Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = extreme El Niño frequency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 180
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 3828 KiB  
Article
Hydroclimatic Variability of the Grey River Basin (Chilean Patagonia): Trends and Relationship with Large-Scale Climatic Phenomena
by Patricio Fuentes-Aguilera, Lien Rodríguez-López, Luc Bourrel and Frederic Frappart
Water 2025, 17(13), 1895; https://doi.org/10.3390/w17131895 - 26 Jun 2025
Viewed by 529
Abstract
This study investigated the influence of long-term climatic phenomena on the hydroclimatic dynamics of the Grey River Basin in Chilean Patagonia. By analyzing hydroclimatological datasets from the last four decades (1980 to 2020), including precipitation, temperature, wind speed, potential evapotranspiration, and streamflow, we [...] Read more.
This study investigated the influence of long-term climatic phenomena on the hydroclimatic dynamics of the Grey River Basin in Chilean Patagonia. By analyzing hydroclimatological datasets from the last four decades (1980 to 2020), including precipitation, temperature, wind speed, potential evapotranspiration, and streamflow, we identified key trends and correlations with three large-scale climate indices: the Antarctic Oscillation (AAO), El Niño—Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). Statistical methods such as the Mann–Kendall test, Sen’s slope, PCA, and wavelet coherence were applied. The results indicate a significant upward trend in streamflow, with Sen’s slope of 0.710 m3/s/year (p-value = 0.020), particularly since 2002, while other variables showed limited or no significant trends. AAO exhibited the strongest correlations with streamflow and wind speed, while ENSO 3.4 was the most influential ENSO index, especially during the two extreme El Niño events in 1982, 1997, and 2014. PDO showed weaker relationships overall. Wavelet analysis revealed coherent periodicities at 1- and 2-year frequencies between AAO and flow (wavelet coherence = 0.44), and at 2- to 4-year intervals between ENSO and precipitation (wavelet coherence = 0.63). These findings highlight the sensitivity of the Grey River basin to climatic variability and reinforce the need for integrated water resource management in the face of ongoing climate change. Full article
Show Figures

Figure 1

23 pages, 6710 KiB  
Article
Extreme Precipitation Dynamics and El Niño–Southern Oscillation Influences in Kathmandu Valley, Nepal
by Deepak Chaulagain, Ram Lakhan Ray, Abdulfati Olatunji Yakub, Noel Ngando Same, Jaebum Park, Anthony Fon Tangoh, Jong Wook Roh, Dongjun Suh, Jeong-Ok Lim and Jeung-Soo Huh
Water 2025, 17(9), 1397; https://doi.org/10.3390/w17091397 - 6 May 2025
Viewed by 1104
Abstract
Understanding historical climatic extremes and variability is crucial for effective climate change adaptation, particularly for urban flood management in developing countries. This study investigates historical precipitation trends in the Kathmandu Valley, Nepal, focusing on precipitation frequency, intensity, and the influence of the El [...] Read more.
Understanding historical climatic extremes and variability is crucial for effective climate change adaptation, particularly for urban flood management in developing countries. This study investigates historical precipitation trends in the Kathmandu Valley, Nepal, focusing on precipitation frequency, intensity, and the influence of the El Niño–Southern Oscillation (ENSO), using extreme precipitation indices and the precipitation concentration index (PCI). The results reveal sharply fluctuating short-term precipitation from 1980 to 2022, with the exception of an increasing trend during spring (1.17 mm/year) and a decreasing trend in November and December. Trends in extreme precipitation indices are mixed: RX7day shows an increasing trend of 0.1 mm/year, with decadal analysis (1980–2001 and 2002–2022) indicating similar upward patterns. In contrast, RX1day, RX3day, RX5day, and R95pTOT exhibit inconsistent trends, while R99pTOT demonstrates a decreasing trend over the full period (1980–2022). Although the number of days with precipitation ≥ 35 mm has declined, the increasing trend in 7-day maximum precipitation, coupled with no significant change in total annual precipitation and highly variable short-term rainfall, points to a rising risk of unexpected extreme precipitation events. Precipitation patterns in the Kathmandu Valley remain highly irregular across seasons, except during summer. ENSO exhibits a negative correlation with annual precipitation, extreme precipitation indices, and the PCI but shows a positive correlation with the annual and summer PCI as well as 1-day maximum precipitation, emphasizing its significant influence on precipitation variability. These findings highlight the urgent need for targeted climate adaptation strategies and provide valuable insights for hydrologists, meteorologists, policymakers, and urban planners to enhance climate resilience and improve flood management in the Kathmandu Valley. Full article
(This article belongs to the Special Issue Advances in Extreme Hydrological Events Modeling)
Show Figures

Figure 1

12 pages, 2753 KiB  
Article
A Nonstationary Daily and Hourly Analysis of the Extreme Rainfall Frequency Considering Climate Teleconnection in Coastal Cities of the United States
by Lei Yan, Yuhan Zhang, Mengjie Zhang and Upmanu Lall
Atmosphere 2025, 16(1), 75; https://doi.org/10.3390/atmos16010075 - 11 Jan 2025
Cited by 2 | Viewed by 931
Abstract
The nonstationarity of extreme precipitation is now well established in the presence of climate change and low-frequency variability. Consequently, the implications for urban flooding, for which there are not long flooding records, need to be understood better. The vulnerability is especially high in [...] Read more.
The nonstationarity of extreme precipitation is now well established in the presence of climate change and low-frequency variability. Consequently, the implications for urban flooding, for which there are not long flooding records, need to be understood better. The vulnerability is especially high in coastal cities, where the flat terrain and impervious cover present an additional challenge. In this paper, we estimate the time-varying probability distributions for hourly and daily extreme precipitation using the Generalized Additive Model for Location Scale and Shape (GAMLSS), employing different climate indices, such as Atlantic Multi-Decadal Oscillation (AMO), the El Niño 3.4 SST Index (ENSO), Pacific Decadal Oscillation (PDO), the Western Hemisphere Warm Pool (WHWP) and other covariates. Applications to selected coastal cities in the USA are considered. Overall, the AMO, PDO and WHWP are the dominant factors influencing the extreme rainfall. The nonstationary model outperforms the stationary model in 92% of cases during the fitting period. However, in terms of its predictive performance over the next 5 years, the ST model achieves a higher log-likelihood in 86% of cases. The implications for the time-varying design rainfall in coastal areas are considered, whether this corresponds to a structural design or the duration of a contract for a financial instrument for risk securitization. The opportunity to use these time-varying probabilistic models for adaptive flood risk management in a coastal city context is discussed. Full article
Show Figures

Figure 1

18 pages, 4767 KiB  
Article
Analysis of ENSO Event Intensity Changes and Time–Frequency Characteristic Since 1875
by Yansong Chen, Chengyi Zhao and Hai Zhi
Atmosphere 2024, 15(12), 1428; https://doi.org/10.3390/atmos15121428 - 27 Nov 2024
Cited by 1 | Viewed by 2323
Abstract
This study investigates the characteristics and intensity of El Niño–Southern Oscillation (ENSO) events from January 1875 to December 2023, employing an advanced method for intensity determination based on various ENSO indices defined as a continuous five-month period with temperatures exceeding 0.5 °C for [...] Read more.
This study investigates the characteristics and intensity of El Niño–Southern Oscillation (ENSO) events from January 1875 to December 2023, employing an advanced method for intensity determination based on various ENSO indices defined as a continuous five-month period with temperatures exceeding 0.5 °C for warm events or falling below −0.5 °C for cold events. A total of 40 warm and 41 cold events were identified, with further classification revealing seven extreme warm events and five extreme cold events. The analysis shows a positive skewness in frequency distribution, indicating a predominance of strong warm events. The primary mode of variability is found to be interannual oscillation in the 3–8 year range, with significant decadal oscillations in the 10–16 year range. This study highlights the importance of methodological rigor in evaluating ENSO dynamics, contributing to a more comprehensive understanding of climate variability and offering a reliable framework for future research. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 3244 KiB  
Article
Characteristics of Meteorological Drought Evolution in the Yangtze River Basin
by Wenchuan Bai, Cicheng Zhang, Xiong Xiao, Ziying Zou, Zelin Liu, Peng Li, Jiayi Tang, Tong Li, Xiaolu Zhou and Changhui Peng
Water 2024, 16(23), 3391; https://doi.org/10.3390/w16233391 - 25 Nov 2024
Cited by 2 | Viewed by 1185
Abstract
Amid global climate change, recurrent drought events pose significant challenges to regional water resource management and the sustainability of socio-economic growth. Thus, understanding drought characteristics and regional development patterns is essential for effective drought monitoring, prediction, and the creation of robust adaptation strategies. [...] Read more.
Amid global climate change, recurrent drought events pose significant challenges to regional water resource management and the sustainability of socio-economic growth. Thus, understanding drought characteristics and regional development patterns is essential for effective drought monitoring, prediction, and the creation of robust adaptation strategies. Most prior research has analyzed drought events independently in spatial and temporal dimensions, often overlooking their dynamic nature. In this study, we employ a three-dimensional methodology that accounts for spatiotemporal continuity to identify and extract meteorological drought events based on a 3-month standardized precipitation evapotranspiration index (SPEI3). Measured by the SPEI3 index, the incidence of drought increased in the middle part of the basin, especially in some parts of Sichuan and Yunnan province, and the frequency of drought events decreased in the upper reaches. We evaluate drought events within the Yangtze River basin from 1980 to 2016 by examining five variables: chronology, extent, severity, duration, and epicenter locations. The results show that a total of 97 persisting drought events lasting at least 3 months have been identified in Yangtze River basin. Most events have a duration between 4 and 7 months. The findings indicate that while the number of drought events in the Yangtze River basin has remained unchanged, the intensity, duration, and severity of these events have shown a slight increase from 1980 to 2016. The drought events gradually moved from the western and southeastern parts of the basin to the central region. The most severe drought event occurred between January 2011 and October 2011, with a duration of 10 months and an affected area of 0.94 million km2, impacting over fifty percent of the basin. Changes in wetness and dryness in the Yangtze River basin are closely related to El Niño/Southern Oscillation (ENSO) events, with a positive correlation between the intensity of cold events and the probability of extreme drought. This study enhances our understanding of the dynamics and evolution of drought events in the Yangtze River basin, providing crucial insights for better managing water resources and developing effective adaptation strategies. Full article
Show Figures

Figure 1

24 pages, 4625 KiB  
Article
Extreme Temperature Index in China from a Statistical Perspective: Change Characteristics and Trend Analysis from 1961 to 2021
by Xulei Wang, Lifeng Wu and Huiying Liu
Atmosphere 2024, 15(11), 1398; https://doi.org/10.3390/atmos15111398 - 20 Nov 2024
Cited by 1 | Viewed by 1169
Abstract
Against the backdrop of intensified global climate change, the frequency and intensity of extreme weather events in mainland China continue to rise due to its unique topography and complex climate types. In-depth research on the trends and impacts of climate extremes can help [...] Read more.
Against the backdrop of intensified global climate change, the frequency and intensity of extreme weather events in mainland China continue to rise due to its unique topography and complex climate types. In-depth research on the trends and impacts of climate extremes can help develop effective adaptation and mitigation strategies to protect the environment and enhance social resilience. In this research, temperature data from 2029 meteorological stations for the period 1961–2021 were used to study 15 extreme temperature indices and 3 extreme composite temperature indices. Linear propensity estimation and the Mann–Kendall test were applied to analyze the spatial and temporal variations in extreme temperatures in China, and Pearson’s correlation analysis was used to reveal the relationship between these indices and atmospheric circulation. The results show that in the past 60 years, the extreme temperature index in China has shown a trend of decreasing low-temperature events and increasing high-temperature events; in particular, the increase in warm nights is significantly higher than that of warm days. In terms of spatial distribution, daily maximum temperature less than the 10th percentile (TX10P) and daily minimum temperature greater than the 90th percentile (TN90P) increased significantly in the warm temperate sub-humid (WTSH) region, north subtropical humid (NSH) region, and marginal tropical humid (MTH) region, whereas frost days (FD0) and diurnal temperature range (DTR) decreased significantly. In the extreme composite temperature index, extreme temperature range (ETR) showed a downward trend, while compound heatwave (CHW) and compound heatwave and relative humidity (CHW-RH20) increased, with the latter mainly concentrated in the WTSH and NSH regions. Correlation analysis with climate oscillation shows that Arctic Oscillation (AO), Atlantic Multiannual Oscillation (AMO), and El Niño–Southern Oscillation (ENSO) are positively correlated with extremely high temperatures, whereas North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) are negatively correlated. Full article
(This article belongs to the Special Issue Climate Change and Regional Sustainability in Arid Lands)
Show Figures

Figure 1

20 pages, 1092 KiB  
Article
Seasonal, Decadal, and El Niño-Southern Oscillation-Related Trends and Anomalies in Rainfall and Dry Spells during the Agricultural Season in Central Malawi
by Medrina Linda Mloza Banda, Wim Cornelis and Henry R. Mloza Banda
Geographies 2024, 4(3), 563-582; https://doi.org/10.3390/geographies4030030 - 22 Aug 2024
Cited by 1 | Viewed by 1386
Abstract
As governments continue to address climate change when formulating policy, there remains a need to determine if such a change exists in the historical record to inform clear indices for monitoring the present climate for site-specific interventions. This study characterised trends and anomalies [...] Read more.
As governments continue to address climate change when formulating policy, there remains a need to determine if such a change exists in the historical record to inform clear indices for monitoring the present climate for site-specific interventions. This study characterised trends and anomalies in rainfall and dry spells, providing local information often projected from satellites or regional data in data-scarce regions. From 1961 to 2007, daily rainfall records in Central Malawi were used to calculate indices for low-(Balaka), medium-(Bunda, Chitedze, KIA), and high-altitude (Dedza) sites, which were then subjected to Mann–Kendall’s, Cramer’s, and Spearman-Rho’s trend tests. Significant decreasing trends in terms of wet days and growing season length were evident across locations. Seasonal and extreme rainfall, dry spells, and inter-seasonal and near-decadal anomalies were not consistently or inevitably significant. Unexpectedly, rainfall anomalies were largest in Bunda and KIA, which have mild climatic regimes, while the lowest were in Balaka, a rainfall-averse zone. The relationship between El Niño-Southern Oscillation (ENSO) and extreme rainfall and dry spell events did not reach statistical significance. In conclusion, extreme precipitation and dry spell events show varied intensities and proportions rather than increased frequency. The disparate results largely justify the need for in-depth local-scale assessments for agroclimatic applications. Full article
Show Figures

Figure 1

27 pages, 21745 KiB  
Article
Semi-Arid to Arid Scenario Shift: Is the Cabrobó Desertification Nucleus Becoming Arid?
by José Lucas Pereira da Silva, Francisco Bento da Silva Junior, João Pedro Alves de Souza Santos, Alexsandro Claudio dos Santos Almeida, Thieres George Freire da Silva, José Francisco de Oliveira-Júnior, George do Nascimento Araújo Júnior, Christopher Horvath Scheibel, Jhon Lennon Bezerra da Silva, João Luís Mendes Pedroso de Lima and Marcos Vinícius da Silva
Remote Sens. 2024, 16(15), 2834; https://doi.org/10.3390/rs16152834 - 2 Aug 2024
Cited by 3 | Viewed by 2319
Abstract
Monitoring areas susceptible to desertification contributes to the strategic development of regions located in environments of extreme hydric and social vulnerability. Therefore, the objective of this study is to evaluate the process of soil degradation in the Desertification Nucleus of Cabrobó (DNC) over [...] Read more.
Monitoring areas susceptible to desertification contributes to the strategic development of regions located in environments of extreme hydric and social vulnerability. Therefore, the objective of this study is to evaluate the process of soil degradation in the Desertification Nucleus of Cabrobó (DNC) over the past three decades using remote sensing techniques. This study used primary climatic data from TerraClimate, geospatial data of land use and land cover (LULC), and vegetation indices (SAVI and LAI) via Google Earth Engine (GEE) from Landsat 5/TM and 8/OLI satellites, and established the aridity index (AI) from 1992 to 2022. The results indicated 10 predominant LULC classes with native vegetation suppression, particularly in agriculture and urbanization. SAVI ranged from −0.84 to 0.90, with high values influenced by La Niña episodes and increased rainfall; conversely, El Niño episodes worsened the rainfall regime in the DNC region. Based on the Standardized Precipitation Index (SPI), it was possible to correlate normal and severe drought events in the DNC with years under the influence of El Niño and La Niña phases. In summary, the AI images indicated that the DNC remained semi-arid and that the transition to an arid region is a cyclical and low-frequency phenomenon, occurring in specific periods and directly influenced by El Niño and La Niña phenomena. The Mann–Kendall analysis showed no increasing trend in AI, with a Tau of −0.01 and a p-value of 0.97. During the analyzed period, there was an increase in Non-Vegetated Areas, which showed a growing trend with a Tau of 0.42 in the Mann–Kendall analysis, representing exposed soil areas. Annual meteorological conditions remained within the climatic pattern of the region, with annual averages of precipitation and actual evapotranspiration (ETa) close to 450 mm and an average temperature of 24 °C, showing changes only during El Niño and La Niña events, and did not show significant increasing or decreasing trends in the Mann–Kendall analysis. Full article
Show Figures

Figure 1

17 pages, 10295 KiB  
Article
Interannual Fluctuations and Their Low-Frequency Modulation of Summertime Heavy Daily Rainfall Potential in Western Japan
by Takashi Mochizuki
Atmosphere 2024, 15(7), 814; https://doi.org/10.3390/atmos15070814 - 7 Jul 2024
Cited by 1 | Viewed by 1441
Abstract
Heavy rainfall under the conditions of the changing climate has recently garnered considerable attention. The statistics on heavy daily rainfall offer vital information for assessing present and future extreme events and for clarifying the impacts of global climate variability and change, working to [...] Read more.
Heavy rainfall under the conditions of the changing climate has recently garnered considerable attention. The statistics on heavy daily rainfall offer vital information for assessing present and future extreme events and for clarifying the impacts of global climate variability and change, working to form a favorable background. By analyzing a set of large-ensemble simulations using a global atmospheric model, this study demonstrated that two different physical processes in global climate variability control the interannual fluctuations in the 99th- and 90th-percentile values of summertime daily rainfall (i.e., the potential amounts) on Kyushu Island in western Japan. The 90th-percentile values were closely related to large-scale horizontal moisture transport anomalies due to changes in the subtropical high in the northwestern Pacific, which was usually accompanied by basin-scale warming in the Indian Ocean subsequent to the wintertime El Niño events. The contributions of the sea surface temperatures over the northern Indian Ocean and the eastern tropical Pacific Ocean showed low-frequency modulations, mainly due to the influences of the global warming tendency and the interdecadal variability in the climate system, respectively. In contrast, tropical cyclone activity played a major role in changing the 99th-percentile value. The potentials of both the tropical cyclone intensity and the existence density fluctuated, largely owing to the summertime sea surface temperature over the tropical Pacific, which can be modulated by the El Niño diversity on interdecadal timescales. Full article
Show Figures

Figure 1

28 pages, 2875 KiB  
Article
Ocean Surface Warming and Long-Term Variability in Rainfall in Equatorial Pacific Atolls
by Ian White, Tony Falkland and Farran Redfern
Atmosphere 2024, 15(6), 666; https://doi.org/10.3390/atmos15060666 - 31 May 2024
Viewed by 933
Abstract
Freshwater availability in Pacific equatorial atolls is highly variable because of the influence of El Niño–Southern Oscillation (ENSO) on rainfall. IPCC projections for the central and western tropical Pacific suggest annual rainfall (Pa) will increase as sea surface temperature (SST) rises. [...] Read more.
Freshwater availability in Pacific equatorial atolls is highly variable because of the influence of El Niño–Southern Oscillation (ENSO) on rainfall. IPCC projections for the central and western tropical Pacific suggest annual rainfall (Pa) will increase as sea surface temperature (SST) rises. Future changes in ENSO frequency and intensity and in hydrological droughts, however, are uncertain. Here, trends in monthly, seasonal, annual, annual maximum, and minimum rainfall in two equatorial atolls in the eastern and central tropical Pacific are compared with trends in the SST of the surrounding Nino regions from 1951 to 2023. Significant increasing trends in the warm season, annual, and annual maximum SST in the Nino1 + 2, Nino3, and Nino4 regions were of order +1.0 °C/100 y. There were no significant trends in the cool season or annual minimum SST. Despite ocean warming, there were no significant trends in atoll Pa, in intra-annual or interannual variability over 7 decades for either SST or Pa, or in the relative strengths of warm/cool and wet/dry seasons. Extreme, large Pa only occurred after 1987, indicative of ocean warming. Extreme, small Pa happened throughout the period, suggesting no change in drought frequency. Correlations between 12-month P and SST were very strong, with historic rates of increases in Pa of around 1200 mm/y/°C, consistent with projections. The results indicate that the recharge of atoll groundwater will increase as oceans warm, but droughts will remain a major challenge. Full article
(This article belongs to the Special Issue The Impact of Climate Change on Water Resources)
Show Figures

Figure 1

24 pages, 8376 KiB  
Article
Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananeia–Iguape Coastal System, Southeast Region of Brazil
by Jakeline Baratto, Paulo Miguel de Bodas Terassi, Nádia Gilma de Beserra de Lima and Emerson Galvani
Climate 2024, 12(2), 22; https://doi.org/10.3390/cli12020022 - 5 Feb 2024
Cited by 4 | Viewed by 3212
Abstract
The objective of this research is to select the best orbital sensor for rainfall estimates (monthly and annual scales) and to analyze the frequency and magnitude of extreme rainfall events and their trends and disruptions based on the use of satellite rainfall product [...] Read more.
The objective of this research is to select the best orbital sensor for rainfall estimates (monthly and annual scales) and to analyze the frequency and magnitude of extreme rainfall events and their trends and disruptions based on the use of satellite rainfall product data for the Cananeia–Iguape Coastal System (CICS). Data from four satellite rainfall products were used to identify the correspondence with seven points on the surface of the study area. Statistical metrics were used to identify the best satellite rainfall product. After identifying the sensor with the best performance in estimating orbital precipitation, extreme events were identified by the Standardized Precipitation Index (SPI) on a one-month (SPI-1), three-month (SPI-3), and twelve-month (SPI-12) scale. Trend and rupture detection in the time series were performed using different statistical techniques (Mann–Kendall, Pettitt, Standard Normal Homogeneity Test, or Buishand test). Among the satellite rainfall products, CHIRPS had the best measurements for the analyzed points on the surface. The year 1983 was characterized as very rainy, also marked by the occurrence of El Niño, and was marked by the rupture of the rains at all points (IDs 1, 2, 3, 4, 5, 6, and 7) analyzed in the month of June. The decrease in monthly rainfall was more significant in the months of February (at points IDs 1, 2, 3, 5, and 7) and April (IDs 1, 3, 5, and 7). Decreased rainfall may cause CICS mangrove shrinkage. These results showed the importance of studying rainfall in an area with mangroves in order to understand the dynamics of vegetation in the face of climate change. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

18 pages, 7976 KiB  
Article
Spatial and Temporal Variability Characteristics and Driving Factors of Extreme Precipitation in the Wei River Basin
by Yingdong Yu, Mengran Wang, Zihua Liu and Tong Liu
Water 2024, 16(2), 217; https://doi.org/10.3390/w16020217 - 8 Jan 2024
Cited by 2 | Viewed by 1786
Abstract
As global climate change intensifies, the global atmospheric circulation process is undergoing significant changes, and the local water vapor pattern has also changed. This study takes the Wei River Basin as the research area. Firstly, an evaluation index system for extreme precipitation was [...] Read more.
As global climate change intensifies, the global atmospheric circulation process is undergoing significant changes, and the local water vapor pattern has also changed. This study takes the Wei River Basin as the research area. Firstly, an evaluation index system for extreme precipitation was established, and the time-series characteristics of the magnitude, frequency, and duration of extreme precipitation were analyzed. Statistical methods were used to analyze the non-consistency in time-series changes in extreme precipitation indicators. Using spatial heterogeneity analysis methods, the spatial variation differences in extreme precipitation in the Wei River Basin were identified. This study selected the El Niño-Southern Oscillation (ENSO) index, global land-ocean temperature index (LOTI), and land surface temperature (LST) index to quantitatively evaluate the impact of climate change on regional extreme precipitation and analyzed the correlation between temperature and extreme precipitation, identifying the key driving factors of extreme precipitation changes. The conclusions of this study are as follows: (1) The southern region of the Wei River Basin experiences more frequent and intense precipitation events, while the northern region experiences relatively few. (2) From 1981 to 2021, the intensity, frequency, and duration of precipitation events in the Wei River Basin gradually increased, with the most significant increase in extreme precipitation in the Guanzhong Plain. (3) Global climate change has an important impact on precipitation events in the Wei River Basin. The increase in the ENSO, LOTI, and LST indices may indicate an increase in the probability of drought and flood events in the Wei River Basin. The relationships between extreme precipitation and temperature present a peak structure. This conclusion is helpful to better understand the impact of climate change on extreme precipitation in the Wei River Basin and provides some support for the response to extreme meteorological events under the background of future climate change. Full article
Show Figures

Figure 1

24 pages, 4446 KiB  
Article
Spatiotemporal Analysis of Extreme Rainfall and Meteorological Drought Events over the Angat Watershed, Philippines
by Allan T. Tejada, Patricia Ann J. Sanchez, Francis John F. Faderogao, Catherine B. Gigantone and Roger A. Luyun
Atmosphere 2023, 14(12), 1790; https://doi.org/10.3390/atmos14121790 - 5 Dec 2023
Cited by 8 | Viewed by 5093
Abstract
Understanding the spatiotemporal distribution of extreme rainfall and meteorological drought on a watershed scale could be beneficial for local management of any water resources system that supports dam operation and river conservation. This study considered the watershed of Angat as a case, given [...] Read more.
Understanding the spatiotemporal distribution of extreme rainfall and meteorological drought on a watershed scale could be beneficial for local management of any water resources system that supports dam operation and river conservation. This study considered the watershed of Angat as a case, given its economic importance in the Philippines. A series of homogeneity tests were initially conducted on each rainfall dataset from monitoring stations in and near the watershed, followed by trend analysis to determine the rate and direction of change in the annual and seasonal rainfall extreme indices in terms of intensity, duration, and frequency. Three indices, using the rainfall deviation method (%DEV), percent of normal rainfall index (PNRI), and Standardized Precipitation Index (SPI), were also used to identify meteorological drought events. Generally, rainfall in the watershed has an increasing annual PCPTOT (4–32 mm/year), with increasing frequency and intensity in heavy rainfall and wet days. A significant increasing trend (α = 5%) in the seasonal PCPTOT (7–65 mm/year) and R10mm (1.7–10.0 days/decade) was particularly observed in all stations during the Amihan Monsoon Season (Dec–Feb). The observed increasing rainfall intensity and frequency, if it continues in the future, could have an implication both for the water resources operation to satisfy the multiple objectives of Angat Reservoir and for the flood operation that prevents damage in the downstream areas. The effect of each ENSO (El Niño- Southern Oscillation) phase on the rainfall is unique in magnitude, intensity, and duration. The seasonal reversal of the ENSO in the extreme rainfall and meteorological drought signals in Angat Watershed was also evident. The identified meteorological drought events in the watershed based on SPI-12 persisted up to 12–33 months, could reduce more than 60% (PNRI < 40%) of the normal rainfall. Insights from the study have implications for the hydrology of the watershed that should be considered for the water resources management of the Angat Reservoir. Full article
Show Figures

Figure 1

28 pages, 25499 KiB  
Article
Analysis of Extreme Precipitation Variation Characteristics and the Influencing Factors in the Yunnan-Guizhou Plateau Region, China
by Hongbo Zhang, Runyun Zhang, Qin Ju, Gong Kong, Yina Xie, Jufang He and Yonghui Huang
Sustainability 2023, 15(20), 14735; https://doi.org/10.3390/su152014735 - 11 Oct 2023
Cited by 6 | Viewed by 1678
Abstract
The increase of extreme precipitation (EP) frequency and the aggravation of disasters have seriously disrupted the normal economic and social development of human beings. The complex topography of the Yunnan-Guizhou Plateau region (YGPR) and the fact that moisture originates from two different directions, [...] Read more.
The increase of extreme precipitation (EP) frequency and the aggravation of disasters have seriously disrupted the normal economic and social development of human beings. The complex topography of the Yunnan-Guizhou Plateau region (YGPR) and the fact that moisture originates from two different directions, the Pacific Ocean and the Indian Ocean, make the mechanism of EP more complicated. Exploring the variation characteristics and influencing factors of EP in YGPR is of great significance for regional disaster prevention and mitigation and water resources management. In this study, 11 extreme precipitation indices (EPIs) defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) were calculated based on daily precipitation data of 1960–2020 from 83 national meteorological stations in the study area. The Mann–Kendall test and Wavelet analysis were used to analyze the variation characteristics of EP and explore the influence mechanisms of geographical factors and atmospheric circulation on EP in the spatial and temporal perspective. The conclusions are as follows: (1) The EP of the study area has an overall increasing trend in the research period, with the increase of persistent dry days, the precipitation concentration, intensity, and extreme heavy precipitation (EHP); (2) It shows the obvious spatial difference in the study area, with the high-value areas of extreme drought (ED) in the northwestern region and the total annual precipitation, EHP, and intensity in the southeastern region. In addition, ED and EHP tends to increase in the western region of the study area as well as in the middle east and southeast; (3) EHP is significantly positively correlated with longitude and highly negatively with latitude. Meanwhile, EHP shows a correlation with altitude (negative at low altitude and positive at high altitude); (4) The degree of drought change is greatly affected by North Atlantic Oscillation/El Niño-Southern Oscillation (ENSO) events. The variation of extreme heavy precipitation is greatly influenced by the summer monsoon of South Asian, East Asian, and South China Sea; (5) All the EPIs show persistence. The study results can contribute to the understanding of EP variation in the study area and provide some scientific references for regional water resource management, meteorological warning, and agricultural production safeguard. Full article
Show Figures

Figure 1

Back to TopTop