Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022
Abstract
:1. Introduction
2. Data and Methods
2.1. Region of Interest
2.2. Data Used
- *
- Radar data: the principal source of this research. The radar products have a time resolution of 6 min (except for the quantitative daily rainfall estimation) and a grid size of 1 km × 1 km. All the products are planar except the 3D CAPPI (Constant Altitude Plan Position Indicator) product, which consists of 40 planar fields with a height step of 0.5 km (from 0.5 to 20 km). Apart from the CAPPI, the other products are Echo Top of 12 dBZ reflectivity (TOP12) [32], and the 24 h Quantitative Precipitation Estimation (QPE) using radar and rain gauges of automatic weather stations [7,33]. Green points in the left panel of Figure 1 show the location of the different single-pol C-band radars of the Catalan network. The region of interest is well-covered by the composition products, with scarce affectation caused by beam blockage. It is important to note that the QPE product is composed of radar and automatic weather station data, using geo-statistical techniques as it was introduced in [33]. That research showed that by combining both sources the QPE fields were very reliable because the new field introduces the quantitative information provided by rain gauges and the qualitative distribution of precipitation observed by radar. However, some recurrent electromagnetic signal interference has occurred for some periods, but the reflectivity values did not appear to disturb the radar fields during the precipitation events [34]. It is worthy to note that TOP12 has been selected because 12 dBZ is the threshold coinciding with the occurrence of 0.1 mm precipitation in the study region.
- *
- Lightning detection: the lightning location system of the Servei Meteorològic de Catalunya provides the cloud-to-ground flashes (positive and negative) with a position accuracy error of less than 500 m in the region of interest because the distribution of the network’ sensors (orange dots in the left panel of the Figure 1). Rigo et al. (2021) [10] has more information regarding these data.
- *
- Freezing level fields: maps of the height of the freezing level derived from the operational running model of the Servei Meteorològic de Catalunya: the Weather Research and Forecasting (WRF) Model version 4.3. The configuration of the model consists of the parametrizations YSU (boundary layer), WSM5 (clouds microphysics), Kain-Fritsch (convection), RRTM (long-wave radiation), Dudhia (short-wave radiation), and Noah LSM (soil) [35]. The grid size of these fields is 1 km × 1 km, and the time resolution is three hours. These maps allow determining the part of the reflectivity structures exceeding the melting level height.
2.3. Methodology
2.3.1. Description of the Precipitation Regimes
2.3.2. Identification of the Precipitation Regimes
- 1.
- Selecting those days with maximum precipitation estimated over 10 mm in the studied region. The event also should register a mean precipitation of 1 mm to avoid outliers.
- 2.
- Regarding cloud-to-ground flashes, the number of observations must be lower than ten during the event. If the number of flashes exceeds this threshold, the event is considered to be cold convective rain.
2.3.3. Homogeneity of the Fields for the Different Variables
2.3.4. Characterization of the Precipitation Regimes
3. Results
3.1. Monthly Distribution
3.2. Relationship between the Vertical Development of the Radar Echoes and the Freezing Level
3.3. Spatial Distribution of Precipitation
4. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SST | Sea Surface Temperature |
CCN | Cloud Condensation Nuclei |
CAPE | Convective Available Potential Energy |
CAPPI | Constant Altitude Plan Position Indicator |
TOP12 | Echo Top of 12 dBZ reflectivity |
QPE | 24 h Quantitative Precipitation Estimation |
CCR | Cold Convective Rainfall event |
WR | Warm Rain event |
WRF | Weather Research and Forecasting |
SMC | Servei Meteorlògic de Catalunya (in Catalan, Meteorological Service of Catalonia) |
References
- Anagnostou, E.N.; Maggioni, V.; Nikolopoulos, E.I.; Meskele, T.; Hossain, F.; Papadopoulos, A. Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1667–1683. [Google Scholar] [CrossRef]
- Lana, X.; Martínez, M.; Serra, C.; Burgueno, A. Spatial and temporal variability of the daily rainfall regime in Catalonia (northeastern Spain), 1950–2000. Int. J. Climatol. J. R. Meteorol. Soc. 2004, 24, 613–641. [Google Scholar] [CrossRef]
- Lopez-Bustins, J.A.; Lemus-Canovas, M. The influence of the Western Mediterranean Oscillation upon the spatio-temporal variability of precipitation over Catalonia (northeastern of the Iberian Peninsula). Atmos. Res. 2020, 236, 104819. [Google Scholar] [CrossRef]
- Turco, M.; Llasat, M. Trends in indices of daily precipitation extremes in Catalonia (NE Spain), 1951–2003. Nat. Hazards Earth Syst. Sci. 2011, 11, 3213–3226. [Google Scholar] [CrossRef] [Green Version]
- Llasat, M.C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Parés, M.; Brugué, Q.; Espluga, J.; Miralles, J.; Ballester, A. The strengths and weaknesses of deliberation on river basin management planning: Analysing the water framework directive implementation in Catalonia (Spain). Environ. Policy Gov. 2015, 25, 97–110. [Google Scholar] [CrossRef]
- Esbrí, L.; Rigo, T.; Llasat, M.C.; Aznar, B. Identifying Storm Hotspots and the Most Unsettled Areas in Barcelona by Analysing Significant Rainfall Episodes from 2013 to 2018. Water 2021, 13, 1730. [Google Scholar] [CrossRef]
- Gilabert, J.; Tardà, A.; Llasat, M.; Corbera, J. Assessment of local climate zones over metropolitan area of barcelona and added value of urban atlas, corine land cover and copernicus layers under Inspire specifications. Urban Clim. 2016, 17, 116–134. [Google Scholar]
- Castillo, S.; Rigo, T.; Farnell, C. Can the Correlation between Radar and Cloud-to-Ground Daily Fields Help to Identify the Different Rainfall Regimes? The Case of Catalonia. Atmosphere 2022, 13, 808. [Google Scholar] [CrossRef]
- Rigo, T.; Castillo, S. Evolution of Radar and Lightning Variables in Convective Events in Barcelona and Surroundings for the Period 2006–2020. Adv. Environ. Eng. Res. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Ogura, Y.; Takahash, T. The development of warm rain in a cumulus model. J. Atmos. Sci. 1973, 30, 262–277. [Google Scholar] [CrossRef]
- Lau, K.; Wu, H. Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Beard, K.V.; Ochs, H.T., III. Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteorol. Climatol. 1993, 32, 608–625. [Google Scholar] [CrossRef]
- Rauber, R.M.; Olthoff, L.S.; Ramamurthy, M.K.; Kunkel, K.E. The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteorol. 2000, 39, 1185–1195. [Google Scholar] [CrossRef]
- Takahashi, T. Warm rain study in Hawaii—Rain initiation. J. Atmos. Sci. 1981, 38, 347–369. [Google Scholar] [CrossRef]
- Rebora, N.; Molini, L.; Casella, E.; Comellas, A.; Fiori, E.; Pignone, F.; Siccardi, F.; Silvestro, F.; Tanelli, S.; Parodi, A. Extreme rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeorol. 2013, 14, 906–922. [Google Scholar] [CrossRef]
- Testik, F.; Barros, A.P. Toward elucidating the microstructure of warm rainfall: A survey. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Stephens, G.L.; Haynes, J.M. Near global observations of the warm rain coalescence process. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Prat, O.P.; Nelson, B.R. Characteristics of annual, seasonal, and diurnal precipitation in the Southeastern United States derived from long-term remotely sensed data. Atmos. Res. 2014, 144, 4–20. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C. Drop size spectra and integral remote sensing parameters in the transition from convective to stratiform rain. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Muller, C.L.; Kidd, C.; Fairchild, I.J.; Baker, A. Investigation into clouds and precipitation over an urban area using micro rain radars, satellite remote sensing and fluorescence spectrophotometry. Atmos. Res. 2010, 96, 241–255. [Google Scholar] [CrossRef]
- Caylor, I.; Illingworth, A. Radar observations and modelling of warm rain initiation. Q. J. R. Meteorol. Soc. 1987, 113, 1171–1191. [Google Scholar] [CrossRef]
- Williams, E.; Stanfill, S. The physical origin of the land–ocean contrast in lightning activity. C. R. Phys. 2002, 3, 1277–1292. [Google Scholar] [CrossRef]
- Pan, Z.; Mao, F.; Rosenfeld, D.; Zhu, Y.; Zang, L.; Lu, X.; Thornton, J.A.; Holzworth, R.H.; Yin, J.; Efraim, A.; et al. Coarse sea spray inhibits lightning. Nat. Commun. 2022, 13, 4289. [Google Scholar] [CrossRef]
- Liou, Y.A.; Kar, S. Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan. Atmos. Res. 2010, 95, 115–122. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.; Wolff, D.; Marks, D.; Pabla, C. Testing the drop-size distribution-based separation of stratiform and convective rain using radar and disdrometer data from a mid-latitude coastal region. Atmosphere 2021, 12, 392. [Google Scholar] [CrossRef]
- Kumar, S.; Moya-Álvarez, A.S.; Castillo-Velarde, C.D.; Martinez-Castro, D.; Silva, Y. Effect of low-level flow and Andes mountain on the tropical and mid-latitude precipitating cloud systems: GPM observations. Theor. Appl. Climatol. 2020, 141, 157–172. [Google Scholar] [CrossRef]
- Khain, A.P.; Rosenveld, D.; Sednev, I. Coastal effects in the Eastern Mediterranean as seen from experiments using a cloud ensemble model with detailed description of warm and ice microphysical processes. Atmos. Res. 1993, 30, 295–319. [Google Scholar] [CrossRef]
- Khain, A.P.; Sednev, I. Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res. 1996, 43, 77–110. [Google Scholar] [CrossRef]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A.; Blahak, U.; Ryzhkov, A. The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res. 2011, 99, 129–146. [Google Scholar] [CrossRef]
- Ballart, D.; Figuerola, F.; Aran, M.; Rigo, T. Analysis of warm convective rain events in Catalonia. In Proceedings of the 11th Plinius Conference on Mediterranean Storms, Barcelona, Spain, 7–11 September 2009; p. Plinius11. [Google Scholar]
- Rigo, T.; Farnell Barqué, C. Evaluation of the Radar Echo Tops in Catalonia: Relationship with Severe Weather. Remote Sens. 2022, 14, 6265. [Google Scholar] [CrossRef]
- Rigo, T.; Llasat, M.C.; Esbrí, L. The Results of Applying Different Methodologies to 10 Years of Quantitative Precipitation Estimation in Catalonia Using Weather Radar. Geomatics 2021, 1, 347–368. [Google Scholar] [CrossRef]
- Altube, P.; Bech, J.; Argemí, O.; Rigo, T.; Pineda, N. Intercomparison and potential synergies of three methods for weather radar antenna pointing assessment. J. Atmos. Ocean. Technol. 2016, 33, 331–343. [Google Scholar] [CrossRef]
- Mercader Carbó, J.; Codina, B.; Sairouni, A.; Cunillera, J. Results of the meteorological model WRF-ARW over Catalonia, using different parameterizations of convection and cloud microphysics. Tethys J. Mediterr. Meteorol. Climatol. 2010, 7, 75–86. [Google Scholar] [CrossRef]
- Rodríguez, O.; Bech, J.; Arús, J.; Castán, S.; Figuerola, F.; Rigo, T. An overview of tornado and waterspout events in Catalonia (2000–2019). Atmos. Res. 2021, 250, 105415. [Google Scholar] [CrossRef]
- Bech, J.; Pascual, R.; Rigo, T.; Pineda, N.; López, J.; Arús, J.; Gayá, M. An observational study of the 7 September 2005 Barcelona tornado outbreak. Nat. Hazards Earth Syst. Sci. 2007, 7, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Farnell, C.; Rigo, T. The Lightning Jump, the 2018 “Picking up Hailstones” Campaign and a Climatological Analysis for Catalonia for the 2006–2018 Period. Tethys 2020, 17, 10–20. [Google Scholar] [CrossRef]
- del Moral, A.; del Carmen Llasat, M.; Rigo, T. Connecting flash flood events with radar-derived convective storm characteristics on the northwestern Mediterranean coast: Knowing the present for better future scenarios adaptation. Atmos. Res. 2020, 238, 104863. [Google Scholar] [CrossRef]
- Doswell, C.A., III; Brooks, H.E.; Maddox, R.A. Flash flood forecasting: An ingredients-based methodology. Weather Forecast. 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Rigo, T.; Berenguer, M.; del Carmen Llasat, M. An improved analysis of mesoscale convective systems in the western Mediterranean using weather radar. Atmos. Res. 2019, 227, 147–156. [Google Scholar] [CrossRef]
- Salvador, A.; Pineda, N.; Montanyà, J.; López, J.A.; Solà, G. Thunderstorm charge structures favouring cloud-to-ground lightning. Atmos. Res. 2021, 257, 105577. [Google Scholar] [CrossRef]
- Rigo, T.; Pineda, N.; Bech, J. Analysis of warm season thunderstorms using an object-oriented tracking method based on radar and total lightning data. Nat. Hazards Earth Syst. Sci. 2010, 10, 1881–1893. [Google Scholar] [CrossRef] [Green Version]
- Llasat, M.d.C.; López, L.; Barnolas, M.; Llasat-Botija, M. Flash-floods in Catalonia: The social perception in a context of changing vulnerability. Adv. Geosci. 2008, 17, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Llasat, M.; Llasat-Botija, M.; Rodriguez, A.; Lindbergh, S. Flash floods in Catalonia: A recurrent situation. Adv. Geosci. 2010, 26, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Bech, J.; Vilaclara, E.; Pineda, N.; Rigo, T.; López, J.; O’Hora, F.; Lorente, J.; Sempere, D.; Fàbregas, F. The weather radar network of the Catalan Meteorological Service: Description and applications. In Proceedings of the ERAD, Visby, Sweden, 6–10 September 2004; Volume 2, pp. 416–420. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigo, T. Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022. Hydrology 2023, 10, 142. https://doi.org/10.3390/hydrology10070142
Rigo T. Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022. Hydrology. 2023; 10(7):142. https://doi.org/10.3390/hydrology10070142
Chicago/Turabian StyleRigo, Tomeu. 2023. "Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022" Hydrology 10, no. 7: 142. https://doi.org/10.3390/hydrology10070142
APA StyleRigo, T. (2023). Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022. Hydrology, 10(7), 142. https://doi.org/10.3390/hydrology10070142