Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = extreme disturbance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2361 KiB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Viewed by 36
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

19 pages, 5404 KiB  
Article
Combined Effects of Flood Disturbances and Nutrient Enrichment Prompt Aquatic Vegetation Expansion: Sediment Evidence from a Floodplain Lake
by Zhuoxuan Gu, Yan Li, Jingxiang Li, Zixin Liu, Yingying Chen, Yajing Wang, Erik Jeppesen and Xuhui Dong
Plants 2025, 14(15), 2381; https://doi.org/10.3390/plants14152381 - 2 Aug 2025
Viewed by 271
Abstract
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient [...] Read more.
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient enrichment is crucial for predicting future vegetation dynamics in lake ecosystems. This study focuses on Huangmaotan Lake, a Yangtze River floodplain lake, where we reconstructed 200-year successional trajectories of macrophyte communities and their driving mechanisms. With a multiproxy approach we analyzed a well-dated sediment core incorporating plant macrofossils, grain size, nutrient elements, heavy metals, and historical flood records from the watershed. The results demonstrate a significant shift in the macrophyte community, from species that existed before 1914 to species that existed by 2020. Unlike the widespread macrophyte degradation seen in most regional lakes, this lake has maintained clear-water plant dominance and experienced continuous vegetation expansion over the past 50 years. We attribute this to the interrelated effects of floods and the enrichment of ecosystems with nutrients. Specifically, our findings suggest that nutrient enrichment can mitigate the stress effects of floods on aquatic macrophytes, while flood disturbances help reduce excess nutrient concentrations in the water column. These findings offer applicable insights for aquatic vegetation restoration in the Yangtze River floodplain and other comparable lake systems worldwide. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

16 pages, 1160 KiB  
Article
PMSM Control Paradigm Shift: Hybrid Dual Fractional-Order Sliding Mode Control with Evolutionary Parameter Learning
by Peng Gao, Liandi Fang and Huihui Pan
Fractal Fract. 2025, 9(8), 491; https://doi.org/10.3390/fractalfract9080491 - 25 Jul 2025
Viewed by 215
Abstract
This study introduces a paradigm shift in permanent magnet synchronous motor (PMSM) control through the development of hybrid dual fractional-order sliding mode control (HDFOSMC) architecture integrated with evolutionary parameter learning (EPL). Conventional PMSM control frameworks face critical limitations in ultra-precision applications due to [...] Read more.
This study introduces a paradigm shift in permanent magnet synchronous motor (PMSM) control through the development of hybrid dual fractional-order sliding mode control (HDFOSMC) architecture integrated with evolutionary parameter learning (EPL). Conventional PMSM control frameworks face critical limitations in ultra-precision applications due to their inability to reconcile dynamic agility with steady-state precision under time-varying parameters and compound disturbances. The proposed HDFOSMC framework addresses these challenges via two synergistic innovations: (1) a dual fractional-order sliding manifold that fuses the rapid transient response of non-integer-order differentiation with the small steady-state error capability of dual-integral compensation, and (2) an EPL mechanism enabling real-time adaptation to thermal drift, load mutations, and unmodeled nonlinearities. Validation can be obtained through the comparison of the results on PMSM testbenches, which demonstrate superior performance over traditional fractional-order sliding mode control (FOSMC). By integrating fractional-order theory, sliding mode control theory, and parameter self-tuning theory, this study proposes a novel control framework for PMSM. The developed system achieves high-precision performance under extreme operational uncertainties through this innovative theoretical synthesis and comparative results. Full article
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 368
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

12 pages, 459 KiB  
Article
Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients
by Ana Isabel Useros-Olmo, Roberto Cano-de-la-Cuerda, Jesús Rodríguez-Herranz, Alfonso Gil-Martínez and Alicia Hernando-Rosado
J. Clin. Med. 2025, 14(15), 5185; https://doi.org/10.3390/jcm14155185 - 22 Jul 2025
Viewed by 193
Abstract
Background: The present study aimed to determine whether the protocolized use of pneumatic splints within neurodevelopmental therapeutic approaches produces a positive effect on sensorimotor impairments of the hemiplegic upper extremity in patients. Methods: A randomized clinical single-blind trial was conducted. Stroke patients were [...] Read more.
Background: The present study aimed to determine whether the protocolized use of pneumatic splints within neurodevelopmental therapeutic approaches produces a positive effect on sensorimotor impairments of the hemiplegic upper extremity in patients. Methods: A randomized clinical single-blind trial was conducted. Stroke patients were recruited and randomized into an experimental group, which completed a treatment protocol of splinting plus physiotherapy for 45 min per session, two sessions per week for four weeks; or a control group, which received the same type of conventional physiotherapy treatment for the same period of time. The patients were evaluated by Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) and the Trunk Control Scale. Secondary variables were Mini-BEStest, the modified Ashworth scale for ankle flexors, and computerized measurements of upper limb functional parameters performed by Armeo Spring® robotic systems and Amadeo®. All variables were measured pre- and post-treatment. Results: Twenty stroke patients with subacute and chronic stroke completed the protocol. Mann–Whitney U tests showed statistically significant differences between groups for the FM sensation variable (Z = −2.19; p = 0.03). The rest of the variables studied in the comparison between the two study groups did not present statistically significant differences (p > 0.05). Conclusions: The use of air splints in combination with physiotherapy treatment produced improvements in exteroceptive and proprioceptive sensitivity in post-stroke adult patients in the subacute and chronic phases. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

27 pages, 13774 KiB  
Article
Subauroral and Auroral Conditions in the Mid- and Low-Midlatitude Ionosphere over Europe During the May 2024 Mother’s Day Superstorm
by Kitti Alexandra Berényi, Veronika Barta, Csilla Szárnya, Attila Buzás and Balázs Heilig
Remote Sens. 2025, 17(14), 2492; https://doi.org/10.3390/rs17142492 - 17 Jul 2025
Viewed by 348
Abstract
This study focuses on the mid- and low-midlatitude ionospheric response to the 2024 Mother’s Day superstorm, utilizing ground-based and Swarm satellite observations. The ground-based ionosonde measured F1, F2-layer, B0 and B1 parameters, as well as isodensity data, were used. The ionospheric absorption was [...] Read more.
This study focuses on the mid- and low-midlatitude ionospheric response to the 2024 Mother’s Day superstorm, utilizing ground-based and Swarm satellite observations. The ground-based ionosonde measured F1, F2-layer, B0 and B1 parameters, as well as isodensity data, were used. The ionospheric absorption was investigated with the so-called amplitude method, which is based on ionosonde data. Auroral sporadic E-layer was the first time ever recorded at Sopron. Moreover, the auroral F-layer appeared at exceptionally low latitude (35° mlat, over San Vito) during the storm main phase. These unprecedented detections were confirmed by optical all-sky cameras. The observations revealed that these events were linked to the extreme equatorward shift of the auroral oval along with the midlatitude trough. As a result, the midlatitude ionosphere became confined to the trough itself. Three stages of F2-layer uplift were identified during the night of 10/11 May, each caused by different mechanisms: most probably by the effect of prompt penetration electric fields (PPEFs) (1), the travelling ionospheric disturbances (TIDs) (2) and the combination of electrodynamic processes and decreased O/N2 ratio (3). After a short interval of G-condition, an unprecedented extended disappearance of the layers was observed during daytime hours on 11 May, which was further confirmed by Swarm data. This phenomenon appeared to be associated with a reduced O/N2 along with the influence of disturbance dynamo electric fields (DDEFs) and it cannot be explained only by the increased ionospheric absorption according to the results of the amplitude method. Full article
Show Figures

Figure 1

22 pages, 2531 KiB  
Article
Canopy Cover Drives Odonata Diversity and Conservation Prioritization in the Protected Wetland Complex of Thermaikos Gulf (Greece)
by Dimitris Kaltsas, Lydia Alvanou, Ioannis Ekklisiarchos, Dimitrios I. Raptis and Dimitrios N. Avtzis
Forests 2025, 16(7), 1181; https://doi.org/10.3390/f16071181 - 17 Jul 2025
Viewed by 238
Abstract
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and [...] Read more.
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and separately for the two suborders (Zygoptera, Anisoptera) in relation to geographic and ecological parameters at the riparian zone of four rivers and one canal within the Axios Delta National Park and the Natura 2000 SAC GR1220002 in northern Greece, using the line transect technique. In total, 6252 individuals belonging to 28 species were identified. The compositional and diversity patterns were significantly different between agricultural and natural sites. Odonata assemblages at croplands were comparatively poorer, dominated by a few, widely distributed, taxonomically proximal species, tolerant to environmental changes, as a result of modifications and consequent alterations of abiotic conditions at croplands, which also led to higher local contribution to β-diversity and species turnover. The absence of several percher, endophytic, and threatened species from agricultural sites led to significantly lower diversity, as a result of environmental filtering due to ecophysiological restrictions. Taxonomic and functional diversity, uniqueness, and Dragonfly Biotic Index (DBI) were significantly higher in riparian forests, due to the sensitivity of damselflies to dehydration, and the avoidance of habitat loss and extreme temperatures by dragonflies, which prefer natural shelters near the ecotone. The newly introduced Conservation Value Index (CVI) revealed 21 conservation hotspots of Odonata (14 at canopy cover sites), widely distributed within the borders of NATURA 2000 SAC GR1220002. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

10 pages, 2486 KiB  
Article
Performance of Miniature Carbon Nanotube Field Emission Pressure Sensor for X-Ray Source Applications
by Huizi Zhou, Wenguang Peng, Weijun Huang, Nini Ye and Changkun Dong
Micromachines 2025, 16(7), 817; https://doi.org/10.3390/mi16070817 - 17 Jul 2025
Viewed by 351
Abstract
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon [...] Read more.
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon nanotube (MWCNT) field emitters was investigated, and the in situ vacuum performance of X-ray tubes was studied for the advantages of miniature dimension and having low power consumption, extremely low outgassing, and low thermal disturbance compared to conventional ionization gauges. The MWCNT emitters with high crystallinity presented good pressure sensing performance for nitrogen, hydrogen, and an air mixture in the range of 10−7 to 10−3 Pa. The miniature MWCNT sensor is able to work and remain stable with high-temperature baking, important for VED applications. The sensor monitored the in situ pressures of the sealed X-ray tubes successfully with high-power operations and a long-term storage of over two years. The investigation showed that the vacuum of the sealed X-ray tube is typical at a low 10−4 Pa level, and pre-sealing degassing treatments are able to make the X-ray tube work under high vacuum levels with less outgassing and keep a stable high vacuum for a long period of time. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

27 pages, 3599 KiB  
Article
Progressive Shrinkage of the Alpine Periglacial Weathering Zone and Its Escalating Disaster Risks in the Gongga Mountains over the Past Four Decades
by Qiuyang Zhang, Qiang Zhou, Fenggui Liu, Weidong Ma, Qiong Chen, Bo Wei, Long Li and Zemin Zhi
Remote Sens. 2025, 17(14), 2462; https://doi.org/10.3390/rs17142462 - 16 Jul 2025
Viewed by 269
Abstract
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, [...] Read more.
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, this study utilizes summer Landsat imagery from 1986 to 2024 and constructs a remote sensing method based on NDVI and NDSI indices using the Otsu thresholding algorithm on the Google Earth Engine platform to automatically extract the positions of the upper limit of vegetation and the snowline. Results show that over the past four decades, the APWZ in Gongga Mountain has exhibited a continuous upward shift, with the mean elevation rising from 4101 m to 4575 m. The upper limit of vegetation advanced at an average rate of 17.43 m/a, significantly faster than the snowline shift (3.9 m/a). The APWZ also experienced substantial areal shrinkage, with an average annual reduction of approximately 13.84 km2, highlighting the differential responses of various surface cover types to warming. Spatially, the most pronounced changes occurred in high-elevation zones (4200–4700 m), moderate slopes (25–33°), and sun-facing aspects (east, southeast, and south slopes), reflecting a typical climate–topography coupled driving mechanism. In the upper APWZ, glacier retreat has intensified weathering and increased debris accumulation, while the newly formed vegetation zone in the lower APWZ remains structurally fragile and unstable. Under extreme climatic disturbances, this setting is prone to triggering chain-type hazards such as landslides and debris flows. These findings enhance our capacity to monitor alpine ecological boundary changes and identify associated disaster risks, providing scientific support for managing climate-sensitive mountainous regions. Full article
Show Figures

Figure 1

20 pages, 3380 KiB  
Article
Resilience of Mangrove Carbon Sequestration Under Typhoon Disturbance: Insights from Different Restoration Ages
by Youwei Lin, Ruina Liu, Yunfeng Shi, Shengjie Han, Huaibao Zhao and Zongbo Peng
Forests 2025, 16(7), 1165; https://doi.org/10.3390/f16071165 - 15 Jul 2025
Viewed by 310
Abstract
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove [...] Read more.
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove sites were selected based on their recovery age: young, moderately restored, and mature. The results revealed that typhoons had the most pronounced effect on young mangroves, resulting in significant reductions in both above-ground and soil carbon storage. In contrast, mid-aged and mature mangroves demonstrated greater resilience, with mature mangroves recovering most rapidly in terms of community structure and carbon storage. Key factors such as wind speed, heavy rainfall, and changes in photosynthetically active radiation (PAR) contributed to carbon storage losses, particularly in young mangrove forests. This study underscores the importance of recovery age in determining mangrove resilience to extreme weather events and offers insights for enhancing restoration and conservation strategies to mitigate the impacts of climate change on coastal carbon sequestration. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
Dietary, Body Composition, and Blood Leptin Variations in Fit-Model Female Athletes During the Pre-Competition Period
by Ramutis Kairaitis, Petras Minderis, Inga Lukonaitienė, Gediminas Mamkus, Tomas Venckūnas and Sigitas Kamandulis
Nutrients 2025, 17(14), 2299; https://doi.org/10.3390/nu17142299 - 12 Jul 2025
Viewed by 586
Abstract
Background: The Fit-Model in bodybuilding is a relatively new category designed for women seeking a balanced physique, avoiding excessive muscularity and extreme leanness. This study examined the dietary strategies, body composition changes, and plasma leptin fluctuations of Fit-Model athletes during a seven-week pre-competition [...] Read more.
Background: The Fit-Model in bodybuilding is a relatively new category designed for women seeking a balanced physique, avoiding excessive muscularity and extreme leanness. This study examined the dietary strategies, body composition changes, and plasma leptin fluctuations of Fit-Model athletes during a seven-week pre-competition phase. Methods: Twelve females (age: 27.6 ± 4.4 years, body mass: 60.0 ± 6.2 kg) preparing for a national championship were monitored for energy and macronutrient intakes, total, lean, and fat mass, plasma leptin levels, and menstrual cycle characteristics. The five highest-ranked athletes were selected to compete at the world championship, allowing for comparisons between national and international athletes. Results: Low carbohydrate intake was reported, and total energy intake decreased from 1700 to 1520 kcal/day approaching the contest day. Athletes experienced an average body mass loss of 4.2 kg, with no clear relationship between final weight or fat mass and competitive success. Plasma leptin levels were markedly low during all 7 weeks of preparation with a further decline before the contest, but did not correlate with either changes in body composition and weight or energy or macronutrient intakes. Menstrual cycle disturbances were prevalent, with only two athletes maintaining regular cycles by the end of the preparation. Conclusions: Fit-Model athletes undergo a considerable decline in body weight and fat mass during the final weeks before the contest, yet these changes do not appear to be decisive for performance outcomes. Persistently low leptin levels and menstrual irregularities call for strategies that balance physique optimization with endocrine health to support both the performance and well-being of athletes. Full article
Show Figures

Figure 1

16 pages, 5320 KiB  
Article
Response Mechanism of Carbon Fluxes in Restored and Natural Mangrove Ecosystems Under the Effects of Storm Surges
by Huimin Zou, Jianhua Zhu, Zhen Tian, Zhulin Chen, Zhiyong Xue and Weiwei Li
Forests 2025, 16(7), 1115; https://doi.org/10.3390/f16071115 - 5 Jul 2025
Viewed by 225
Abstract
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized [...] Read more.
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized for their resilience to natural disturbances, a characteristic largely attributed to the evolutionary development of species-specific functional traits. However, limited research has explored the impacts of storm surges on carbon flux dynamics in both natural and restored mangrove ecosystems. In this study, we analyzed short-term responses of storm surges on carbon dioxide flux and methane flux in natural and restored mangroves. The results revealed that following the storm surge, CO2 uptake decreased by 51% in natural mangrove forests and increased by 20% in restored mangroves, while CH4 emissions increased by 14% in natural mangroves and decreased by 22% in restored mangroves. GPP is mainly driven by PPFD and negatively affected by VPD and RH, while Reco and CH4 flux respond to a combination of temperature, humidity, and hydrological factors. NEE is primarily controlled by GPP and Reco, with environmental variables acting indirectly. These findings highlight the complex, site-specific pathways through which extreme events regulate carbon fluxes, underscoring the importance of incorporating ecological feedbacks into coastal carbon assessments under climate change. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

18 pages, 313 KiB  
Article
The Role of Axillary Lymph Node Dissection Width and Radiotherapy in Axillary Vein Pathologies and Psychophysical Outcomes in Breast Cancer
by Mujdat Turan, Ibrahim Burak Bahcecioglu, Sumeyra Guler, Sevket Baris Morkavuk, Gokhan Giray Akgul, Sebnem Cimen, Elif Ayse Ucar, Ebru Umay, Mehmet Mert Hidiroglu, Yasemin Ozkan, Mutlu Sahin and Kerim Bora Yilmaz
Medicina 2025, 61(7), 1212; https://doi.org/10.3390/medicina61071212 - 3 Jul 2025
Viewed by 383
Abstract
Background and Objectives: Lymphedema is one of the most important morbid complications of modified radical mastectomy (MRM) surgery. It can cause limb movement restriction and psychosocial deformities in some patients. This study aimed to determine and compare the physiological and pathological changes that [...] Read more.
Background and Objectives: Lymphedema is one of the most important morbid complications of modified radical mastectomy (MRM) surgery. It can cause limb movement restriction and psychosocial deformities in some patients. This study aimed to determine and compare the physiological and pathological changes that develop in the axillary venous structures in patients who underwent axillary lymph node dissection (ALND) and sentinel lymph node biopsy (SLNB). Materials and Methods: Patients diagnosed with breast cancer who underwent MRM and breast-conserving surgery (BCS) plus SLNB between 2017 and 2022 were retrospectively examined. The patients’ operation side and contralateral axillary vein diameter and the difference between them, axillary vein flow rate and the difference between them, axillary vein wall thickness and the difference between them, severity of lymphedema, extremity joint restriction examination, and the Nottingham Health Profile (NHP) data were recorded. The relationship of these parameters with the lymph node dissection width and radiotherapy was analyzed. Results: Fifty-eight patients in total were included in the study. In the distribution of lymphedema and lymphedema severity according to ALND groups, there is a statistically significant difference (p < 0.001). A statistically significant difference was determined in the distribution of the difference in the axillary vein blood flow rate and axillary vein diameter difference between the two arms according to the lymph node dissection groups. In the distribution of physical therapy and rehabilitation scales according to the lymph node dissection groups, a significant difference was found in the disabilities of the arm, shoulder, and hand (DASH), shoulder flexion restriction variables, and NHP sleep variables (all p < 0.001). Conclusions: This study demonstrated that ALND leads to more pronounced physiological and pathological changes in axillary venous structures—including increased vein wall thickness, altered flow rates, and diameter differences—compared to SLNB combined with breast-conserving surgery. These changes may be attributed to lymphovenous disruption and postoperative edema. Furthermore, radiotherapy appears to contribute to these changes, though to a lesser extent than ALND. Therefore, SLNB followed by radiotherapy may be preferable in eligible patients to reduce postoperative complications such as lymphedema, joint restriction, and sleep disturbances. Full article
(This article belongs to the Section Oncology)
24 pages, 2093 KiB  
Article
Composite Perturbation-Rejection Trajectory-Tracking Control for a Quadrotor–Slung Load System
by Jiao Xu, Defu Lin, Jianchuan Ye and Tao Jiang
Actuators 2025, 14(7), 335; https://doi.org/10.3390/act14070335 - 3 Jul 2025
Viewed by 327
Abstract
Tracking control of a quadrotor–slung load system is extremely challenging due to its under-actuation property, couple effects, and various uncertainties. This work proposes a composite backstepping control framework combining command filter control and a multivariable finite-time disturbance observer to ensure robust position and [...] Read more.
Tracking control of a quadrotor–slung load system is extremely challenging due to its under-actuation property, couple effects, and various uncertainties. This work proposes a composite backstepping control framework combining command filter control and a multivariable finite-time disturbance observer to ensure robust position and orientation control for aerial payload transportation with high precision. Firstly, the kinematic and dynamic model under perturbations is derived based on Newton’s second law. The thrust control force consists of two orthogonal parts, each dedicated to regulating the position and orientation of the slung load independently. Then, hierarchical backstepping control generates the two parts in the load-translation and the load-orientation subsystems. Command filters are introduced into nonlinear backstepping to smoothen the control signals and overcome the problem of explosion of complexity. Additionally, to counteract the adverse effect of perturbations emerging in the linear velocity and angular velocity loops, multivariable finite-time observers are developed to ensure the estimation errors converge within a finite time horizon. Finally, comparative numerical simulation results validate the efficacy of the developed quadrotor–slung load tracking controller. Simulation results show that the proposed controller achieves smaller position tracking and orientation errors compared to traditional methods, demonstrating robust disturbance rejection and high-precision control. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

28 pages, 642 KiB  
Article
Contextual Emotions in Organizations: A Latent Profile Analysis of Their Co-Occurrence and Their Effects on Employee Well-Being
by Laura Petitta, Lixin Jiang and Valerio Ghezzi
Eur. J. Investig. Health Psychol. Educ. 2025, 15(7), 122; https://doi.org/10.3390/ejihpe15070122 - 2 Jul 2025
Viewed by 392
Abstract
Workplace contextual emotions are structured ways of emotionally thinking about specific cues in the context that employees share within their organization. These dynamics reflect how employees emotionally interpret and respond to organizational environments. Contextual emotions may shape working relationships into different types of [...] Read more.
Workplace contextual emotions are structured ways of emotionally thinking about specific cues in the context that employees share within their organization. These dynamics reflect how employees emotionally interpret and respond to organizational environments. Contextual emotions may shape working relationships into different types of toxic emotional dynamics (e.g., claiming, controlling, distrusting, provoking) or, conversely, positive emotional dynamics (i.e., exchanging), thus setting the emotional tone that affects employees’ actions and their level of comfort/discomfort. The present study uses latent profile analysis (LPA) to identify subpopulations of employees who may experience differing levels of both positive and negative emotional dynamics (i.e., different configurations of emotional patterns of workplace behavior). Moreover, it examines whether the emergent profiles predict work-related (i.e., job satisfaction, burnout) and health-related outcomes (i.e., sleep disturbances, physical and mental health). Using data from 801 Italian employees, we identified four latent profiles: “functional dynamics” (low toxic emotions and high exchange), “dialectical dynamics” (co-existence of medium toxic emotions and medium exchange), “mild dysfunctional dynamics” (moderately high toxic emotions and low exchange), and “highly dysfunctional dynamics” (extremely high toxic emotions and extremely low exchange). Moreover, employees in the dialectical, mild dysfunctional, and highly dysfunctional groups reported progressively higher levels of poor health outcomes and progressively lower levels of satisfaction, whereas the functional group was at low risk of stress and was the most satisfied group. The theoretical and practical implications of the LPA-classified emotional patterns of workplace behavior are discussed in light of the relevance of identifying vulnerable subpopulations of employees diversely exposed to toxic configurations of emotional/relational ambience. Full article
Show Figures

Figure 1

Back to TopTop