Long-Term Observations of Schumann Resonances at Portishead (UK)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Instrumentation
2.2. Data Processing
3. Results and Discussion
3.1. Displacement Current Sources in Fair-Weather
3.2. Diurnal Variation
3.3. Combined Annual and Inter-Annual Variation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumann, W.O. Über die Dämpfung der elektromagnetischen Eigenschwingungen des Systems Erde—Luft—Ionosphäre. Z. Für Nat. A 1952, 7, 250–252. [Google Scholar] [CrossRef]
- Füllekrug, M. Detection of thirteen resonances of radio waves from particularly intense lightning discharges. Geophys. Res. Lett. 2005, 32, L13809. [Google Scholar] [CrossRef] [Green Version]
- Füllekrug, M.; Constable, S. Global triangulation of intense lightning discharges. Geophys. Res. Lett. 2000, 27, 333–336. [Google Scholar] [CrossRef]
- Surkov, V.V.; Hayakawa, M. Schumann resonances excitation due to positive and negative cloud-to-ground lightning. J. Geophys. Res. 2010, 115, D04101. [Google Scholar] [CrossRef]
- Chapman, F.W.; Jones, D.L.; Todd, J.D.W.; Challinor, R.A. Observations on the Propagation Constant of the Earth Ionosphere Waveguide in the Frequency Band 8 c/s to 16 kc/s. Radio Sci. 1966, 1, 1273–1282. [Google Scholar] [CrossRef]
- Ogawa, T.; Tanaka, Y.; Miura, T.; Yasuhara, M. Observations of Natural ELF and VLF Electromagnetic Noises by Using Ball Antennas. J. Geomagn. Geoelectr. 1966, 18, 443–454. [Google Scholar] [CrossRef]
- Füllekrug, M. Schumann resonances in magnetic field components. J. Atmos. Terr. Phys. 1995, 57, 479–484. [Google Scholar] [CrossRef]
- Bozóki, T.; Prácser, E.; Sátori, G.; Dálya, G.; Kapás, K.; Takátsy, J. Modeling Schumann resonances with schupy. J. Atmos. Sol.-Terr. Phys. 2019, 196, 105144. [Google Scholar] [CrossRef] [Green Version]
- Balser, M.; Wagner, C.A. Observations of Earth-Ionosphere Cavity Resonances. Nature 1960, 188, 638–641. [Google Scholar] [CrossRef]
- Sátori, G. Monitoring schumann resonances-11. Daily and seasonal frequency variations. J. Atmos. Terr. Phys. 1996, 58, 1483–1488. [Google Scholar] [CrossRef]
- Nickolaenko, A.P.; Sátori, G.; Zieger, B.; Rabinowicz, L.M.; Kudintseva, I.G. Parameters of global thunderstorm activity deduced from the long-term Schumann resonance records. J. Atmos. Sol.-Terr. Phys. 1998, 60, 387–399. [Google Scholar] [CrossRef]
- Price, C.; Melnikov, A. Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters. J. Atmos. Sol.-Terr. Phys. 2004, 66, 1179–1185. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Hobara, Y.; Hayakawa, M. Diurnal and seasonal variations in the Schumann resonance parameters at Moshiri, Japan. J. Atmos. Electr. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Sátori, G.; Mushtak, V.; Williams, E. Schumann Resonance Signatures of Global Lightning Activity. In Lightning: Principles, Instruments and Applications; Springer: Dordrecht, The Netherlands, 2009; pp. 347–386. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, H.; Cao, B.; Qiao, X. Diurnal and seasonal variations in the Schumann resonance parameters observed at Chinese observatories. J. Atmos. Sol.-Terr. Phys. 2013, 98, 86–96. [Google Scholar] [CrossRef]
- Whipple, F.J.W. On the association of the diurnal variation of electric potential gradient in fine weather with the distribution of thunderstorms over the globe. Q. J. R. Meteorol. Soc. 1929, 55, 1–18. [Google Scholar] [CrossRef]
- Harrison, R.G. The Carnegie Curve. Surv. Geophys. 2013, 34, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.R. The Schumann Resonance: A Global Tropical Thermometer. Science 1992, 256, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Sátori, G.; Williams, E.; Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 2009, 91, 500–507. [Google Scholar] [CrossRef]
- Williams, E.; Bozóki, T.; Sátori, G.; Price, C.; Steinbach, P.; Guha, A.; Liu, Y.; Beggan, C.D.; Neska, M.; Boldi, R.; et al. Evolution of Global Lightning in the Transition From Cold to Warm Phase Preceding Two Super El Niño Events. J. Geophys. Res. Atmos. 2021, 126, e2020JD033526. [Google Scholar] [CrossRef]
- Nickolaenko, A.P.; Koloskov, A.V.; Hayakawa, M.; Yampolski, Y.M.; Budanov, O.V.; Korepanov, V.E. 11-year solar cycle in Schumann resonance data as observed in Antarctica. Sun Geosph. 2015, 10, 39–49. [Google Scholar]
- Manu, S.; Rawat, R.; Sinha, A.K.; Gurubaran, S.; Jeeva, K. Schumann resonances observed at Maitri, Antarctica: Diurnal variation and its interpretation in terms of global thunderstorm activity. Curr. Sci. 2015, 109, 784–790. [Google Scholar]
- Beggan, C.; Allmark, C.; Swan, A.; Flower, S.; Thomson, A. Investigation of global lightning using Schumann resonances measured by high frequency induction coil magnetometers in the UK. In Proceedings of the National Astronomy Meeting of the Royal Astronomical Society, St. Andrews, UK, 1–5 July 2013. [Google Scholar]
- Musur, M.A.; Beggan, C.D. Seasonal and Solar Cycle Variation of Schumann Resonance Intensity and Frequency at Eskdalemuir Observatory, UK. Sun Geosph. 2019, 14, 81–86. [Google Scholar] [CrossRef]
- Bennett, A.J. Electrostatic thunderstorm detection. Weather 2017, 72, 51–54. [Google Scholar] [CrossRef]
- Bennett, A.J. Identification and ranging of lightning flashes using co-located antennas of different geometry. Meas. Sci. Technol. 2013, 24, 125801. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.J. Effects of the March 2015 solar eclipse on near-surface atmospheric electricity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150215. [Google Scholar] [CrossRef]
- Sentman, D.D.; Fraser, B.J. Simultaneous observations of Schumann resonances in California and Australia: Evidence for intensity modulation by the local height of the D-region. J. Geophys. Res. Space Phys. 1991, 96, 15973–15984. [Google Scholar] [CrossRef]
- Pechony, O.; Price, C.; Nickolaenko, A.P. Relative importance of the day-night asymmetry in Schumann resonance amplitude records. Radio Sci. 2007, 42, RS2S06. [Google Scholar] [CrossRef] [Green Version]
- Taszarek, M.; Allen, J.; Pucik, T.; Groenemeijer, P.; Czernecki, B.; Kolendowicz, L.; Lagouvardos, K.; Kotroni, V.; Schulz, W. A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources. J. Clim. 2019, 32, 1813–1837. [Google Scholar] [CrossRef]
- Ccopa, J.G.A.; Tacza, J.; Raulin, J.-P.; Morales, C.A. Estimation of thunderstorms occurrence from lightning cluster recorded by WWLLN and its comparison with the “universal” Carnegie curve. J. Atmos. Sol.-Terr. Phys. 2021, 221, 105682. [Google Scholar] [CrossRef]
- Cecil, D.J.; Buechler, D.E.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 135–136, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Sekiguchi, M.; Hobara, Y.; Nickolaenko, A.P. Intensity of Schumann resonance oscillations and the ground surface temperature. J. Atmos. Electr. 2006, 26, 79–93. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Hayakawa, M.; Nickolaenko, A.P.; Hobara, Y. Evidence on a link between the intensity of Schumann resonance and global surface temperature. Ann. Geophys. 2006, 24, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on LOESS. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Bozóki, T.; Sátori, G.; Williams, E.; Mironova, I.; Steinbach, P.; Bland, E.C.; Koloskov, A.; Yampolski, Y.M.; Budanov, O.V.; Neska, M.; et al. Solar Cycle-Modulated Deformation of the Earth-Ionosphere Cavity. Front. Earth Sci. 2021, 9, 735. [Google Scholar] [CrossRef]
- Christian, H.J. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 2003, 108, ACL 4-1–ACL 4-15. [Google Scholar] [CrossRef]
- Sátori, G.; Williams, E.; Mushtak, V. Response of the Earth-ionosphere cavity resonator to the 11-year solar cycle in X-radiation. J. Atmos. Sol.-Terr. Phys. 2005, 67, 553–562. [Google Scholar] [CrossRef]
- Füllekrug, M.; Fraser-Smith, A.C. Global lightning and climate variability inferred from ELF magnetic field variations. Geophys. Res. Lett. 1997, 24, 2411–2414. [Google Scholar] [CrossRef]
- Sátori, G.; Zieger, B. El Niňo related meridional oscillation of global lightning activity. Geophys. Res. Lett. 1999, 26, 1365–1368. [Google Scholar] [CrossRef]
- Yang, H.; Pasko, V.P. Power variations of Schumann resonances related to El Niño and La Niña phenomena. Geophys. Res. Lett. 2007, 34, L11102. [Google Scholar] [CrossRef] [Green Version]
Period | BTD-SR (NCK) | BTD-Thunderstorms | BTD-Carnegie |
---|---|---|---|
Annual | 0.92 | 0.63 | 0.62 |
MAM | 0.87 | 0.65 | 0.36 |
JJA | 0.85 | 0.69 | 0.13 |
SON | 0.94 | 0.72 | 0.76 |
DJF | 0.92 | 0.54 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizzuti, A.; Bennett, A.; Füllekrug, M. Long-Term Observations of Schumann Resonances at Portishead (UK). Atmosphere 2022, 13, 38. https://doi.org/10.3390/atmos13010038
Pizzuti A, Bennett A, Füllekrug M. Long-Term Observations of Schumann Resonances at Portishead (UK). Atmosphere. 2022; 13(1):38. https://doi.org/10.3390/atmos13010038
Chicago/Turabian StylePizzuti, Andrea, Alec Bennett, and Martin Füllekrug. 2022. "Long-Term Observations of Schumann Resonances at Portishead (UK)" Atmosphere 13, no. 1: 38. https://doi.org/10.3390/atmos13010038
APA StylePizzuti, A., Bennett, A., & Füllekrug, M. (2022). Long-Term Observations of Schumann Resonances at Portishead (UK). Atmosphere, 13(1), 38. https://doi.org/10.3390/atmos13010038