Hydroclimatic Variability of the Grey River Basin (Chilean Patagonia): Trends and Relationship with Large-Scale Climatic Phenomena
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydroclimatic Data
2.3. Climate Indices
2.3.1. Antarctic Oscillation Index (AAO)
2.3.2. El Niño—Southern Oscillation Index (ENSO)
El Niño 1 + 2 Sea Surface Temperature Index (ENSO)
El Niño 3 Sea Surface Temperature Index (ENSO)
El Niño 3.4 Sea Surface Temperature Index
El Niño 4 Sea Surface Temperature Index
2.3.3. Pacific Decadal Oscillation Index (PDO)
2.4. Statistical Analysis
2.4.1. Trend Analysis
2.4.2. Correlation Analysis
2.5. Principal Component Analysis (PCA)
2.6. Time-Varying Correlation
2.7. Wavelet and Coherence Analysis
3. Results
3.1. Analysis of Hydroclimatic Variables
3.2. Trends in Hydroclimatic Variables
3.3. Relationship Between Hydroclimatic Variables and Major Climate Phenomena
3.3.1. Correlation Analysis
3.3.2. Principal Component Analysis (PCA)
3.3.3. Time-Varying Correlation Between Climate Indices
3.3.4. Wavelet Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schäffer, A.; Groh, K.J.; Sigmund, G.; Azoulay, D.; Backhaus, T.; Bertram, M.G.; Carney Almroth, B.; Cousins, I.T.; Ford, A.T.; Grimalt, J.O.; et al. Conflicts of Interest in the Assessment of Chemicals, Waste, and Pollution. Environ. Sci. Technol. 2023, 57, 19066–19077. [Google Scholar] [CrossRef] [PubMed]
- Afifa; Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air Pollution and Climate Change as Grand Challenges to Sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Kühnel, D.; Materić, D.; Stubenrauch, J.; Schubert, K.; Luo, A.; Wendt-Potthoff, K.; Jahnke, A. A Multidisciplinary Perspective on the Role of Plastic Pollution in the Triple Planetary Crisis. Environ. Int. 2024, 193, 109059. [Google Scholar] [CrossRef]
- Bachmann, M.; Zibunas, C.; Hartmann, J.; Tulus, V.; Suh, S.; Guillén-Gosálbez, G.; Bardow, A. Towards Circular Plastics within Planetary Boundaries. Nat. Sustain. 2023, 6, 599–610. [Google Scholar] [CrossRef]
- Mahmood, A.; Farooq, A.; Akbar, H.; Ghani, H.U.; Gheewala, S.H. An Integrated Approach to Analyze the Progress of Developing Economies in Asia toward the Sustainable Development Goals. Sustainability 2023, 15, 13645. [Google Scholar] [CrossRef]
- Ihsan, F.R.; Bloomfield, J.G.; Monrouxe, L.V. Triple Planetary Crisis: Why Healthcare Professionals Should Care. Front. Med. 2024, 11, 1465662. [Google Scholar] [CrossRef]
- Rezapouraghdam, H.; Hidalgo-Garcia, D.; Karatepe, O.M. Rising Temperatures and Sinking Hopes: An in-Depth Analysis of the Interplay between Climate Change, Land Use Patterns, and the Desiccation of a Global Biosphere Reserve. Environ. Dev. 2024, 52, 101084. [Google Scholar] [CrossRef]
- Balaram, V. Combating Climate Change and Global Warming for a Sustainable Living in Harmony with Nature. J. Geogr. Res. 2023, 6, 1–17. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Revich, B.A. The significance of green spaces for protecting health of urban population. Health Risk Anal. 2023, 2, 168–185. [Google Scholar] [CrossRef]
- Kreibich, H.; Van Loon, A.F.; Schröter, K.; Ward, P.J.; Mazzoleni, M.; Sairam, N.; Abeshu, G.W.; Agafonova, S.; AghaKouchak, A.; Aksoy, H.; et al. The Challenge of Unprecedented Floods and Droughts in Risk Management. Nature 2022, 608, 80–86. [Google Scholar] [CrossRef]
- Susmaa, K.S.; Jeni, J.M.; Prasanna, A.; Manikandavelu, D.; Sona, B.R.; Masilan, K.; Mahalakshmi, B. Exploring the Vital Role of Coral Disease in Coral Reef Sustainability: A Comprehensive Analysis. Asian J. Environ. Ecol. 2024, 23, 32–43. [Google Scholar] [CrossRef]
- Wudil, A.H.; Usman, M.; Rosak-Szyrocka, J.; Pilař, L.; Boye, M. Reversing Years for Global Food Security: A Review of the Food Security Situation in Sub-Saharan Africa (SSA). Int. J. Environ. Res. Public Health 2022, 19, 14836. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; pp. 175–312. [Google Scholar]
- Panez, A.; Mansilla-Quiñones, P.; Olea Peńaloza, J. The Struggle for Water as a Source for Territorial Re-Existence in Chile: Rethinking the Agrarian Question in Latin America. Lat. Am. Perspect. 2024, 51, 163–183. [Google Scholar] [CrossRef]
- Jódar, J.; Urrutia, J.; Herrera, C.; Custodio, E.; Martos-Rosillo, S.; Lambán, L.J. The Catastrophic Effects of Groundwater Intensive Exploitation and Megadrought on Aquifers in Central Chile: Global Change Impact Projections in Water Resources Based on Groundwater Balance Modeling. Sci. Total Environ. 2024, 914, 169651. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Pablo Boisier, J.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 Megadrought in Central Chile: Impacts on Regional Hydroclimate and Vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Álamos, N.; Alvarez-Garreton, C.; Muñoz, A.; González-Reyes, Á. The Influence of Human Activities on Streamflow Reductions during the Megadrought in Central Chile. Hydrol. Earth Syst. Sci. 2024, 28, 2483–2503. [Google Scholar] [CrossRef]
- Salas-Bravo, S.; Araya-Piñones, A. Climate Change and Adaptive Capacity in the Community of Diaguitas, Chile: A Descriptive-Comparative Vision in Two Time Periods. Water Policy 2024, 26, 773–792. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.; Jeong, H.; An, H. Quantitatively Defining Megadrought Based on Drought Events in Central Chile. Geomat. Nat. Hazards Risk 2022, 13, 975–992. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Pablo Boisier, J.; Garreaud, R.; Seibert, J.; Vis, M. Progressive Water Deficits during Multiyear Droughts in Basins with Long Hydrological Memory in Chile. Hydrol. Earth Syst. Sci. 2021, 25, 429–446. [Google Scholar] [CrossRef]
- Peña-Guerrero, M.D.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought Impacts on Water Quality and Potential Implications for Agricultural Production in the Maipo River Basin, Central Chile. Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef]
- Barra, R.O.; Chiang, G.; Saavedra, M.F.; Orrego, R.; Servos, M.R.; Hewitt, L.M.; McMaster, M.E.; Bahamonde, P.; Tucca, F.; Munkittrick, K.R. Endocrine Disruptor Impacts on Fish From Chile: The Influence of Wastewaters. Front. Endocrinol. 2021, 12, 611281. [Google Scholar] [CrossRef] [PubMed]
- Bopp, C.; Engler, A.; Jordan, C.; Jara-Rojas, R. What Is behind Water User Satisfaction with Irrigation Organizations’ Performance? An Empirical Analysis under Different Water Scarcity Conditions. Agric. Water Manag. 2024, 304, 109072. [Google Scholar] [CrossRef]
- Santiago, C.M.; Díaz, P.R.; Morales-Salinas, L.; Betancourt, L.P.; Fernández, L.O. Practices and Strategies for Adaptation to Climate Variability in Family Farming. An Analysis of Cases of Rural Communities in the Andes Mountains of Colombia and Chile. Agriculture 2021, 11, 1096. [Google Scholar] [CrossRef]
- Perez-Silva, R.; Castillo, M. Taking Advantage of Water Scarcity? Concentration of Agricultural Land and the Politics behind Water Governance in Chile. Front. Environ. Sci. 2023, 11, 1143254. [Google Scholar] [CrossRef]
- Willkofer, F.; Wood, R.R.; Ludwig, R. Assessing the Impact of Climate Change on High Return Levels of Peak Flows in Bavaria Applying the CRCM5 Large Ensemble. Hydrol. Earth Syst. Sci. 2024, 28, 2969–2989. [Google Scholar] [CrossRef]
- Cache, T.; Ramirez, J.A.; Molnar, P.; Ruiz-Villanueva, V.; Peleg, N. Increased Erosion in a Pre-Alpine Region Contrasts with a Future Decrease in Precipitation and Snowmelt. Geomorphology 2023, 436, 108782. [Google Scholar] [CrossRef]
- Manquehual-Cheuque, F.; Somos-Valenzuela, M. Climate Change Refugia for Glaciers in Patagonia. Anthropocene 2021, 33, 100277. [Google Scholar] [CrossRef]
- Bonneau, J.; Laval, B.; Mueller, D.; Hamilton, A. ArcticNet 2021 Annual Scientific Meeting Abstracts. Arct. Sci. 2022, 8, 3–152. [Google Scholar] [CrossRef]
- Jin, H.; Huang, Y.; Bense, V.F.; Ma, Q.; Marchenko, S.S.; Shepelev, V.V.; Hu, Y.; Liang, S.; Spektor, V.V.; Jin, X.; et al. Permafrost Degradation and Its Hydrogeological Impacts. Water 2022, 14, 372. [Google Scholar] [CrossRef]
- Minowa, M.; Skvarca, P.; Fujita, K. Climate and Surface Mass Balance at Glaciar Perito Moreno, Southern Patagonia. J. Clim. 2023, 36, 625–641. [Google Scholar] [CrossRef]
- Garreaud, R.D. Record-Breaking Climate Anomalies Lead to Severe Drought and Environmental Disruption in Western Patagonia in 2016. Clim. Res. 2018, 74, 217–229. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Bustos Usta, D.; Bravo Alvarez, L.; Duran-Llacer, I.; Lami, A.; Martínez-Retureta, R.; Urrutia, R. Machine Learning Algorithms for the Estimation of Water Quality Parameters in Lake Llanquihue in Southern Chile. Water 2023, 15, 1994. [Google Scholar] [CrossRef]
- Gong, D.Y.; Gao, Y.; Guo, D.; Mao, R.; Yang, J.; Hu, M.; Gao, M. Interannual Linkage between Arctic/North Atlantic Oscillation and Tropical Indian Ocean Precipitation during Boreal Winter. Clim. Dyn. 2014, 42, 1007–1027. [Google Scholar] [CrossRef]
- Zhang, K.; Qian, X.; Liu, P.; Xu, Y.; Cao, L.; Hao, Y.; Dai, S. Variation Characteristics and Influences of Climate Factors on Aridity Index and Its Association with AO and ENSO in Northern China from 1961 to 2012. Theor. Appl. Climatol. 2017, 130, 523–533. [Google Scholar] [CrossRef]
- Young, K.L.; Robert Bolton, W.; Killingtveit, Å.; Yang, D. Assessment of Precipitation and Snowcover in Northern Research Basins. Hydrol. Res. 2006, 37, 377–391. [Google Scholar] [CrossRef]
- Caloiero, T.; Caloiero, P.; Frustaci, F. Long-Term Precipitation Trend Analysis in Europe and in the Mediterranean Basin. Water Environ. J. 2018, 32, 433–445. [Google Scholar] [CrossRef]
- Sugiyama, S.; Minowa, M.; Schaefer, M. Underwater Ice Terrace Observed at the Front of Glaciar Grey, a Freshwater Calving Glacier in Patagonia. Geophys. Res. Lett. 2019, 46, 2602–2609. [Google Scholar] [CrossRef]
- Sugiyama, S.; Minowa, M.; Fukamachi, Y.; Hata, S.; Yamamoto, Y.; Sauter, T.; Schneider, C.; Schaefer, M. Subglacial Discharge Controls Seasonal Variations in the Thermal Structure of a Glacial Lake in Patagonia. Nat. Commun. 2021, 12, 6301. [Google Scholar] [CrossRef]
- Sugiyama, S.; Minowa, M.; Sakakibara, D.; Skvarca, P.; Sawagaki, T.; Ohashi, Y.; Naito, N.; Chikita, K. Thermal Structure of Proglacial Lakes in Patagonia. J. Geophys. Res. Earth Surf. 2016, 121, 2270–2286. [Google Scholar] [CrossRef]
- Medina, Y.; Muñoz, E. Analysis of the Relative Importance of Model Parameters in Watersheds with Different Hydrological Regimes. Water 2020, 12, 2376. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Hüne, M.; Haro, D.; Davis, E.; Gutiérrez, D.; Anderson, C.B.; Sabat, P. Niche Overlap in Sympatric Introduced Trout from a Southern Patagonian River: Evidence from Stomach Contents and Stable Isotope Analysis. Panam. J. Aquat. Sci. 2022, 17, 304–312. [Google Scholar] [CrossRef]
- Lafon, A.; Silva, N.; Vargas, C.A. Contribution of Allochthonous Organic Carbon across the Serrano River Basin and the Adjacent Fjord System in Southern Chilean Patagonia: Insights from the Combined Use of Stable Isotope and Fatty Acid Biomarkers. Prog. Oceanogr. 2014, 129, 98–113. [Google Scholar] [CrossRef]
- Dirección General de Aguas. Diagnóstico y Clasificación de Los Cursos de Agua Según Objetivos de Calidad: Cuenca Del Río Serrano; Dirección General de Aguas: Santiago, Chile, 2004.
- Niemeyer, H. Hoyas Hidrográficas de Chile, Duodécima Región; Dirección General de Aguas: Santiago, Chile, 1982. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Samani Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Mendoza, P.A.; Pablo Boisier, J.; Addor, N.; Galleguillos, M.; Zambrano-Bigiarini, M.; Lara, A.; Puelma, C.; Cortes, G.; Garreaud, R.; et al. The CAMELS-CL Dataset: Catchment Attributes and Meteorology for Large Sample Studies-Chile Dataset. Hydrol. Earth Syst. Sci. 2018, 22, 5817–5846. [Google Scholar] [CrossRef]
- Barría, P.; Sandoval, I.B.; Guzman, C.; Chadwick, C.; Alvarez-Garreton, C.; Díaz-Vasconcellos, R.; Ocampo-Melgar, A.; Fuster, R. Water Allocation under Climate Change: A Diagnosis of the Chilean System. Elementa 2021, 9, 00131. [Google Scholar] [CrossRef]
- Muñoz, R.C.; Falvey, M.J.; Arancibia, M.; Astudillo, V.I.; Elgueta, J.; Ibarra, M.; Santana, C.; Vásquez, C. Wind Energy Exploration over the Atacama Desert: A Numerical Model-Guided Observational Program. Bull. Am. Meteorol. Soc. 2018, 99, 2079–2092. [Google Scholar] [CrossRef]
- Tang, Y.; Duan, A. Asymmetry of the Antarctic Oscillation in Austral Autumn. Geophys. Res. Lett. 2023, 50, e2023GL105678. [Google Scholar] [CrossRef]
- Lee, D.Y.; Petersen, M.R.; Lin, W. The Southern Annular Mode and Southern Ocean Surface Westerly Winds in E3SM. Earth Space Sci. 2019, 6, 2624–2643. [Google Scholar] [CrossRef]
- Son, S.W.; Shin, J.H.; Park, H.S.; Choi, J. The Relationship Between the Zonal Index and Annular Mode Index in Reanalysis and CMIP5 Models. Asia-Pac. J. Atmos. Sci. 2022, 58, 117–126. [Google Scholar] [CrossRef]
- Nan, S.; Li, J. The Relationship between the Summer Precipitation in the Yangtze River Valley and the Boreal Spring Southern Hemisphere Annular Mode. Geophys. Res. Lett. 2003, 30, 204. [Google Scholar] [CrossRef]
- Molleda, P.; Velásquez Serra, G. El NiÑo Southern Oscillation and the Prevalence of Infectious Diseases: Review. Granja 2024, 40, 9–36. [Google Scholar] [CrossRef]
- Hanley, D.E.; Bourassa, M.A.; O’Brien, J.J.; Smith, S.R.; Spade, E.R. A Quantitative Evaluation of ENSO Indices. J. Clim. 2003, 16, 1249–1258. [Google Scholar] [CrossRef]
- Shen, L.; Mickley, L.J. Effects of El Niño on Summertime Ozone Air Quality in the Eastern United States. Geophys. Res. Lett. 2017, 44, 12543–12550. [Google Scholar] [CrossRef]
- Abtew, W.; Trimble, P. El Niño-Southern Oscillation Link to South Florida Hydrology and Water Management Applications. Water Resour. Manag. 2010, 24, 4255–4271. [Google Scholar] [CrossRef]
- Sagarika, S.; Kalra, A.; Ahmad, S. Pacific Ocean SST and Z500 Climate Variability and Western U.S. Seasonal Streamflow. Int. J. Climatol. 2016, 36, 1515–1533. [Google Scholar] [CrossRef]
- Gómez-Fontealba, C.; Flores-Aqueveque, V.; Alfaro, S.C. Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability. Atmosphere 2023, 14, 608. [Google Scholar] [CrossRef]
- Shukla, R.P.; Tripathi, K.C.; Pandey, A.C.; Das, I.M.L. Prediction of Indian Summer Monsoon Rainfall Using Niño Indices: A Neural Network Approach. Atmos. Res. 2011, 102, 99–109. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Hendon, H.; Stockdale, T.; L’Heureux, M.; Coughlan De Perez, E.; Singh, R.; Van Aalst, M. Defining El Nio Indices in a Warming Climate. Environ. Res. Lett. 2021, 16, 044003. [Google Scholar] [CrossRef]
- Cordero, R.R.; Feron, S.; Damiani, A.; Carrasco, J.; Karas, C.; Wang, C.; Kraamwinkel, C.T.; Beaulieu, A. Extreme Fire Weather in Chile Driven by Climate Change and El Niño–Southern Oscillation (ENSO). Sci. Rep. 2024, 14, 1974. [Google Scholar] [CrossRef] [PubMed]
- Frappart, F.; Biancamaria, S.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azemar, P.; Vu, P.L.; Le Toan, T.; Lubac, B.; et al. Influence of Recent Climatic Events on the Surface Water Storage of the Tonle Sap Lake. Sci. Total Environ. 2018, 636, 1520–1533. [Google Scholar] [CrossRef] [PubMed]
- Bunge, L.; Clarke, A.J. A Verified Estimation of the El Ninõ Index Ninõ-3.4 since 1877. J. Clim. 2009, 22, 3979–3992. [Google Scholar] [CrossRef]
- Nigam, S.; Sengupta, A. The Full Extent of El Niño’s Precipitation Influence on the United States and the Americas: The Suboptimality of the Niño 3.4 SST Index. Geophys. Res. Lett. 2021, 48, e2020GL091447. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, S.P.; Kosaka, Y.; Yang, J.C. Pacific Decadal Oscillation: Tropical Pacific Forcing versus Internal Variability. J. Clim. 2018, 31, 8265–8279. [Google Scholar] [CrossRef]
- Minobe, S. A 50–70 Year Climatic Oscillation over the North Pacific and North America. Geophys. Res. Lett. 1997, 24, 683–686. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like Interdecadal Variability: 1900–1993. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Şen, Z.; Şişman, E. Risk Attachment Sen’s Slope Calculation in Hydrometeorological Trend Analysis. Nat. Hazards 2024, 120, 3239–3252. [Google Scholar] [CrossRef]
- Tosunoglu, F.; Kisi, O. Trend Analysis of Maximum Hydrologic Drought Variables Using Mann–Kendall and Şen’s Innovative Trend Method. River Res. Appl. 2017, 33, 597–610. [Google Scholar] [CrossRef]
- Alashan, S. Combination of Modified Mann-Kendall Method and Şen Innovative Trend Analysis. Eng. Rep. 2020, 2, e12131. [Google Scholar] [CrossRef]
- Jin, J.; Wang, G.; Zhang, J.; Yang, Q.; Liu, C.; Liu, Y.; Bao, Z.; He, R. Impacts of Climate Change on Hydrology in the Yellow River Source Region, China. J. Water Clim. Change 2020, 11, 916–930. [Google Scholar] [CrossRef]
- Ackom, E.K.; Adjei, K.A.; Odai, S.N. Spatio-Temporal Rainfall Trend and Homogeneity Analysis in Flood Prone Area: Case Study of Odaw River Basin-Ghana. SN Appl. Sci. 2020, 2, 2141. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 1–4. [Google Scholar] [CrossRef]
- Bagnato, L.; De Capitani, L.; Punzo, A. A Diagram to Detect Serial Dependencies: An Application to Transport Time Series. Qual. Quant. 2017, 51, 581–594. [Google Scholar] [CrossRef]
- Yilmaz, F.; Tsamados, M.; Osborn, D. Rainy Ottoman Days: Rescuing and Analysing Rainfall Data (1846–1917) in Constantinople (Istanbul, Türkiye). Geosci. Data J. 2025, 12, e70002. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Kabbilawsh, P.; Kumar, D.S.; Chithra, N.R. Assessment of Temporal Homogeneity of Long-Term Rainfall Time-Series Datasets by Applying Classical Homogeneity Tests. Environ. Dev. Sustain. 2023, 26, 16757–16801. [Google Scholar] [CrossRef]
- Kocsis, T.; Kovács-Székely, I.; Anda, A. Homogeneity Tests and Non-Parametric Analyses of Tendencies in Precipitation Time Series in Keszthely, Western Hungary. Theor. Appl. Climatol. 2020, 139, 849–859. [Google Scholar] [CrossRef]
- Hu, W.; Biswas, A.; Si, B.C. Application of Multivariate Empirical Mode Decomposition for Revealing Scale-and Season-Specific Time Stability of Soil Water Storage. Catena 2014, 113, 377–385. [Google Scholar] [CrossRef]
- Bolboaca, S.D.; Jäntschi, L.; Bolboacă, S.-D. Pearson versus Spearman, Kendall’s Tau Correlation Analysis on Structure-Activity Relationships of Biologic Active Compounds. Leonardo J. Sci. 2006, 5, 179–200. [Google Scholar]
- Ahmed, J.B.; Pradhan, B. Spatial Assessment of Termites Interaction with Groundwater Potential Conditioning Parameters in Keffi, Nigeria. J. Hydrol. 2019, 578, 124012. [Google Scholar] [CrossRef]
- Yu, G.; Miller, J.J.; Hatchett, B.J.; Berli, M.; Wright, D.B.; McDougall, C.; Zhu, Z. The Nonstationary Flood Hydrology of an Urbanizing Arid Watershed. J. Hydrometeorol. 2023, 24, 87–104. [Google Scholar] [CrossRef]
- McGwire, K.C.; Weltz, M.A.; Nouwakpo, S.; Spaeth, K.; Founds, M.; Cadaret, E. Mapping Erosion Risk for Saline Rangelands of the Mancos Shale Using the Rangeland Hydrology Erosion Model. Land Degrad. Dev. 2020, 31, 2552–2564. [Google Scholar] [CrossRef]
- Jian, J.; Ryu, D.; Costelloe, J.F.; Su, C.H. Towards Hydrological Model Calibration Using River Level Measurements. J. Hydrol. Reg. Stud. 2017, 10, 95–109. [Google Scholar] [CrossRef]
- Chang, F.J.; Wu, T.C.; Tsai, W.P.; Herricks, E.E. Defining the Ecological Hydrology of Taiwan Rivers Using Multivariate Statistical Methods. J. Hydrol. 2009, 376, 235–242. [Google Scholar] [CrossRef]
- Krishan, G.; Bhagwat, A.; Sejwal, P.; Yadav, B.K.; Kansal, M.L.; Bradley, A.; Singh, S.; Kumar, M.; Sharma, L.M.; Muste, M. Assessment of Groundwater Salinity Using Principal Component Analysis (PCA): A Case Study from Mewat (Nuh), Haryana, India. Environ. Monit. Assess. 2023, 195, 37. [Google Scholar] [CrossRef]
- Mohsen, A.; Zeidan, B.; Elshemy, M. Water Quality Assessment of Lake Burullus, Egypt, Utilizing Statistical and GIS Modeling as Environmental Hydrology Applications. Environ. Monit. Assess. 2023, 195, 93. [Google Scholar] [CrossRef]
- Fadel, A.; Kanj, M.; Slim, K. Water Quality Index Variations in a Mediterranean Reservoir: A Multivariate Statistical Analysis Relating It to Different Variables over 8 Years. Environ. Earth Sci. 2021, 80, 65. [Google Scholar] [CrossRef]
- Wiranegara, P.; Sunardi, S.; Sumiarsa, D.; Juahir, H. Characteristics and Changes in Water Quality Based on Climate and Hydrology Effects in the Cirata Reservoir. Water 2023, 15, 3132. [Google Scholar] [CrossRef]
- Bourrel, L.; Rau, P.; Dewitte, B.; Labat, D.; Lavado, W.; Coutaud, A.; Vera, A.; Alvarado, A.; Ordoñez, J. Low-Frequency Modulation and Trend of the Relationship between ENSO and Precipitation along the Northern to Centre Peruvian Pacific Coast. Hydrol. Process. 2015, 29, 1252–1266. [Google Scholar] [CrossRef]
- Mahmud, M.R.; Matsuyama, H.; Hosaka, T.; Numata, S.; Hashim, M. Temporal Downscaling of TRMM Rain-Rate Images Using Principal Component Analysis during Heavy Tropical Thunderstorm Seasons. J. Hydrometeorol. 2015, 16, 2264–2275. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Springer: New York, NY, USA, 2002; ISBN 0-387-95442-2. [Google Scholar]
- Rau, P.; Castillón, F.; Bourrel, L. A Tool in R for Easy Hydroclimatic Calculations. In Proceedings of the Recent Research on Hydrogeology, Geoecology and Atmospheric Sciences; Chenchouni, H., Chaminé, H.I., Zhang, Z., Khelifi, N., Ciner, A., Ali, I., Chen, M., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 13–16. [Google Scholar]
- Gong, D.; Wang, S. Definition of Antarctic Oscillation Index. Geophys. Res. Lett. 1999, 26, 459–462. [Google Scholar] [CrossRef]
- Diaz, H.F.; Pulwarty, R.S. An Analysis of the Time Scales of Variability in Centuries-Long Enso-Sensitive Records in the Last 1000 Years. Clim. Change 1994, 26, 317–342. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Villarini, G.; Gualdi, S.; Navarra, A. The Pacific Decadal Oscillation Modulates Tropical Cyclone Days on the Interannual Timescale in the North Pacific Ocean. J. Geophys. Res. Atmos. 2021, 126, e2021JD034988. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. The Annual Cycle of Persistence in the El Nño/Southern Oscillation. Q. J. R. Meteorol. Soc. 1998, 124, 1985–2004. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Nonlinear Processes in Geophysics Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet Analysis of Ecological Time Series. Oecologia 2008, 156, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Veleda, D.; Montagne, R.; Araujo, M. Cross-Wavelet Bias Corrected by Normalizing Scales. J. Atmos Ocean Technol. 2012, 29, 1401–1408. [Google Scholar] [CrossRef]
- Dadu, K.S.; Deka, P.C. Applications of Wavelet Transform Technique in Hydrology—A Brief Review. In Urban Hydrology, Watershed Management and Socio-Economic Aspects; Springer: Cham, Switzerland, 2016; pp. 241–253. [Google Scholar]
- Heil, C.E.; Walnut, D.F. Continuous and Discrete Wavelet Transforms. SIAM Rev. 1989, 31, 628–666. [Google Scholar] [CrossRef]
- Díaz, D.; Villegas, N. Wavelet Coherence between ENSO Indices and Two Precipitation Databases for the Andes Region of Colombia. Atmosfera 2022, 35, 237–271. [Google Scholar] [CrossRef]
- León-Muñoz, J.; Aguayo, R.; Marcé, R.; Catalán, N.; Woelfl, S.; Nimptsch, J.; Arismendi, I.; Contreras, C.; Soto, D.; Miranda, A. Climate and Land Cover Trends Affecting Freshwater Inputs to a Fjord in Northwestern Patagonia. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Douglass, D.H.; Knox, R.S. Ocean Heat Content and Earth’s Radiation Imbalance. II. Relation to Climate Shifts. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2012, 376, 1226–1229. [Google Scholar] [CrossRef]
- Bode, A.; Álvarez, M.; García García, L.M.; Louro, M.Á.; Nieto-Cid, M.; Ruíz-Villarreal, M.; Varela, M.M. Climate and Local Hydrography Underlie Recent Regime Shifts in Plankton Communities off Galicia (NW Spain). Oceans 2020, 1, 181–197. [Google Scholar] [CrossRef]
- Rahman, S.M.M.; Jung, H.K.; Park, H.J.; Park, J.M.; Lee, C.I. Synchronicity of Climate Driven Regime Shifts among the East Asian Marginal Sea Waters and Major Fish Species. J. Environ. Biol. 2019, 40, 948–961. [Google Scholar] [CrossRef]
- Dirección Meteorológica de Chile. Impacto Del Cambio Climático En El FIR Austral-Chile; Dirección Meteorológica de Chile: Santiago, Chile, 2020.
- Aguirre, F.; Carrasco, J.; Sauter, T.; Schneider, C.; Gaete, K.; Garín, E.; Adaros, R.; Butorovic, N.; Jaña, R.; Casassa, G. Snow Cover Change as a Climate Indicator in Brunswick Peninsula, Patagonia. Front. Earth Sci. 2018, 6, 130. [Google Scholar] [CrossRef]
- Montecinos, A.; Aceituno, P. Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. J. Clim. 2003, 16, 281–296. [Google Scholar] [CrossRef]
- Mendes, M.C.D.; Cavalcanti, I.F.A. The Relationship between the Antarctic Oscillation and Blocking Events over the South Pacific and Atlantic Oceans. Int. J. Climatol. 2014, 34, 529–544. [Google Scholar] [CrossRef]
- Williams, I.N.; Patricola, C.M. Diversity of ENSO Events Unified by Convective Threshold Sea Surface Temperature: A Nonlinear ENSO Index. Geophys. Res. Lett. 2018, 45, 9236–9244. [Google Scholar] [CrossRef]
- Christiansen, B.; Yang, S.; Madsen, M.S. Do Strong Warm ENSO Events Control the Phase of the Stratospheric QBO? Geophys. Res. Lett. 2016, 43, 10489–10495. [Google Scholar] [CrossRef]
- Larson, S.M.; Kirtman, B.P. An Alternate Approach to Ensemble ENSO Forecast Spread: Application to the 2014 Forecast. Geophys. Res. Lett. 2015, 42, 9411–9415. [Google Scholar] [CrossRef]
- Li, H.; Fan, K.; He, S.; Liu, Y.; Yuan, X.; Wang, H. Intensified Impacts of Central Pacific ENSO on the Reversal of December and January Surface Air Temperature Anomaly over China since 1997. J. Clim. 2021, 34, 1601–1618. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Satellite-Observed Biological Variability in the Equatorial Pacific during the 2009-2011 ENSO Cycle. Adv. Space Res. 2014, 54, 1913–1923. [Google Scholar] [CrossRef]
- Daniels, L.D.; Veblen, T.T. ENSO effects on temperature and precipitation of the Patagonian-Andean region: Implications for biogeography. Phys. Geogr. 2000, 21, 223–243. [Google Scholar] [CrossRef]
ID | Station | Type | Latitude | Longitude |
---|---|---|---|---|
M1 | Lago Pehoe | Meteorological | −51.07° | −73.09° |
M2 | Glaciar Tindall en Campamento Zapata | Meteorological | −51.12° | −73.28° |
M3 | Fiordo Amalia | Meteorological | −50.96° | −73.77° |
M4 | Lago Dickson | Meteorological | −50.82° | −73.11° |
F1 | Río Grey Antes Junta Serrano | Fluviometric | −51.18° | −73.02° |
Variable | Unit | Max | Min | Mean | STD | SC | # |
---|---|---|---|---|---|---|---|
Flow | m3/s | 410.35 | 7.92 | 123.49 | 84.93 | 0.79 | 448 |
Prec | mm | 393.95 | 2.89 | 153.12 | 73.53 | 0.71 | 496 |
Mean Temp | °C | 9.71 | −4.69 | 3.43 | 3.04 | −0.27 | 496 |
PET | mm | 101.68 | 5.30 | 38.83 | 24.75 | 0.26 | 496 |
Wind Speed | m/s | 12.40 | 5.37 | 8.32 | 1.20 | 0.53 | 538 |
Variable | Sen’s Slope | Unit |
---|---|---|
Flow | 0.710 | m3/s/year |
Prec | 0.370 | mm/year |
Mean Temp | 0.006 | °C/year |
PET | 0.010 | mm/year |
Wind Speed | −0.077 | m/s/year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Aguilera, P.; Rodríguez-López, L.; Bourrel, L.; Frappart, F. Hydroclimatic Variability of the Grey River Basin (Chilean Patagonia): Trends and Relationship with Large-Scale Climatic Phenomena. Water 2025, 17, 1895. https://doi.org/10.3390/w17131895
Fuentes-Aguilera P, Rodríguez-López L, Bourrel L, Frappart F. Hydroclimatic Variability of the Grey River Basin (Chilean Patagonia): Trends and Relationship with Large-Scale Climatic Phenomena. Water. 2025; 17(13):1895. https://doi.org/10.3390/w17131895
Chicago/Turabian StyleFuentes-Aguilera, Patricio, Lien Rodríguez-López, Luc Bourrel, and Frederic Frappart. 2025. "Hydroclimatic Variability of the Grey River Basin (Chilean Patagonia): Trends and Relationship with Large-Scale Climatic Phenomena" Water 17, no. 13: 1895. https://doi.org/10.3390/w17131895
APA StyleFuentes-Aguilera, P., Rodríguez-López, L., Bourrel, L., & Frappart, F. (2025). Hydroclimatic Variability of the Grey River Basin (Chilean Patagonia): Trends and Relationship with Large-Scale Climatic Phenomena. Water, 17(13), 1895. https://doi.org/10.3390/w17131895