Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = extreme lightning activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5333 KiB  
Article
Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America
by Flavio Justino, David H. Bromwich, Jackson Rodrigues, Carlos Gurjão and Sheng-Hung Wang
Fire 2025, 8(7), 282; https://doi.org/10.3390/fire8070282 - 16 Jul 2025
Viewed by 693
Abstract
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall [...] Read more.
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall trend test, and assessments of interannual variability to key variables including soil moisture, fire frequency and risk, evaporation, and lightning. Results indicate a significant increase in dry days (up to 40%) and heatwave events across Central Eurasia and Siberia (up to 50%) and Alaska (25%), when compared to the 1980–2000 baseline. Upward trends have been detected in evaporation across most of North America, consistent with soil moisture trends, while much of Eurasia exhibits declining soil moisture. Fire danger shows a strong positive correlation with evaporation north of 60° N (r ≈ 0.7, p ≤ 0.005), but a negative correlation in regions south of this latitude. These findings suggest that in mid-latitude ecosystems, fire activity is not solely driven by water stress or atmospheric dryness, highlighting the importance of region-specific surface–atmosphere interactions in shaping fire regimes. In North America, most fires occur in temperate grasslands, savannas, and shrublands (47%), whereas in Eurasia, approximately 55% of fires are concentrated in forests/taiga and temperate open biomes. The analysis also highlights that lightning-related fires are more prevalent in Eastern Europe and Southeastern Asia. In contrast, Western North America exhibits high fire incidence in temperate conifer forests despite relatively low lightning activity, indicating a dominant role of anthropogenic ignition. These findings underscore the importance of understanding land–atmosphere interactions in assessing fire risk. Integrating surface conditions, climate extremes, and ignition sources into fire prediction models is crucial for developing more effective wildfire prevention and management strategies. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Graphical abstract

9 pages, 16281 KiB  
Data Descriptor
Advancements in Regional Weather Modeling for South Asia Through the High Impact Weather Assessment Toolkit (HIWAT) Archive
by Timothy Mayer, Jonathan L. Case, Jayanthi Srikishen, Kiran Shakya, Deepak Kumar Shah, Francisco Delgado Olivares, Lance Gilliland, Patrick Gatlin, Birendra Bajracharya and Rajesh Bahadur Thapa
Data 2025, 10(7), 112; https://doi.org/10.3390/data10070112 - 9 Jul 2025
Viewed by 350
Abstract
Some of the most intense thunderstorms and extreme weather events on Earth occur in the Hindu Kush Himalaya (HKH) region of Southern Asia. The need to provide end users, stakeholders, and decision makers with accurate forecasts and alerts of extreme weather is critical. [...] Read more.
Some of the most intense thunderstorms and extreme weather events on Earth occur in the Hindu Kush Himalaya (HKH) region of Southern Asia. The need to provide end users, stakeholders, and decision makers with accurate forecasts and alerts of extreme weather is critical. To that end, a cutting edge weather modeling framework coined the High Impact Weather Assessment Toolkit (HIWAT) was created through the National Aeronautics and Space Administration (NASA) SERVIR Applied Sciences Team (AST) effort, which consists of a suite of varied numerical weather prediction (NWP) model runs to provide probabilities of straight-line damaging winds, hail, frequent lightning, and intense rainfall as part of a daily 54 h forecast tool. The HIWAT system was first deployed in 2018, and the recently released model archive hosted by the Global Hydrometeorology Resource Center (GHRC) Distributed Active Archive Center (DAAC) provides daily model outputs for the years of 2018–2022. With a nested modeling domain covering Nepal, Bangladesh, Bhutan, and Northeast India, the HIWAT archive spans the critical pre-monsoon and monsoon months of March–October when severe weather and flooding are most frequent. As part of NASA’s Transformation To Open Science (TOPS), this data archive is freely available to practitioners and researchers. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

17 pages, 3076 KiB  
Case Report
Novel Gait Training with a Hybrid Assistive Limb Improved Delayed Progressive Spastic Paraplegia After a Lightning Strike
by Yuichiro Soma, Shigeki Kubota, Hideki Kadone, Yukiyo Shimizu, Kousei Miura, Yasushi Hada, Yoshiyuki Sankai and Masashi Yamazaki
J. Clin. Med. 2025, 14(3), 967; https://doi.org/10.3390/jcm14030967 - 3 Feb 2025
Viewed by 998
Abstract
Background/Objectives: A 68-year-old man presented with progressive walking difficulty that developed into spastic paraplegia. This condition was a long-term consequence of a lightning strike injury sustained at the age of 22 years. His symptoms progressively deteriorated, eventually requiring double crutches for ambulation [...] Read more.
Background/Objectives: A 68-year-old man presented with progressive walking difficulty that developed into spastic paraplegia. This condition was a long-term consequence of a lightning strike injury sustained at the age of 22 years. His symptoms progressively deteriorated, eventually requiring double crutches for ambulation at approximately 40 years of age. A physical evaluation prior to hybrid assistive limb (HAL) training revealed a T10 level neurological injury and an American Spinal Cord Injury Association impairment scale grade D. Here, we aimed to evaluate the therapeutic effects of novel gait training with an HAL in this patient with chronic and progressive neural damage caused by a lightning strike. Methods: The HAL training program is composed of two sections. In the first section, one month of gait training with HAL was conducted across 10 sessions, with 2–3 sessions weekly. The second section followed 6 months later. A final evaluation was performed three months after the second section. Results: Electromyographic and kinematic evaluation showed that the HAL gait training inhibited abnormal antagonistic muscle activation in his lower extremities, especially after the first section. Our results collectively indicate that the repeated HAL gait training improved the gait pattern of this patient. Conclusions: Our results suggest that HAL gait training may improve the gait pattern in patients with delayed progressive spastic paraplegia, as observed in this case. In addition, a longer intervention period is recommended to facilitate better adaptation to HAL training. Hence, neurorehabilitation with an HAL could be an innovative treatment approach for delayed progressive spastic paraplegia. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

23 pages, 5619 KiB  
Article
Thunderstorms with Extreme Lightning Activity in China: Climatology, Synoptic Patterns, and Convective Parameters
by Ruiyang Ma, Dong Zheng, Yijun Zhang, Wen Yao, Wenjuan Zhang and Biao Zhu
Remote Sens. 2024, 16(24), 4673; https://doi.org/10.3390/rs16244673 - 14 Dec 2024
Cited by 3 | Viewed by 1723
Abstract
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. [...] Read more.
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. This study utilizes the Thunderstorm Feature Dataset from 2010–2018 to analyze the characteristics of thunderstorms with extreme lightning activity (TELAs), defined as thunderstorms whose lightning frequency ranks in the top 1%. Four regions with relatively high thunderstorm activity were selected for analysis: Northeast China (NEC), North China (NC), South China (SC), and the Tibetan Plateau (TP). In NEC, TELAs primarily occur just west of upper-level westerly troughs (UWT), including cold vortices. In NC, TELAs are mainly associated with UWT and subtropical highs (STH). In SC, TELAs are related to frontal systems, easterly waves, tropical cyclones, and STH. In TP, TELAs are generated by TP vortices. Before the TELA process, vertically integrated moisture divergence (VIMD) and convective available potential energy (CAPE) show the most notable anomalies. Except for the TP, TELAs are typically located between centers of anomalies with positive and negative geopotential height (500 hPa) and near centers of anomalies with positive CAPE and negative VIMD, accompanied by notable increases in surface temperature and wind speed. These findings offer a valuable reference for the early warning and forecasting of intense convection. Full article
Show Figures

Figure 1

22 pages, 1409 KiB  
Review
Studies on Heavy Precipitation in Portugal: A Systematic Review
by José Cruz, Margarida Belo-Pereira, André Fonseca and João A. Santos
Climate 2024, 12(10), 163; https://doi.org/10.3390/cli12100163 - 15 Oct 2024
Cited by 2 | Viewed by 2474
Abstract
This systematic review, based on an adaptation of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement from 2020, focuses on studies of the atmospheric mechanisms underlying extreme precipitation events in mainland Portugal, as well as observed trends and projections. The [...] Read more.
This systematic review, based on an adaptation of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement from 2020, focuses on studies of the atmospheric mechanisms underlying extreme precipitation events in mainland Portugal, as well as observed trends and projections. The 54 selected articles cover the period from 2000 to 2024, in which the most used keywords are “portugal” and “extreme precipitation”. Of the 54, 23 analyse trends and climate projections of precipitation events, confirming a decrease in total annual precipitation, especially in autumn and spring, accompanied by an increase in the frequency and intensity of extreme precipitation events in autumn, spring and winter. Several articles (twelve) analyse the relationship between synoptic-scale circulation and heavy precipitation, using an atmospheric circulation types approach. Others (two) establish the link with teleconnection patterns, namely the North Atlantic Oscillation (NAO), and still others (three) explore the role of atmospheric rivers. Additionally, five articles focus on evaluating databases and Numerical Weather Prediction (NWP) models, and nine articles focus on precipitation-related extreme weather events, such as tornadoes, hail and lightning activity. Despite significant advances in the study of extreme precipitation events in Portugal, there is still a lack of studies on hourly or sub-hourly scales, which is critical to understanding mesoscale, short-lived events. Several studies show NWP models still have limitations in simulating extreme precipitation events, especially in complex orography areas. Therefore, a better understanding of such events is fundamental to promoting continuous improvements in operational weather forecasting and contributing to more reliable forecasts of such events in the future. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

16 pages, 1677 KiB  
Article
Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022
by Tomeu Rigo
Hydrology 2023, 10(7), 142; https://doi.org/10.3390/hydrology10070142 - 6 Jul 2023
Viewed by 1822
Abstract
The Metropolitan Area of Barcelona is one of the most densely populated European regions. The hydrological conditions are very extreme, as are those of the Mediterranean Basin, with long drought periods. The management of water systems is one of the priorities, implying the [...] Read more.
The Metropolitan Area of Barcelona is one of the most densely populated European regions. The hydrological conditions are very extreme, as are those of the Mediterranean Basin, with long drought periods. The management of water systems is one of the priorities, implying the understanding of the whole life cycle of water. One of the worst-known steps in this cycle corresponds to the rainfall events occurring between warm and cold periods, with quasi-tropical precipitation but with little or no lightning activity. This manuscript relies on the analysis of this type of precipitation for 2015–2022 for characterization and modelling to provide the signatures that can help diagnose these events in real time. The comparison of cold convective and warm rain events thorough radar, lightning and numerical weather prediction data has allowed us to find the main differences between both types. Warm rain events are predominant in the region, with more than 70% cases exceeding 10 mm of daily precipitation. The maritime influence is crucial in most of the warm rain episodes. Full article
Show Figures

Figure 1

13 pages, 8440 KiB  
Article
The Effect of an Extremely Low-Frequency Electromagnetic Field on the Drought Sensitivity of Wheat Plants
by N. S. Mshenskaya, M. A. Grinberg, E. A. Kalyasova, V. A. Vodeneev, N. V. Ilin, N. N. Slyunyaev, E. A. Mareev and Y. V. Sinitsyna
Plants 2023, 12(4), 826; https://doi.org/10.3390/plants12040826 - 13 Feb 2023
Cited by 13 | Viewed by 5376
Abstract
Extremely low-frequency magnetic fields are thought to be capable of modulating the resistance of plants to adverse factors, particularly drought. Magnetic fields in this frequency range occur in nature in connection with so-called Schumann resonances, excited by lightning discharges in the Earth–ionosphere cavity. [...] Read more.
Extremely low-frequency magnetic fields are thought to be capable of modulating the resistance of plants to adverse factors, particularly drought. Magnetic fields in this frequency range occur in nature in connection with so-called Schumann resonances, excited by lightning discharges in the Earth–ionosphere cavity. The aim of this work was to identify the influence of a magnetic field with a frequency of 14.3 Hz (which corresponds to the second Schumann harmonic) on the transpiration and photosynthesis of wheat plants under the influence of drought. The activity of photosynthesis processes, the crop water stress index, relative water content and leaf area were determined during drought intensification. At the end of the experiment, on the 12th day of drought, the length, and fresh and dry weight of wheat shoots were measured. The results obtained indicate a protective effect of the magnetic field on plants in unfavorable drought conditions; the magnetic field delayed the development of harmful changes in the transpiration and photosynthesis processes for several days. At the same time, in the absence of the stressor (drought), the effect of the electromagnetic field was not detected, except for a decrease in relative transpiration. In favorable conditions, there were only minimal modifications of the photosynthetic processes and transpiration by the magnetic field. Full article
(This article belongs to the Special Issue Responses of Wheat to Abiotic Stress)
Show Figures

Figure 1

14 pages, 4905 KiB  
Article
The Impact of El-Niño and La-Niña on the Pre-Monsoon Convective Systems over Eastern India
by Rajesh Kumar Sahu, Goutam Choudhury, Naresh Krishna Vissa, Bhishma Tyagi and Sridhara Nayak
Atmosphere 2022, 13(8), 1261; https://doi.org/10.3390/atmos13081261 - 9 Aug 2022
Cited by 8 | Viewed by 3956
Abstract
El-Niño and La-Niña are believed to change the intensity and frequencies of extreme weather events globally. The present study aims to analyse the impact of El-Niño and La-Niña on the lightning activities of cloud systems and their associated precipitation and thermodynamic indices over [...] Read more.
El-Niño and La-Niña are believed to change the intensity and frequencies of extreme weather events globally. The present study aims to analyse the impact of El-Niño and La-Niña on the lightning activities of cloud systems and their associated precipitation and thermodynamic indices over the Eastern India regions (Odisha, Jharkhand, and West Bengal) during the pre-monsoon season (March–May). Eastern India receives catastrophic thunderstorm events during the pre-monsoon season. The results suggest that the number of lightning flashes was higher in the El-Niño years than in the La-Niña periods, which helps convective activities to be developed over the study region. The precipitation variations showed similar patterns during El-Niño and La-Niña periods, but the magnitudes were higher in the latter. Results from the analysis of thermodynamic indices show that, during the La-Niña phase, the convective available potential energy (CAPE), convective inhibition (CIN), severe weather threat index (SWEAT), humidity index (HI), and total totals index (TTI) values increased, while the cross total index (CTI) and K index (KI) decreased. In contrast, the vertical total index (VTI) and Boyden index (BI) values showed less significant changes in both El-Niño and La-Niña periods. The anomalies of flash rate densities over most parts of our domain were positive during the El-Niño years and negative during the La-Niña years. Precipitation anomalies had a higher positive magnitude during the La-Niña phase, but had spatial variability similar to the El-Niño phase. The anomalies of most of the thermodynamic indices also showed noticeable differences between El-Niño and La-Niña periods, except for the HI index. El-Niño periods showed higher lightning and increased values of associated thermodynamic indices over eastern India, indicating more pronounced convective systems. Full article
Show Figures

Figure 1

14 pages, 2121 KiB  
Article
Influence of Schumann Range Electromagnetic Fields on Components of Plant Redox Metabolism in Wheat and Peas
by Natalia Mshenskaya, Yulia Sinitsyna, Ekaterina Kalyasova, Koshcheeva Valeria, Anastasia Zhirova, Irina Karpeeva and Nikolay Ilin
Plants 2022, 11(15), 1955; https://doi.org/10.3390/plants11151955 - 27 Jul 2022
Cited by 3 | Viewed by 2589
Abstract
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. ScR are the part of electromagnetic field (EMF) of Earth. The influence of ScR on biological systems is still insufficiently understood. The purpose [...] Read more.
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. ScR are the part of electromagnetic field (EMF) of Earth. The influence of ScR on biological systems is still insufficiently understood. The purpose of the study is to characterize the possible role of the plant cell redox metabolism regulating system in the Schumann Resonances EMF perception. Activity of catalase and superoxide dismutase, their isoenzyme structure, content of malondialdehyde, composition of polar lipids in leaf extracts of wheat and pea plants treated with short-time (30 min) and long-time (18 days) ELF EMF with a frequency of 7.8 Hz, 14.3 Hz, 20.8 Hz have been investigated. Short-time exposure ELF EMF caused more pronounced bio effects than long-time exposure. Wheat catalase turned out to be the most sensitive parameter to magnetic fields. It is assumed that the change in the activity of wheat catalase after a short-term ELF EMF may be associated with the ability of this enzyme to perceive the action of a weak EMF through calcium calmodulin and/or cryptochromic signaling systems. Full article
Show Figures

Figure 1

24 pages, 10416 KiB  
Article
Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN
by Yangxingyi Du, Dong Zheng, Ruiyang Ma, Yijun Zhang, Weitao Lyu, Wen Yao, Wenjuan Zhang, Luobu Ciren and Deqing Cuomu
Remote Sens. 2022, 14(12), 2855; https://doi.org/10.3390/rs14122855 - 15 Jun 2022
Cited by 8 | Viewed by 2728
Abstract
Thunderstorm activity over the Qinghai–Tibet Plateau (QTP) has important climatic effects and disaster impacts. Using the thunderstorm feature dataset (TFD) established based on the black body temperature (TBB) and cloud classification (CLC) products of the Fengyun-2E (FY-2E) geostationary satellite, as well as the [...] Read more.
Thunderstorm activity over the Qinghai–Tibet Plateau (QTP) has important climatic effects and disaster impacts. Using the thunderstorm feature dataset (TFD) established based on the black body temperature (TBB) and cloud classification (CLC) products of the Fengyun-2E (FY-2E) geostationary satellite, as well as the lightning data of the World Wide Lightning Location Network (WWLLN), the temporal and spatial distributions and some cloud properties of the thunderstorms over the QTP were analyzed. Approximately 93.9% and 82.7% of thunderstorms over the QTP occur from May to September and from 12 to 21 o’clock local time, and the corresponding peaks are in August and at 14:00, respectively. There are three centers featuring frequent thunderstorms in the southeast, south-central, and southwest regions of the QTP. The average thunderstorm cloud area (the region with TBB ≤ −32 °C) is 1.8 × 104 km2. Approximately 32.9% of thunderstorms have strong convective cells (SCCs) composed of areas with TBB ≤ −52 °C. The average number and area ratio of SCCs are 3.6 and 25.4%, respectively, and their spatial distribution is given. The average cloud area and the number and area ratio of SCCs of extreme-lightning thunderstorms (thunderstorms with the top 10% of lightning numbers) are approximately 30.0, 3.9, and 1.5 times those of normal thunderstorms. The spatial distribution of the thunderstorm activity is quite different from that of lightning activity given by the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) over the northeastern and southwestern QTP, which may mean that the convection intensity, cloud structure, and charge structure of the thunderstorms over the QTP are different between different regions and seasons. Full article
Show Figures

Graphical abstract

15 pages, 13769 KiB  
Article
Long-Term Observations of Schumann Resonances at Portishead (UK)
by Andrea Pizzuti, Alec Bennett and Martin Füllekrug
Atmosphere 2022, 13(1), 38; https://doi.org/10.3390/atmos13010038 - 27 Dec 2021
Cited by 9 | Viewed by 27235
Abstract
Constructive interference of lightning-generated signals in the extremely low frequency (ELF) below 100 Hz is the source of a global electromagnetic phenomenon in the Earth’s atmosphere known as Schumann Resonances (SR). SR are excited at frequencies of 7.8, 14, 20, 26, … Hz, [...] Read more.
Constructive interference of lightning-generated signals in the extremely low frequency (ELF) below 100 Hz is the source of a global electromagnetic phenomenon in the Earth’s atmosphere known as Schumann Resonances (SR). SR are excited at frequencies of 7.8, 14, 20, 26, … Hz, and their diurnal and seasonal intensity variations are largely dependent on changes in the location and magnitude of the major lightning centres in Southeast Asia, Africa, and South America. In the last five decades, extensive research has focused on reconstructing the spatial and temporal evolution in global lighting activity using SR measurements, and more recently on analysing the links to climate change, transient luminous events (TLE), and biological systems. In this study, a quasi-electrostatic antenna, primarily designed as a thunderstorm warning system, is for the first time applied to measure background variability in the SR band at an urban site in Southwest England. Data collected continuously from June 2015 for a 5-year period are suitably filtered and analysed showing that SR is the dominant contribution to the fair-weather displacement current measured by the sensor in the band 10–45 Hz. Diurnal and seasonal signal amplitude variations have been found to be consistent with previous studies and show the African-European lightning centre to prevail due to the shorter source-observer distance. Also, it is shown that long-term global changes in the ocean and land temperature, and the subsequent effect on the major lightning hotspots, may be responsible for the inter-annual variability of SR intensity, indicating that the largest increase occurred during the 2015–2016 super El-Niño episode. Full article
(This article belongs to the Special Issue Advances in Atmospheric Electricity)
Show Figures

Figure 1

26 pages, 11312 KiB  
Article
Initial Results of an Extensive, Long-Term Study of the Forecasting of Voltage Sags
by Michele De Santis, Leonardo Di Stasio, Christian Noce, Paola Verde and Pietro Varilone
Energies 2021, 14(5), 1264; https://doi.org/10.3390/en14051264 - 25 Feb 2021
Cited by 16 | Viewed by 2086
Abstract
This paper presents the preliminary results of our research activity aimed at forecasting the number of voltage sags in distribution networks. The final goal of the research is to develop proper algorithms that the network operators could use to forecast how many voltage [...] Read more.
This paper presents the preliminary results of our research activity aimed at forecasting the number of voltage sags in distribution networks. The final goal of the research is to develop proper algorithms that the network operators could use to forecast how many voltage sags will occur at a given site. The availability of four years of measurements at Italian Medium Voltage (MV) networks allowed the statistical analyses of the sample voltage sags without performing model-based simulations of the electric systems in short-circuit conditions. The challenge we faced was to overcome the barrier of the extremely long measurement times that are considered mandatory to obtain a forecast with adequate confidence. The method we have presented uses the random variable time to next event to characterize the statistics of the voltage sags instead of the variable number of sags, which usually is expressed on an annual basis. The choice of this variable allows the use of a large data set, even if only a few years of measurements are available. The statistical characterization of the measured voltage sags by the variable time to next event requires preliminary data-conditioning steps, since the voltage sags that are measured can be divided in two main categories, i.e., rare voltage sags and clusters of voltage sags. Only the rare voltage sags meet the conditions of a Poisson process, and they can be used to forecast the performance that can be expected in the future. However, the clusters do not have the characteristics of memoryless events because they are sequential, time-dependent phenomena the occurrences of which are due to exogenic factors, such as rain, lightning strikes, wind, and other adverse weather conditions. In this paper, we show that filtering the clusters out from all the measured sags is crucial for making successful forecast. In addition, we show that a filter, equal for all of the nodes of the system, represents the origin of the most important critical aspects in the successive steps of the forecasting method. In the paper, we also provide a means of tracking the main problems that are encountered. The initial results encouraged the future development of new efficient techniques of filtering on a site-by-site basis to eliminate the clusters. Full article
Show Figures

Figure 1

20 pages, 3905 KiB  
Review
ELF Electromagnetic Waves from Lightning: The Schumann Resonances
by Colin Price
Atmosphere 2016, 7(9), 116; https://doi.org/10.3390/atmos7090116 - 15 Sep 2016
Cited by 66 | Viewed by 26160
Abstract
Lightning produces electromagnetic fields and waves in all frequency ranges. In the extremely low frequency (ELF) range below 100 Hz, the global Schumann Resonances (SR) are excited at frequencies of 8 Hz, 14 Hz, 20 Hz, etc. This review is aimed at the [...] Read more.
Lightning produces electromagnetic fields and waves in all frequency ranges. In the extremely low frequency (ELF) range below 100 Hz, the global Schumann Resonances (SR) are excited at frequencies of 8 Hz, 14 Hz, 20 Hz, etc. This review is aimed at the reader generally unfamiliar with the Schumann Resonances. First some historical context to SR research is given, followed by some theoretical background and examples of the extensive use of Schumann resonances in a variety of lightning-related studies in recent years, ranging from estimates of the spatial and temporal variations in global lighting activity, connections to global climate change, transient luminous events and extraterrestrial lightning. Both theoretical and experimental results of the global resonance phenomenon are presented. It is our hope that this review will increase the interest in SR among researchers previously unfamiliar with this phenomenon. Full article
Show Figures

Figure 1

14 pages, 1311 KiB  
Review
Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather
by Colin Price
Sensors 2008, 8(1), 157-170; https://doi.org/10.3390/s8010157 - 21 Jan 2008
Cited by 43 | Viewed by 17034
Abstract
Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close [...] Read more.
Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close distances, lightning activity in these damaging stormscan be monitored at all spatial scales, from local (using very high frequency [VHF]sensors), to regional (using very low frequency [VLF] sensors), and even global scales(using extremely low frequency [ELF] sensors). Using sensors that detect the radio wavesemitted by each lightning discharge, it is now possible to observe and track continuouslydistant thunderstorms using ground networks of sensors. In addition to the number oflightning discharges, these sensors can also provide information on lightningcharacteristics such as the ratio between intra-cloud and cloud-to-ground lightning, thepolarity of the lightning discharge, peak currents, charge removal, etc. It has been shownthat changes in some of these lightning characteristics during thunderstorms are oftenrelated to changes in the severity of the storms. In this paper different lightning observingsystems are described, and a few examples are provided showing how lightning may beused to monitor storm hazards around the globe, while also providing the possibility ofsupplying short term forecasts, called nowcasting. Full article
(This article belongs to the Special Issue Sensors for Disaster and Emergency Management Decision Making)
Show Figures

Back to TopTop