf, K.; Ronniger, M.; Wang, H.; Histing, T.; Nussler, A.K.; et al. Modulation of Macrophage Activity by Pulsed Electromagnetic Fields in the Context of Fracture Healing. Bioengineering 2021, 8, 167. [Google Scholar] [CrossRef]
- Schuderer, J.; Oesch, W.; Felber, N.; Spät, D.; Kuster, N. In vitro exposure apparatus for ELF magnetic fields. Bioelectromagnetics 2004, 25, 582–591. [Google Scholar] [CrossRef]
- Capstick, M.; Schär, P.; Schuermann, D.; Romann, A.; Kuster, N. ELF exposure system for live cell imaging. Bioelectromagnetics 2013, 34, 231–239. [Google Scholar] [CrossRef]
- Vergallo, C.; Piccoli, C.; Romano, A.; Panzarini, E.; Serra, A.; Manno, D.; Dini, L. Magnetostatic Field System for uniform cell cultures exposure. PLoS ONE 2013, 8, e72341. [Google Scholar] [CrossRef] [Green Version]
- Ravin, R.; Cai, T.X.; Pursley, R.H.; Garmendia-Cedillos, M.; Pohida, T.; Freidlin, R.Z.; Wang, H.; Zhuang, Z.; Giles, A.J.; Williamson, N.H.; et al. A Novel In Vitro Device to Deliver Induced Electromagnetic Fields to Cell and Tissue Cultures. Biophys. J. 2020, 119, 2378–2390. [Google Scholar] [CrossRef]
- Raso, J.; Frey, W.; Ferrari, G.; Pataro, G.; Knorr, D.; Teissie, J.; Miklavcic, D. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov. Food Sci. Emerg. Technol. 2016, 37, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Funk, R.H. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am. J. Transl. Res. 2018, 10, 1260–1272. [Google Scholar]
- Vokali, E.; Yu, S.S.; Hirosue, S.; Rinçon-Restrepo, M.; V Duraes, F.; Scherer, S.; Corthésy-Henrioud, P.; Kilarski, W.W.; Mondino, A.; Zehn, D.; et al. Lymphatic endothelial cells prime naïve CD8, jakarta.xml.bind.JAXBElement@678162b2, T cells into memory cells under steady-state conditions. Nat. Commun. 2020, 11, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Su, Z.; Zhao, W.; Zhang, X.; Momin, N.; Zhang, C.; Wittrup, K.D.; Dong, Y.; Irvine, D.J.; Weiss, R. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 2020, 1, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Csakai, A.; Jiang, S.; Smith, C.; Tanji, H.; Huang, J.; Jones, T.; Sakaniwa, K.; Broadwell, L.; Shi, C.; et al. Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists. Nat. Commun. 2021, 12, 4351. [Google Scholar] [CrossRef] [PubMed]
- Kuzmich, N.N.; Sivak, K.V.; Chubarev, V.N.; Porozov, Y.B.; Savateeva-Lyubimova, T.N.; Peri, F. TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboudounya, M.M.; Heads, R.J. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediat. Inflamm. 2021, 2021, 8874339. [Google Scholar] [CrossRef] [PubMed]
- Blackman, C.F.; Benane, S.G.; Rabinowitz, J.R.; House, D.E.; Joines, W.T. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 1985, 6, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Holman, L.; Head, M.L.; Lanfear, R.; Jennions, M.D. Evidence of Experimental Bias in the Life Sciences: Why We Need Blind Data Recording. PLoS Biol. 2015, 13, e1002190. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Value |
---|---|---|
Outer dimensions | 195 mm × 166 mm × 130 mm | |
Winding number | inner, correction, counter | 26, 2 × 6, 2 × 7 |
B/I-ratio at the center | K | ≈150 |
Ohmic resistance | R | |
Inductance | L | ≈0.235 mH |
Wire | - | LiY 1.0 mm2, ∅2.1 mm |
Parameter | Signal | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|
Frequency | f | 10 Hz | 19 Hz | 10 Hz | 19 Hz | 52.3 Hz | 51.8 Hz |
Period | T | 100 ms | 52.63 ms | 100 ms | 52.63 ms | 19.12 ms | 19.31 ms |
Duty cycle | D | 50% 50% | 26% | 95% | <0.523% | <0.518% | |
Altered magnetic- field duration | 50 ms | 26.32 ms | 26.32 ms | 50 ms | <100 s | <100 s | |
AC amplitude | ≈39.46 T | ||||||
Incubator E | Incubator C | ||||||
Geomagnetic (DC) field | ≈8.0 T | ≈−17.5 T | |||||
≈34.0 T | ≈−8.0 T | ||||||
≈43.0 T | ≈39.0 T | ||||||
≈56.0 T | ≈43.5 T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronniger, M.; Aguida, B.; Stacke, C.; Chen, Y.; Ehnert, S.; Erdmann, N.; Eschenburg, G.; Falldorf, K.; Pooam, M.; Wing, A.; et al. A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures. Bioengineering 2022, 9, 595. https://doi.org/10.3390/bioengineering9100595
Ronniger M, Aguida B, Stacke C, Chen Y, Ehnert S, Erdmann N, Eschenburg G, Falldorf K, Pooam M, Wing A, et al. A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures. Bioengineering. 2022; 9(10):595. https://doi.org/10.3390/bioengineering9100595
Chicago/Turabian StyleRonniger, Michael, Blanche Aguida, Christina Stacke, Yangmengfan Chen, Sabrina Ehnert, Niklas Erdmann, Georg Eschenburg, Karsten Falldorf, Marootpong Pooam, Anthony Wing, and et al. 2022. "A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures" Bioengineering 9, no. 10: 595. https://doi.org/10.3390/bioengineering9100595
APA StyleRonniger, M., Aguida, B., Stacke, C., Chen, Y., Ehnert, S., Erdmann, N., Eschenburg, G., Falldorf, K., Pooam, M., Wing, A., & Ahmad, M. (2022). A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures. Bioengineering, 9(10), 595. https://doi.org/10.3390/bioengineering9100595