Subauroral and Auroral Conditions in the Mid- and Low-Midlatitude Ionosphere over Europe During the May 2024 Mother’s Day Superstorm
Abstract
1. Introduction
2. Data and Methods
3. Observations
3.1. Digisonde Measurements
3.1.1. Overall Storm-Time Condition in the Ionosphere
3.1.2. Auroral Conditions
3.1.3. The Three Identified F-Layer Uplift Phases
3.1.4. Ionospheric Absorption Investigation
3.2. Swarm Measurements
4. Discussion
5. Conclusions
- A series of unique ionospheric conditions were determined by multi-instrumental observations and discussed in the current study.
- A sudden and extreme decrease in the F2 layer electron density and a simultaneous uplift were detected with the Digisondes above SO and VT right after the SSC. The initial density decrease was mostly caused by the arrival of MIT to these latitudes.
- Right after the end of the main phase, a peculiar G-condition developed in the ionosphere. This appears only during intense geomagnetic storms and is connected to extremely depleted plasma in the F2-layer.
- Auroral F- and auroral Sporadic E-layers were observed at unprecedented low latitudes (42°, 35° mlat, respectively) during the main phase, while the analyzed stations were below or near the AO. The first ever observation of auroral Es at SO occurred between 22:15–23:10 UT, while auroral F layers were recorded at SO (22:30–03:45 UT) and as extremely low latitude as VT station (22:37–03:52 UT) on 10/11 May 2024. Besides the optical observations and the Swarm measurements confirmed that the MIT, with the AO at its equatorward boundary, moved down as low as 35.9°N mlat.
- The auroral and low-latitude nightside ionospheres converged at the MIT, creating an extraordinary situation where the midlatitude ionosphere was confined to the MIT itself.
- Exceptionally prolonged disappearance of the ionospheric layers was observed through Digisonde measurements uniquely during daytime hours in the early recovery phase of the superstorm. The joint effect of the extremely decreased O/N2 ratio and density, as well as along with the influence of DDEFs was the most probable cause of the disappearance and not the increased ionospheric absorption caused by the incident solar flares, which was confirmed by the amplitude method.
- Three uplift phases were distinguished during the main and early recovery phases. The first phase was driven by global electric fields. The second phase was most likely caused by the spatially varying effect of storm-time winds and TIDs. While the decrease of the F1-layer height during the third uplift phase must have been driven by the westward DDEF. The underlying process responsible for the peculiar third-phase F2-layer uplift remains unclear and requires further investigation, involving additional observations from the plasmasphere.
- The isodensity and virtual height (h’F, h’F2) data are most suitable for the investigation of the ionospheric layer height variations.
- Effects of TIDs during geomagnetic storms are best observed with isodensity data.
- The B0 parameter is sensitive to all the three types of ionospheric layer uplift (and overall, to geomagnetic storm effects), however, it is the most suitable for the indication of TID related ionospheric height variations.
- In a future study, we plan to investigate the prolonged daytime disappearance of the F-layer and its anomalous 3rd-phase uplift in detail, incorporating further experimental data and models like the thermosphere–ionosphere electrodynamic general circulation model (TIEGCM, see the article of [79,80], and the Horizontal Wind Model 2007 (HWM07 [81,82]).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AO | auroral oval |
DDEF | disturbance dynamo electric field |
EIA | equatorial ionization anomaly |
EPD | equatorial plasma depletion |
ICME | interplanetary coronal mass ejection |
GNSS | global navigation satellite system |
HWM07 | Horizontal Wind Model 2007 |
IMAGE | International Monitor for Auroral Geomagnetic Effects |
IMF | interplanetary magnetic field |
FAC | field-aligned current |
GOLD | global-scale observations of the limb and disk |
LSTID | large-scale TID |
NNE | north–northeast |
NNW | north–northwest |
MIT | midlatitude ionospheric trough |
MLT | magnetic local time |
MSTID | medium-scale TID |
PPEF | prompt penetration electric field |
QD | quasi dipole |
PRE | pre-reversal enhancement |
RC | ring current |
SAR | stable auroral red |
SED | storm-enhanced plasma density |
SSC | sudden storm commencement |
ssFAC | small-scale FAC |
SO | Sopron |
TID | travelling ionospheric disturbance |
TIEGCM | thermosphere-ionosphere- electrodynamic general circulation model |
UT | universal time |
VT | San Vito |
vTEC | vertical total electron content |
Appendix A
Appendix B
References
- Spogli, L.; Alberti, T.; Bagiacchi, P.; Cafarella, L.; Cesaroni, C.; Cianchini, G.; Coco, I.; Di Mauro, D.; Ghidoni, R.; Giannattasio, F.; et al. The effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: From data to public communication. ESS Open Arch. 2024. [Google Scholar] [CrossRef]
- Das, S.K.; Stolle, C.; Yamazaki, Y.; Rodríguez-Zuluaga, J.; Wan, X.; Kervalishvili, G.; Rauberg, J.; Zhong, J.; Perwitasari, S. On the F-region ionospheric plasma density distribution and irregularities response during the May-2024 geomagnetic storm observed by LEO satellites. Geophys. Res. Lett. 2025, 52. [Google Scholar] [CrossRef]
- Aa, E.; Chen, Y.; Luo, B. Dynamic Expansion and Merging of the Equatorial Ionization Anomaly During the 10–11 May 2024 Super Geomagnetic Storm. Remote. Sens. 2024, 16, 4290. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.; Lei, J.; Huang, F.; Erickson, P.J.; Coster, A.J.; Luo, B.; Kerr, R.B. Significant Midlatitude Plasma Density Peaks and Dual-Hemisphere SED During the 10–11 May 2024 Super Geomagnetic Storm. J. Geophys. Res. Space Phys. 2024, 129, 3360. [Google Scholar] [CrossRef]
- Bojilova, R.; Mukhtarov, P.; Pancheva, D. Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024. Remote. Sens. 2024, 16, 4046. [Google Scholar] [CrossRef]
- Pierrard, V.; Winant, A.; Botek, E.; de Bonhome, M.P. The Mother’s Day Solar Storm of 11 May 2024 and Its Effect on Earth’s Radiation Belts. Universe 2024, 10, 391. [Google Scholar] [CrossRef]
- Carmo, C.S.; Dai, L.; Wrasse, C.M.; Barros, D.; Takahashi, H.; Figueiredo, C.A.O.B.; Wang, C.; Li, H.; Liu, Z. Ionospheric Response to the Extreme 2024 Mother’s Day Geomagnetic Storm Over the Latin American Sector. Space Weather. 2024, 22, 4054. [Google Scholar] [CrossRef]
- Gonzalez-Esparza, J.A.; Sanchez-Garcia, E.; Sergeeva, M.; Corona-Romero, P.; Gonzalez-Mendez, L.X.; Valdes-Galicia, J.F.; Aguilar-Rodriguez, E.; Rodriguez-Martinez, M.; Ramirez-Pacheco, C.; Castellanos, C.I.; et al. The Mother’s Day Geomagnetic Storm on 10 May 2024: Aurora Observations and Low Latitude Space Weather Effects in Mexico. Space Weather. 2024, 22, 4111. [Google Scholar] [CrossRef]
- Lazzús, J.; Salfate, I. Report on the effects of the May 2024 Mother’s day geomagnetic storm observed from Chile. J. Atmos. Sol.-Terr. Phys. 2024, 261, 106304. [Google Scholar] [CrossRef]
- Paul, K.S.; Moses, M.; Haralambous, H.; Oikonomou, C. Effects of the Mother’s Day Superstorm (10–11 May 2024) over the Global Ionosphere. Remote. Sens. 2025, 17, 859. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Yue, J.; Wang, W.; Moro, J. Mesosphere and Lower Thermosphere Temperature Responses to the May 2024 Mother’s Day Storm. Geophys. Res. Lett. 2025, 52, 2179. [Google Scholar] [CrossRef]
- Wang, X.; Aa, E.; Chen, Y.; Zhang, J.; Zhu, Y.; Cai, L.; Lu, X.; Luo, B.; Liu, S.; Li, M.; et al. Midlatitude Neutral Wind Response During the Mother’s Day Super-Intense Geomagnetic Storm in 2024 Using Observations from the Chinese Meridian Project. J. Geophys. Res. Space Phys. 2025, 130, 3574. [Google Scholar] [CrossRef]
- Singh, R.; Scipión, D.E.; Kuyeng, K.; Condor, P.; De La Jara, C.; Velasquez, J.P.; Flores, R.; Ivan, E.; Souza, J.R.; Migliozzi, M. Ionospheric Disturbances Observed Over the Peruvian Sector During the Mother’s Day Storm (G5-Level) on 10–12 May 2024. J. Geophys. Res. Space Phys. 2024, 129, e2024JA033003. [Google Scholar] [CrossRef]
- Karan, D.K.; Martinis, C.R.; Daniell, R.E.; Eastes, R.W.; Wang, W.; McClintock, W.E.; Michell, R.G.; England, S. GOLD Observations of the Merging of the Southern Crest of the Equatorial Ionization Anomaly and Aurora During the 10 and 11 May 2024 Mother’s Day Super Geomagnetic Storm. Geophys. Res. Lett. 2024, 51, 632. [Google Scholar] [CrossRef]
- Pierrard, V.; Verhulst, T.G.W.; Chevalier, J.-M.; Bergeot, N.; Winant, A. Effects of the Geomagnetic Superstorms of 10–11 May 2024 and 7–11 October 2024 on the Ionosphere and Plasmasphere. Atmosphere 2025, 16, 299. [Google Scholar] [CrossRef]
- Buonsanto, M. Ionospheric Storms—A Review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric F-region storms. Handbook of Atmospheric Electrodynamics; CRC Press: Boca Raton, FL, USA, 1995; Volume 2, Chapter 8; pp. 195–248. Available online: https://cir.nii.ac.jp/crid/1570291225295033472 (accessed on 2 November 2022).
- Balan, N.; Shiokawa, K.; Otsuka, Y.; Kikuchi, T.; Lekshmi, D.V.; Kawamura, S.; Yamamoto, M.; Bailey, G.J. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res. 2010, 115, A02304. [Google Scholar] [CrossRef]
- Balan, N.; Liu, L.; Le, H. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2018, 2, 257–275. [Google Scholar] [CrossRef]
- Berényi, K.A.; Heilig, B.; Urbář, J.; Kouba, D.; Kis, Á.; Barta, V. Comprehensive analysis of the ionospheric response to the largest geomagnetic storms from solar cycle 24 over Europe. Front. Astron. Space Sci. 2023, 10, 1092850. [Google Scholar] [CrossRef]
- Danilov, A. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric Storms at Mid-Latitude: A Short Review. Geophys. Monogr. Ser. 2008, 181, 9–24. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.D.; et al. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 2008, 113, A05311. [Google Scholar] [CrossRef]
- Heilig, B.; Stolle, C.; Kervalishvili, G.; Rauberg, J.; Miyoshi, Y.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Nakamura, S.; et al. Relation of the Plasmapause to the Midlatitude Ionospheric Trough, the Sub-Auroral Temperature Enhancement and the Distribution of Small-Scale Field Aligned Currents as Observed in the Magnetosphere by THEMIS, RBSP, and Arase, and in the Topside Ionosphere by Swarm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029646. [Google Scholar] [CrossRef]
- Heilig, B.; Lühr, H. New plasmapause model derived from CHAMP field-aligned current signatures. Ann. Geophys. 2013, 31, 529–539. [Google Scholar] [CrossRef]
- Heilig, B.; Lühr, H. Quantifying the relationship between the plasmapause and the inner boundary of small-scale field-aligned currents, as deduced from Swarm observations. Ann. Geophys. 2018, 36, 595–607. [Google Scholar] [CrossRef]
- Polekh, N.; Chernigovskaya, M.; Yakovleva, O. On the formation of the F1 layer during sudden stratospheric warming events. Solnechno-Zemnaya Fiz. 2019, 5, 117–127. [Google Scholar] [CrossRef]
- Deminov, M.G.; Romanova, E.B.; Tashchilin, A.V. Origination of G conditions in the ionospheric F region depending on solar and geomagnetic activity. Geomagn. Aeron. 2011, 51, 669–675. [Google Scholar] [CrossRef]
- Mošna, Z.; Barta, V.; Berényi, K.A.; Mielich, J.; Verhulst, T.; Kouba, D.; Urbář, J.; Chum, J.; Knížová, P.K.; Marew, H.; et al. The March and April 2023 ionospheric storms over Europe. Front. Astron. Space Sci. 2024, 11, 1462160. [Google Scholar] [CrossRef]
- Lobzin, V.V.; Pavlov, A.V. G condition in the F2 region peak electron density: A statistical study. Ann. Geophys. 2002, 20, 523–537. [Google Scholar] [CrossRef]
- Moro, J.; Xu, J.; Denardini, C.M.; Resende, L.C.A.; Da Silva, L.A.; Chen, S.S.; Carrasco, A.J.; Liu, Z.; Wang, C.; Schuch, N.J. Different Sporadic-E (Es) Layer Types Development During the August 2018 Geomagnetic Storm: Evidence of Auroral Type (Esa) Over the SAMA Region. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029701. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Galkin, I.A. Global ionospheric radio observatory (GIRO). Earth Planets Space 2011, 63, 377–381. [Google Scholar] [CrossRef]
- Reinisch, B.; Huang, X.; Galkin, I.; Paznukhov, V.; Kozlov, A. Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1054–1062. [Google Scholar] [CrossRef]
- Bór, J.; Sátori, G.; Barta, V.; Szabóné-André, K.; Szendrői, J.; Wesztergom, V.; Bozóki, T.; Buzás, A.; Koronczay, D. Measurements of atmospheric electricity in the Széchenyi István Geophysical Observatory, Hungary. Hist. Geo- Space Sci. 2020, 11, 53–70. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Bilitza, D.; Rawer, K. New options for IRI electron density in the middle ionosphere. Adv. Space Res. 1990, 10, 7–16. [Google Scholar] [CrossRef]
- Verhulst, T.G.W.; Stankov, S.M.; Verhulst, T.G.W.; Stankov, S.M. The Changing Shape of the Ionosphere During a Solar Eclipse. URSI Radio Sci. Lett. 2023, 4, 68. [Google Scholar] [CrossRef]
- Buzás, A.; Kouba, D.; Mielich, J.; Burešová, D.; Mošna, Z.; Knížová, P.K.; Barta, V. Investigating the effect of large solar flares on the ionosphere based on novel Digisonde data comparing three different methods. Front. Astron. Space Sci. 2023, 10, 1201625. [Google Scholar] [CrossRef]
- Kallio, E.I.; Pulkkinen, T.I.; Koskinen, H.E.J.; Viljanen, A.; Slavin, J.A.; Ogilvie, K. Loading-unloading processes in the nightside ionosphere. Geophys. Res. Lett. 2000, 27, 1627–1630. [Google Scholar] [CrossRef]
- Kauristie, K.; Sergeev, V.A.; Pulkkinen, T.I.; Pellinen, R.J.; Angelopoulos, V.; Baumjohann, W. Study on the ionospheric signatures of the plasma sheet bubbles. In International Conference on Substorms, Proceedings of the 3rd International Conference, Versailles, France, 12–17 May 1996; ESA SP-389; Rolfe, E.J., Kaldeich, B., Eds.; European Space Agency: Paris, France, 1996; p. 93. Available online: https://adsabs.harvard.edu/full/1996ESASP.389...93K (accessed on 13 May 2025).
- Viljanen, A.; Hakkinen, L. IMAGE Magnetometer Network, in Satellite-Ground Based Coordination Sourcebook; ESA Publications—European Space Agency: Noordwijk, The Netherlands, 1997. [Google Scholar]
- Tanskanen, E.I.; Viljanen, A.; Pulkkinen, T.I.; Pirjola, R.; Häkkinen, L.; Pulkkinen, A.; Amm, O. At substorm onset, 40% of AL comes from underground. J. Geophys. Res. 2001, 106, 13119–13134. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Olsen, N.; Friis-Christensen, E.; Floberghagen, R.; Alken, P.; Beggan, C.D.; Chulliat, A.; Doornbos, E.; da Encarnação, J.T.; Hamilton, B.; Hulot, G.; et al. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth Planets Space 2013, 65, 1189–1200. [Google Scholar] [CrossRef]
- Evans, J.S.; Correira, J.; Lumpe, J.D.; Eastes, R.W.; Gan, Q.; Laskar, F.I.; Aryal, S.; Wang, W.; Burns, A.G.; Beland, S.; et al. GOLD Observations of the Thermospheric Response to the 10–12 May 2024 Gannon Superstorm. Geophys. Res. Lett. 2024, 51, e2024GL110506. [Google Scholar] [CrossRef]
- Hayakawa, H.; Ebihara, Y.; Mishev, A.; Koldobskiy, S.; Kusano, K.; Bechet, S.; Yashiro, S.; Iwai, K.; Shinbori, A.; Mursula, K.; et al. The Solar and Geomagnetic Storms in 2024 May: A Flash Data Report. Astrophys. J. 2025, 979, 49. [Google Scholar] [CrossRef]
- Buresova, D.; Lastovicka, J.; Hejda, P.; Bochnicek, J. Ionospheric disturbances under low solar activity conditions. Adv. Space Res. 2014, 54, 185–196. [Google Scholar] [CrossRef]
- Berényi, K.A.; Perrone, L.; Sabbagh, D.; Scotto, C.; Ippolito, A.; Kis, Á.; Barta, V. Ionosonde Measurement Comparison during an Interplanetary Coronal Mass Ejection (ICME)- and a Corotating Interaction Region (CIR)-Driven Geomagnetic Storm over Europe. Universe 2024, 10, 344. [Google Scholar] [CrossRef]
- Szárnya, C.; Mošna, Z.; Igaz, A.; Kouba, D.; Verhulst, T.G.W.; Knížová, P.K.; Podolská, K.; Barta, V. Technical Possibilities and Limitations of the DPS-4D Type of Digisonde in Individual Meteor Detections. Remote Sens. 2024, 16, 2658. [Google Scholar] [CrossRef]
- Reinisch, B.W. Digisonde 4D Technical Manual (Version 1.0); Lowell Digisonde International: Lowell, MA, USA, 2009. [Google Scholar]
- Whiter, D.K.; Partamies, N.; Gustavsson, B.; Kauristie, K. The altitude of green OI 557.7 nm and blue N2+ 427.8 nm aurora. Ann. Geophys. 2023, 41, 1–12. [Google Scholar] [CrossRef]
- Jackel, B.J.; Creutzberg, F.; Donovan, E.F.; Cogger, L.L. Triangulation of Auroral Red-Line Emission Heights; Sodankylä Geophysical Observatory Publications: Sodankylä, Finland, 2003; Volume 92, pp. 97–100. Available online: https://aurora.phys.ucalgary.ca/public/for_emma/Gillies_agu/LitReview/jackel_triangulation_oulu_2003.pdf (accessed on 5 February 2025).
- Piggott, W.R.; Rawer, K. U.R.S.I. Handbook of Ionogram Interpretation and Reduction. 1978. Available online: https://repository.library.noaa.gov/view/noaa/10404 (accessed on 25 October 2024).
- Belehaki, A.; Tsagouri, I.; Altadill, D.; Blanch, E.; Borries, C.; Buresova, D.; Chum, J.; Galkin, I.; Juan, J.M.; Segarra, A.; et al. An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project. J. Space Weather Space Clim. 2020, 10, 42. [Google Scholar] [CrossRef]
- Ventriglia, V.; Guerra, M.; Cesaroni, C.; Spogli, L.; Altadill, D.; Segarra, A.; Galkin, I.; Barta, V.; Verhulst, T.G.; de Paula, V.; et al. An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting. J. Space Weather Space Clim. 2025, 15. [Google Scholar] [CrossRef]
- Barta, V.; Sátori, G.; Berényi, K.A.; Kis, Á.; Williams, E. Effects of solar flares on the ionosphere as shown by the dynamics of ionograms recorded in Europe and South Africa. Ann. Geophys. 2019, 37, 747–761. [Google Scholar] [CrossRef]
- Tao, C.; Nishioka, M.; Saito, S.; Shiota, D.; Watanabe, K.; Nishizuka, N.; Tsugawa, T.; Ishii, M. Statistical analysis of short-wave fadeout for extreme space weather event estimation. Earth Planets Space 2020, 72, 173. [Google Scholar] [CrossRef]
- Paul, K.S.; Haralambous, H.; Moses, M.; Oikonomou, C.; Potirakis, S.M.; Bergeot, N.; Chevalier, J.-M. Investigation of the Ionospheric Response on Mother’s Day 2024 Geomagnetic Superstorm over the European Sector. Atmosphere 2025, 16, 180. [Google Scholar] [CrossRef]
- Vichare, G.; Bagiya, M.S. Manifestations of Strong IMF-By on the Equatorial Ionospheric Electrodynamics During 10 May 2024 Geomagnetic Storm. Geophys. Res. Lett. 2024, 51, e2024GL112569. [Google Scholar] [CrossRef]
- Kelley, M.C.; Makela, J.J.; de La Beaujardière, O.; Retterer, J. Convective Ionospheric Storms: A Review. Rev. Geophys. 2011, 49. [Google Scholar] [CrossRef]
- Woodman, R.F. Spread F – an old equatorial aeronomy problem finally resolved? Ann. Geophys. 2009, 27, 1915–1934. [Google Scholar] [CrossRef]
- Woodman, R.F.; La Hoz, C. Radar observations of F region equatorial irregularities. J. Geophys. Res. 1976, 81, 5447–5466. [Google Scholar] [CrossRef]
- Huang, C.-S. Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms. Int. J. Geophys. 2011, 2011, 401858. [Google Scholar] [CrossRef]
- Sripathi, S.; Abdu, M.A.; Patra, A.K.; Ghodpage, R.N. Unusual Generation of Localized EPB in the Dawn Sector Triggered by a Moderate Geomagnetic Storm. J. Geophys. Res. Space Phys. 2018, 123, 9697–9710. [Google Scholar] [CrossRef]
- Ram, S.T.; Ajith, K.K.; Yamamoto, M.; Otsuka, Y.; Yokoyama, T.; Niranjan, K.; Gurubaran, S. Fresh and evolutionary-type field-aligned irregularities generated near sunrise terminator due to overshielding electric fields. J. Geophys. Res. Space Phys. 2015, 120, 5922–5930. [Google Scholar] [CrossRef]
- Wu, K.; Xu, J.; Yue, X.; Xiong, C.; Wang, W.; Yuan, W.; Wang, C.; Zhu, Y.; Luo, J. Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time. Ann. Geophys. 2020, 38, 163–177. [Google Scholar] [CrossRef]
- Carmo, C.S.; Pi, X.; Denardini, C.M.; Figueiredo, C.A.O.B.; Verkhoglyadova, O.P.; Picanço, G.A.S. Equatorial Plasma Bubbles Observed at Dawn and After Sunrise Over South America During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2022, 127, 9934. [Google Scholar] [CrossRef]
- Karan, D.K.; Martinis, C.R.; Eastes, R.W.; Daniell, R.E.; McClintock, W.E.; Huang, C. GOLD Observations of Equatorial Plasma Bubbles Reaching Mid-Latitudes During the 23 April 2023 Geomagnetic Storm. Space Weather. 2024, 22, e2023SW003847. [Google Scholar] [CrossRef]
- Jones, D.G.; Walker, I.K.; Kersley, L. Structure of the poleward wall of the trough and the inclination of the geomagnetic field above the EISCAT radar. Ann. Geophys. 1997, 15, 740–746. [Google Scholar] [CrossRef]
- Karpachev, A. Longitudinal variations in the position and magnitude of the poleward wall of the ionospheric trough in the southern hemisphere. Adv. Space Res. 2023, 71, 4374–4381. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Tsurutani, B.T.; Iijima, B.A.; Komjathy, A.; Saito, A.; Gonzalez, W.D.; Guarnieri, F.L.; Kozyra, J.U.; Skoug, R. Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”. Geophys. Res. Lett. 2005, 32, L12S02. [Google Scholar] [CrossRef]
- Martinis, C.; Baumgardner, J.; Mendillo, M.; Wroten, J.; Coster, A.; Paxton, L. The night when the auroral and equatorial ionospheres converged. J. Geophys. Res. Space Phys. 2014, 120, 8085–8095. [Google Scholar] [CrossRef]
- Akasofu, S.-I. Electrodynamics of the magnetosphere: Geomagnetic storms. Space Sci. Rev. 1966, 6, 21–143. [Google Scholar] [CrossRef]
- Astafyeva, E.; Maletckii, B.; Förster, M.; Ouar, I.D.; Huba, J.D.; Hairston, M.R.; Coley, W.R. Electrodynamic and Ionospheric Puzzles of the 10–11 May 2024 Geomagnetic Superstorm. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033284. [Google Scholar] [CrossRef]
- Panasenko, S.V.; Aksonova, K.D.; Burešová, D.; Bogomaz, O.V.; Zhivolup, T.G.; Koloskov, O.V. Large-scale traveling ionospheric disturbances over central and eastern Europe during moderate magnetic storm period on 22–24 September 2020. Adv. Space Res. 2023, 72, 4364–4378. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Traveling ionospheric disturbances and their relations to storm-enhanced density features and plasma density irregularities in the local evening and nighttime hours of the Halloween superstorms of 29–31 October 2003. J. Geophys. Res. 2010, 115, A09327. [Google Scholar] [CrossRef]
- Berényi, K.; Barta, V.; Kis, Á. Midlatitude ionospheric F2-layer response to eruptive solar events-caused geomagnetic disturbances over Hungary during the maximum of the solar cycle 24: A case study. Adv. Space Res. 2018, 61, 1230–1243. [Google Scholar] [CrossRef]
- Forbes, J.M. Dynamics of the Thermosphere. J. Meteorol. Soc. Jpn. Ser. II 2007, 85B, 193–213. [Google Scholar] [CrossRef]
- Lu, G.; Zakharenkova, I.; Cherniak, I.; Dang, T. Large-Scale Ionospheric Disturbances During the 17 March 2015 Storm: A Model-Data Comparative Study. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027726. [Google Scholar] [CrossRef]
- Qian, L.; Burns, A.G.; Emery, B.A.; Foster, B.; Lu, G.; Maute, A.; Richmond, A.D.; Roble, R.G.; Solomon, S.C.; Wang, W. The NCAR TIE-GCM. In Modeling the Ionosphere–Thermosphere System; Huba, J., Schunk, R., Khazanov, G., Eds.; AGU Publications: Malden, MA, USA, 2014. [Google Scholar] [CrossRef]
- Huang, C.; Xu, J.-Y.; Zhang, X.-X.; Liu, D.-D.; Yuan, W.; Jiang, G.-Y. Mid-latitude thermospheric wind changes during the St. Patrick’s Day storm of 2015 observed by two Fabry-Perot interferometers in China. Adv. Space Res. 2018, 61, 1873–1879. [Google Scholar] [CrossRef]
- Drob, D.P.; Emmert, J.T.; Crowley, G.; Picone, J.M.; Shepherd, G.G.; Skinner, W.; Hays, P.; Niciejewski, R.J.; Larsen, M.; She, C.Y.; et al. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berényi, K.A.; Barta, V.; Szárnya, C.; Buzás, A.; Heilig, B. Subauroral and Auroral Conditions in the Mid- and Low-Midlatitude Ionosphere over Europe During the May 2024 Mother’s Day Superstorm. Remote Sens. 2025, 17, 2492. https://doi.org/10.3390/rs17142492
Berényi KA, Barta V, Szárnya C, Buzás A, Heilig B. Subauroral and Auroral Conditions in the Mid- and Low-Midlatitude Ionosphere over Europe During the May 2024 Mother’s Day Superstorm. Remote Sensing. 2025; 17(14):2492. https://doi.org/10.3390/rs17142492
Chicago/Turabian StyleBerényi, Kitti Alexandra, Veronika Barta, Csilla Szárnya, Attila Buzás, and Balázs Heilig. 2025. "Subauroral and Auroral Conditions in the Mid- and Low-Midlatitude Ionosphere over Europe During the May 2024 Mother’s Day Superstorm" Remote Sensing 17, no. 14: 2492. https://doi.org/10.3390/rs17142492
APA StyleBerényi, K. A., Barta, V., Szárnya, C., Buzás, A., & Heilig, B. (2025). Subauroral and Auroral Conditions in the Mid- and Low-Midlatitude Ionosphere over Europe During the May 2024 Mother’s Day Superstorm. Remote Sensing, 17(14), 2492. https://doi.org/10.3390/rs17142492