Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN
Abstract
:1. Introduction
2. Data and Methods
3. Characteristics of Thunderstorm Activity over the QTP
3.1. Spatiotemporal Distributions
3.2. Structural Characteristics of Thunderstorms
3.2.1. Cloud Area
3.2.2. SCCs in Thunderstorm
4. Characteristics of Extreme-Lightning Thunderstorms
4.1. Spatiotemporal Distributions
4.2. Structures of Extreme-Lightning Thunderstorms and Their Comparison with Normal Thunderstorms
5. Discussion
5.1. Comparison of the Spatiotemporal Distribution of Thunderstorm Activity with Convection and Lightning Activity
5.2. Explanations for Different Spatial and Temporal Distributions between Thunderstorm and Lightning Activity
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bian, J.; Li, D.; Bai, Z.; Li, Q.; Lyu, D.; Zhou, X. Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon. Natl. Sci. Rev. 2020, 7, 516–533. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lu, M.; Yang, H.; Duan, A.; He, B.; Yang, S.; Wu, G. Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts. Natl. Sci. Rev. 2020, 7, 534–552. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Land–air coupling over the Tibetan Plateau and its climate impacts. Natl. Sci. Rev. 2020, 7, 485. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, M.; Chen, J.; Bian, L.; Zhang, G.; Liu, H.; Li, S.; Zhang, H.; Zhao, Y.; Jizhi, W. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Sci. China Ser. D: Earth Sci. 2002, 45, 577–594. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; et al. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Am. Meteorol. Soc. 2018, 99, 757–776. [Google Scholar] [CrossRef]
- Zhao, P.; Li, Y.; Guo, X.; Xu, X.; Liu, Y.; Tang, S.; Xiao, W.; Shi, C.; MA, Y.; Yu, X.; et al. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Science Experiment. J. Meteorol. Res. 2019, 33, 375–399. [Google Scholar] [CrossRef]
- Bao, X.; Yao, X. Intensity evolution of zonal shear line over the Tibetan Plateau in summer: A perspective of divergent and rotational kinetic energies. Adv. Atmos. Sci. 2022, 39, 1021–1033. [Google Scholar] [CrossRef]
- Lin, Z. Analysis of Tibetan Plateau vortex activities using ERA-Interim data for the period 1979–2013. J. Meteorol. Res. 2015, 29, 720–734. [Google Scholar] [CrossRef]
- Lin, Z.; Yao, X.; Guo, W.; Du, J. Vertical structure of Tibetan Plateau Vortex in boreal summer. Theor. Appl. Climatol. 2021, 145, 427–440. [Google Scholar] [CrossRef]
- Qian, Z.; Zhang, S.; Shan, F. Collection of Meteorological Science Experiments on the Qinghai-Tibet Plateau; Science Press: Beijing, China, 1984. [Google Scholar]
- Sugimoto, S.; Ueno, K. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- CMA (China Meteorological Administration). Atlas of China Disastrous Weather and Climate; Meteorological Press: Beijing, China, 2007; p. 21. [Google Scholar]
- Baker, M.B.; Blyth, A.M.; Christian, H.J.; Latham, J.; Miller, K.A.; Gadian, A.M. Relationships between lightning activity and various thundercloud parameters: Satellite and modelling studies. Atmos. Res. 1999, 51, 221–236. [Google Scholar] [CrossRef]
- Price, C. Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature 2000, 406, 290–293. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.J.; Pérez-Invernón, F.J.; Huntrieser, H.; Smith, A.K. Comparison of six lightning parameterizations in CAM5 and the impact on global atmospheric chemistry. Earth Space Sci. 2019, 6, 2317–2346. [Google Scholar] [CrossRef]
- Guo, F.; Ju, X.; Bao, M.; Lu, G.; Liu, Z.; Li, Y.; Mu, Y. Relationship between lightning activity and tropospheric nitrogen dioxide and the estimation of lightning-produced nitrogen oxides over China. Adv. Atmos. Sci. 2017, 34, 235–245. [Google Scholar] [CrossRef]
- Guo, F.; Mu, Y.; Li, Y.; Wang, M.; Huang, Z.; Zeng, F.; Lian, C. Effects of nitrogen oxides produced from lightning on the formation of the Ozone Valley over the Tibetan Plateau. Chin. J. Atmos. Sci 2019, 43, 266–276. (In Chinese) [Google Scholar]
- Ye, D.; Gao, Y. Meteorology on the Qinghai-Tibet Plateau; Science Press: Beijing, China, 1979. [Google Scholar]
- Dai, J. Climate on the Qinghai-Tibet Plateau; China Meteorological Press: Beijing, China, 1990. [Google Scholar]
- Fu, Y.; Liu, G.; Wu, G.; Yu, R.; Xu, Y.; Wang, Y.; Li, R.; Liu, Q. Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.; Hu, X. Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Clim. 2011, 24, 2164–2177. [Google Scholar] [CrossRef] [Green Version]
- Qie, X.; Wu, X.; Yuan, T.; Bian, J.; Lu, D. Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Clim. 2014, 27, 6612–6626. [Google Scholar] [CrossRef]
- Wu, X.; Qie, X.; Yuan, T. Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci. China Earth Sci. 2013, 56, 843–854. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, S.; Zhang, Y.; Cheng, G.; Shi, Y.; Pubu, Z.; Hou, Z.J. Distribution characteristic of severe convective thunderstorm cloud over Qinghai-Xizang Plateau. Plateau Meteorol. 2003, 22, 558–564. (In Chinese) [Google Scholar]
- Zheng, D.; Zhang, Y. New Insights into the Correlation between Lightning Flash Rate and Size in Thunderstorms. Geophys. Res. Lett. 2021, 48, e2021GL096085. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Zhang, Y. Evolution of the Charge Structure and Lightning Discharge Characteristics of a Qinghai-Tibet Plateau Thunderstorm Dominated by Negative Cloud-to-Ground Flashes. J. Geophys. Res. Atmos. 2020, 125, e2019JD031129. [Google Scholar] [CrossRef]
- Guo, F.; Wang, M.; Huang, Z.; Li, Y.; Mu, Y.; Lian, C.; Zeng, F. The model analysis of lightning discharge structure characters and attributions over Qinghai-Tibetan Plateau. Plateau Meteorol. 2018, 37, 911–922. (In Chinese) [Google Scholar]
- Qie, X.; Zhang, T.; Chen, C.; Zhang, G.; Zhang, T.; Wei, W. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Deng, X.; Zhang, Y.; Li, Y.; Zhang, G.; Xu, L.; Zheng, D. Numerical simulation of the formation of a large lower positive charge center in a Tibetan Plateau thunderstorm. J. Geophys. Res. Atmos. 2019, 124, 9561–9593. [Google Scholar] [CrossRef]
- Zhang, T.; Qie, X.; Yan, M. The lightning characteristics of thunderstorm over Tibetan Plateau and its origin discussion. Plateau Meteor. 2007, 26, 774–782. (In Chinese) [Google Scholar]
- Zhang, Y.; Dong, W.; Zhao, Y.; Zhang, G.; Zhang, H.; Chen, C.; Zhang, T. Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai-Tibet Plateau. Sci. China Ser. D. Earth Sci. 2004, 47, 108–114. [Google Scholar]
- You, J.; Zheng, D.; Zhang, Y.; Yao, W.; Meng, Q. Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations. Atmos. Res. 2019, 223, 98–113. [Google Scholar] [CrossRef]
- Ma, M.; Tao, S.; Zhu, B.; Lü, W. Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Sci. China Ser. D. Earth Sci. 2005, 48, 219–229. [Google Scholar] [CrossRef]
- Yuan, T.; Qie, X. Spatial and temporal distributions of lightning activities in China from satellite observation. Plateau Meteor. 2004, 23, 488–494. (In Chinese) [Google Scholar]
- Qie, X.; Toumi, R.; Yuan, T. Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Qie, X.; Toumi, R.; Zhou, Y. Characteristics of lightning activity and its response to convective available potential energy over the central Tibetan Plateau. Chin. Sci. Bull. 2003, 48, 87–90. [Google Scholar]
- Fu, Y.; Ma, Y.; Zhong, L.; Yang, Y.; Guo, X.; Wang, C.; Xu, X.; Yang, K.; Xu, X.; Liu, L.; et al. Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. Natl. Sci. Rev. 2020, 7, 500–515. [Google Scholar] [CrossRef] [Green Version]
- Qie, X.; Yu, Y.; Wang, D.; Wang, H.; Chu, R. Characteristics of cloud-to-ground lightning in Chinese inland plateau. J. Meteorol. Soc. Japan. Ser. II 2002, 80, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Luo, Y.L.; Zhang, R.H. Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data. Chin. J. Atmos. Sci. 2011, 35, 1117–1131. (In Chinese) [Google Scholar]
- Li, J.; Wu, X.; Yuan, T.; Qie, X.; Yang, J. The temporal and spatial distribution of thunderstorms in Asia Monsoon Region based on the TRMM multi-sensor database. Chin. J. Geophys. 2019, 62, 4098–4109. (In Chinese) [Google Scholar]
- Liu, C.; Zipser, E.J.; Cecil, D.J.; Nesbitt, S.W.; Sherwood, S. A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteorol. Climatol. 2008, 47, 2712–2728. [Google Scholar] [CrossRef]
- Betz, H.D.; Schmidt, K.; Oettinger, W.P.; Montag, B. Cell-tracking with lightning data from LINET. Adv. Geosci. 2008, 17, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, M.L.; Holzworth, R.H.; Brundell, J.B. Diurnal variation of the global electric circuit from clustered thunderstorms. J. Geophys. Res. Space Phys. 2014, 119, 620–629. [Google Scholar] [CrossRef]
- Mezuman, K.; Price, C.; Galanti, E. On the spatial and temporal distribution of global thunderstorm cells. Environ. Res. Lett. 2014, 9, 124023. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, W.; Fan, P.; Chen, Q.; Liu, Z.; Li, Q.; Liu, X. Modelling deep convective activity using lightning clusters and machine learning. Int. J. Climatol. 2022, 42, 952–973. [Google Scholar] [CrossRef]
- Tuomi, T.J.; Larjavaara, M. Identification and analysis of flash cells in thunderstorms. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 1191–1214. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, W.; Zhang, Y.; Sun, X.; Zheng, D.; Yao, W. Characteristics of thunderstorm activity in the northwest pacific based on lightning clustering method. J. Trop. Meteorol. 2021, 37, 490–501. (In Chinese) [Google Scholar]
- Ma, R.; Zheng, D.; Yao, W.; Zhang, W. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J. Appl. Meteorol. Sci. 2021, 32, 358–369. (In Chinese) [Google Scholar]
- Dowden, R.L.; Brundell, J.B.; Rodger, C.J. VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmos. Sol. Terr. Phys. 2002, 64, 817–830. [Google Scholar] [CrossRef]
- Dowden, R.L.; Holzworth, R.H.; Rodger, C.J.; Lichtenberger, J.; Thomson, N.R.; Jacobson, A.R.; Lay, E.; Brundell, J.B.; Lyons, T.J.; O’Keefe, S.; et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antennas Propag. Mag. 2008, 50, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Fan, P.; Zheng, D.; Zhang, Y.; Gu, S.; Zhang, W.; Yao, W.; Yan, B.; Xu, Y. A performance evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J. Atmos. Ocean. Technol. 2018, 35, 927–939. [Google Scholar] [CrossRef]
- Ma, R.; Zheng, D.; Zhang, Y.; Yao, W.; Zhang, W.; Cuomu, D. Spatiotemporal lightning activity detected by WWLLN over the Tibetan Plateau and its comparison with LIS lightning. J. Atmos. Ocean. Technol. 2021, 38, 511–523. [Google Scholar] [CrossRef]
- Maddox, R.A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Yao, X.; Yu, Y.; Zhao, B. Structural characteristic of Meiyu frontal cloud system and its probable causes. Plateau Meteorol. 2005, 24, 1002–1011. (In Chinese) [Google Scholar]
- Zheng, Y.; Chen, J.; Zhu, P. Climatological distribution and diurnal variation of summer mesoscale convective system in China and its adjacent areas. Chin. Sci. Bull. 2008, 53, 1574–1586. [Google Scholar]
- Zhang, Y.; Li, B.; Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–8. (In Chinese) [Google Scholar]
- Cecil, D.J.; Buechler, D.E.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 135, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Boccippio, D.J.; Koshak, W.J.; Blakeslee, R.J. Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Ocean. Technol. 2002, 19, 1318–1332. [Google Scholar] [CrossRef]
- Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Boeck, W.L.; Buechler, D.E.; Driscoll, K.T.; Goodman, S.J.; Hall, J.M.; Koshak, W.J.; Mach, D.M.; et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. 2003, 108, ACL 4-1–ACL 4-15. [Google Scholar] [CrossRef]
- Jiang, J.X.; Fan, M.Z. Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer. Chin. J. Atmos. Sci. 2002, 26, 263–270. (In Chinese) [Google Scholar]
- Zhang, Q.; Jin, Z.; Peng, J. The relationships between convection over the Tibetan Plateau and circulation over East Asian. Chin. J. Atmos. Sci. 2006, 30, 802. (In Chinese) [Google Scholar]
- Bo, L.I.; Liu, Y.A.N.G.; Shihao, T.A.N.G. Intraseasonal variations of summer convection over the Tibetan Plateau revealed by geostationary satellite FY-2E in 2010–2014. J. Meteor. Res. 2019, 33, 478–490. [Google Scholar]
- Laing, A.G.; Michael Fritsch, J. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 1997, 123, 389–405. [Google Scholar] [CrossRef]
- Yang, X.; Fei, J.; Huang, X.; Cheng, X.; Carvalho, L.M.; He, H. Characteristics of mesoscale convective systems over China and its vicinity using geostationary satellite FY2. J. Clim. 2015, 28, 4890–4907. [Google Scholar] [CrossRef]
- Qi, P.; Zhang, D.; Zhang, Y.; Gao, L. Climatological characteristics and spatio-temporal correspondence of lightning and precipitation over the Tibetan Plateau. J. Appl. Meteorol. Sci. 2016, 27, 488–497. (In Chinese) [Google Scholar]
- Hutchins, M.L.; Holzworth, R.H.; Brundell, J.B.; Rodger, C.J. Relative detection efficiency of the world wide lightning location network. Radio Sci. 2012, 47, 1–9. [Google Scholar] [CrossRef]
- Proctor, D.E. Regions where lightning flashes began. J. Geophys. Res. Atmos. 1991, 96, 5099–5112. [Google Scholar] [CrossRef]
- Zheng, D.; Shi, D.; Zhang, Y.; Zhang, Y.; Lyu, W.; Meng, Q. Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions. J. Geophys. Res. Atmos. 2019, 124, 8025–8042. [Google Scholar] [CrossRef]
- Qie, X.; Zhang, T.; Zhang, G.; Zhang, T.; Kong, X. Electrical characteristics of thunderstorms in different plateau regions of China. Atmos. Res. 2009, 91, 244–249. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Y.; Meng, Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells. J. Geophys. Res. Atmos. 2018, 123, 12857–12876. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A.; Dye, J.E.; Venticinque, M.; Laroche, P.; Defer, E. Anomalously low negative cloud-to-ground lightning flash rates in intense convective storms observed during STERAO-A. Mon. Weather. Rev. 2000, 128, 160–173. [Google Scholar] [CrossRef]
- Soula, S.; Seity, Y.; Feral, L.; Sauvageot, H. Cloud-to-ground lightning activity in hail-bearing storms. J. Geophys. Res. Atmos. 2004, 109, D02101. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Liu, H.; Yao, W.; Meng, Q. Characteristics of cloud-to-ground lightning strikes in the stratiform regions of mesoscale convective systems. Atmos. Res. 2016, 178–179, 207–216. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zheng, D.; Ma, R.; Zhang, Y.; Lyu, W.; Yao, W.; Zhang, W.; Ciren, L.; Cuomu, D. Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN. Remote Sens. 2022, 14, 2855. https://doi.org/10.3390/rs14122855
Du Y, Zheng D, Ma R, Zhang Y, Lyu W, Yao W, Zhang W, Ciren L, Cuomu D. Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN. Remote Sensing. 2022; 14(12):2855. https://doi.org/10.3390/rs14122855
Chicago/Turabian StyleDu, Yangxingyi, Dong Zheng, Ruiyang Ma, Yijun Zhang, Weitao Lyu, Wen Yao, Wenjuan Zhang, Luobu Ciren, and Deqing Cuomu. 2022. "Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN" Remote Sensing 14, no. 12: 2855. https://doi.org/10.3390/rs14122855
APA StyleDu, Y., Zheng, D., Ma, R., Zhang, Y., Lyu, W., Yao, W., Zhang, W., Ciren, L., & Cuomu, D. (2022). Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN. Remote Sensing, 14(12), 2855. https://doi.org/10.3390/rs14122855