Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = exposed aggregate cement concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6625 KiB  
Article
Short- and Long-Term Mechanical and Durability Performance of Concrete with Copper Slag and Recycled Coarse Aggregate Under Magnesium Sulfate Attack
by Yimmy Fernando Silva, Claudia Burbano-Garcia, Eduardo J. Rueda, Arturo Reyes-Román and Gerardo Araya-Letelier
Appl. Sci. 2025, 15(15), 8329; https://doi.org/10.3390/app15158329 - 26 Jul 2025
Viewed by 267
Abstract
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly [...] Read more.
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly deleterious to concrete structures. Therefore, this study investigates the short- and long-term performance of concrete produced with copper slag (CS)—a massive waste generated by copper mining activities worldwide—employed as a supplementary cementitious material (SCM), together with recycled coarse aggregate (RCA), obtained from concrete construction and demolition waste, when exposed to MgSO4. CS was used as a 15 vol% cement replacement, while RCA was incorporated at 0%, 20%, 50%, and 100 vol%. Compressive strength, bulk density, water absorption, and porosity were measured after water curing (7–388 days) and following immersion in a 5 wt.% MgSO4 solution for 180 and 360 days. Microstructural characteristics were assessed using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis with its differential thermogravimetric derivative (TG-DTG), and Fourier transform infrared spectroscopy (FTIR) techniques. The results indicated that replacing 15% cement with CS reduced 7-day strength by ≤10%, yet parity with the reference mix was reached at 90 days. Strength losses increased monotonically with RCA content. Under MgSO4 exposure, all mixtures experienced an initial compressive strength gain during the short-term exposures (28–100 days), attributed to the pore-filling effect of expansive sulfate phases. However, at long-term exposure (180–360 days), a clear strength decline was observed, mainly due to internal cracking, brucite formation, and the transformation of C–S–H into non-cementitious M–S–H gel. Based on these findings, the combined use of CS and RCA at low replacement levels shows potential for producing environmentally friendly concrete with mechanical and durability performance comparable to those of concrete made entirely with virgin materials. Full article
Show Figures

Figure 1

24 pages, 5443 KiB  
Article
Impact of Early-Age Curing and Environmental Conditions on Shrinkage and Microcracking in Concrete
by Magdalena Bacharz, Kamil Bacharz and Wiesław Trąmpczyński
Materials 2025, 18(13), 3185; https://doi.org/10.3390/ma18133185 - 5 Jul 2025
Viewed by 398
Abstract
This study analyzed the effects of curing and maturation on the formation of shrinkage strain and destructive processes in concrete. Experimental tests were performed on commonly used concrete, class C30/37, with basalt aggregate and blast furnace cement tested: at constant temperature after water [...] Read more.
This study analyzed the effects of curing and maturation on the formation of shrinkage strain and destructive processes in concrete. Experimental tests were performed on commonly used concrete, class C30/37, with basalt aggregate and blast furnace cement tested: at constant temperature after water curing, at constant temperature without water curing, and under cyclically changing temperature without prior curing. Shrinkage strain was measured for 46 days with an extensometer on 150 × 150 × 600 mm specimens, and the acoustic emission (AE) method was used to monitor microcracks and processes in concrete in real time. The results were compared with the model according to EN 1992-1-1:2023. It was found that this model correctly estimates shrinkage strain for wet-curing concrete, but there are discrepancies for air-dried concrete, regardless of temperature and moisture conditions (constant/variable). Correlation coefficients between shrinkage strain increments and process increments in early-age concrete are proposed. Correlations between shrinkage strain and destructive processes occurring in concrete were confirmed. It was found that by using correlation coefficients, it is possible to estimate internal damage in relation to shrinkage strain. The results indicate the need to develop guidelines for estimating shrinkage strain in non-model environmental conditions and demonstrate the usefulness of the nondestructive AE method in diagnosing early damage, especially in concrete structures exposed to adverse service conditions. Full article
(This article belongs to the Collection Concrete and Building Materials)
Show Figures

Figure 1

18 pages, 14135 KiB  
Article
Investigation of the Properties of Low Water-to-Solid Ratio Vibro-Press-Formed Alkali-Activated Municipal Solid Waste Incineration Bottom-Ash Concrete
by Gintautas Tamošaitis, Danutė Vaičiukynienė and Diana Bajare
Materials 2025, 18(13), 2926; https://doi.org/10.3390/ma18132926 - 20 Jun 2025
Viewed by 269
Abstract
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There [...] Read more.
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There are currently three incineration plants operating in major cities in Lithuania. The non-hazardous bottom ash remaining from the incineration process is stored in dedicated sorting and aging sites until it is used as an inert form of aggregate for the installation of road foundations. However, it has been observed that these ashes have a tendency to bind and cement when exposed to atmospheric precipitation at the storage site. Based on this characteristic, it was decided in this study to use alkaline activation of the ash to accelerate the bonding process and to create a dense, non-porous composite concrete structure. This activation method is known to create another problem during ash bonding, where the presence of metallic aluminum particles in the ash leads to the release of hydrogen gas and makes the structure of the cured samples porous. For the purposes of the study, it was decided to create a completely different mixture structure and not to use additional water in the mixtures tested. A very low water/solids ratio (W/S) of <0.08 was used for the alkaline activation of the mixtures. All the water required for ash activation was obtained from sodium silicate and sodium hydroxide solution. Metakaolin waste (MKW) was used to adjust the SiO2/Na2O/Al2O3 ratio of the mixtures. Vibro-pressing was used to form and increase the density of the samples. And for the formation of the concrete structure, 0/4 fraction sand was used as aggregate. The final alkali-activated sample obtained had properties similar to those of the very widely used vibro-pressed cementitious paving tiles and did not exhibit hydrogen evolution during alkali activation due to the very low W/S ratio. The best results were achieved by samples with a highest compressive strength of 40.0 MPa and a tensile strength of 5.60 MPa, as well as a density of 1950 kg/m3. It is believed that this alkaline activation and vibro-pressing method can expand the use of MSWI ash in the development of building products. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

21 pages, 5352 KiB  
Article
Optimization of Exposed Aggregate Concrete Mix Proportions for High Skid Resistance and Noise Reduction Performance
by Xudong Zha, Chengzhi Wu, Runzhou Luo and Yaqiang Liu
Appl. Sci. 2025, 15(11), 5881; https://doi.org/10.3390/app15115881 - 23 May 2025
Viewed by 385
Abstract
Conventional cement concrete pavements often suffer from rapid skid resistance degradation and excessive traffic noise, necessitating effective solutions. This study investigates exposed aggregate concrete (EAC) through orthogonal experimental methods to evaluate the effects of four mix design parameters—water–binder ratio, sand ratio, coarse aggregate [...] Read more.
Conventional cement concrete pavements often suffer from rapid skid resistance degradation and excessive traffic noise, necessitating effective solutions. This study investigates exposed aggregate concrete (EAC) through orthogonal experimental methods to evaluate the effects of four mix design parameters—water–binder ratio, sand ratio, coarse aggregate volume ratio, and proportion of aggregates >9.5 mm—on surface texture characteristics, skid resistance and noise reduction (SRNR) performance, and mechanical properties. The optimal EAC mix proportions were developed, and the correlations between surface texture characteristics and SRNR performance were established. Results indicate that the proportion of aggregates >9.5 mm significantly influences surface texture characteristics and SRNR performance. The optimal mix proportions (water–binder ratio: 0.43, sand ratio: 31%, coarse aggregate volume ratio: 42%, and proportion of aggregates >9.5 mm: 50%) exhibited superior mechanical properties, achieving a 31.5% increase in pendulum value and a 6.48 dB reduction in tire/surface noise compared to grooved conventional concrete. The noise reduction frequency range is mainly concentrated in the mid-high frequency range of 1.5~4.0 kHz, which is more sensitive to the human ear. High correlations were observed between the surface texture characteristics and SRNR performance. Specifically, noise value decreased progressively with increasing exposed aggregate depth, while the pendulum value exhibited a trend of initial decrease, followed by an increase and subsequent decrease in response to the elevated exposed aggregate area ratio. Compared to traditional cement concrete pavements, the optimized EAC, while maintaining mechanical properties, exhibits superior SRNR performance, providing a valuable reference for the construction of high SRNR cement concrete pavements. Full article
Show Figures

Figure 1

16 pages, 4660 KiB  
Article
Erosion Resistance of Iron Ore Tailings as Aggregate for Manufacturing of Cement-Based Materials
by Shuang Liu, Kangning Liu, Jing Wu and Sheliang Wang
Buildings 2025, 15(10), 1741; https://doi.org/10.3390/buildings15101741 - 21 May 2025
Viewed by 449
Abstract
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments [...] Read more.
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments of cement-based materials made with iron ore tailings (IOTs) as an aggregate (namely, IOTCs). The compressive strength, mass loss, and relative dynamic elastic modulus (RDEM) macroscopic performance of IOTC undergoing different chloride diffusion times (0–180 d) were explored in detail. Chloride ion profiles at 0–180 d were analyzed via chemical titration, while X-ray computed tomography (CT) and scanning electron microscopy (SEM) were employed to characterize microstructural evolution. The results demonstrate that IOTC exhibited superior chloride resistance compared to conventional concrete (GC). While both materials showed early strength gain (<60 d) due to hydration and pore-filling effects, IOTC experienced only a 23.9% strength loss after long-term exposure (180 d) significantly less than the 37.2% reduction in GC. Chloride profiling revealed that IOTC had 43.5% lower free chloride ions (Cf) and 32% lower total chloride ions (Ct) at 1 mm depth after 180 d, alongside reduced chloride diffusion coefficients (Da). The CT analysis revealed that IOTC exhibited a significantly denser and more uniformly distributed pore structure than GC, with a porosity of only 0.67% under chloride-free conditions. SEM confirmed IOTC’s more intact matrix and fewer microcracks. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 7802 KiB  
Article
Electrochemical Differences in the Passivity State of Reinforced Concrete for Two Mix Design Methods
by Jorge Alberto Briceño-Mena, Mercedes Guadalupe Balancán-Zapata, Edurado Jesús Pérez-García, Demetrio Nieves-Mendoza and Pedro Castro-Borges
Buildings 2025, 15(8), 1293; https://doi.org/10.3390/buildings15081293 - 15 Apr 2025
Viewed by 400
Abstract
Durable reinforced concrete is a fundamental requirement in a marine environment, but at the same time it must be sustainable, meaning its production emits the least amount of greenhouse gases. Hence, the importance of achieving optimal proportioning methods. This paper presents and discusses [...] Read more.
Durable reinforced concrete is a fundamental requirement in a marine environment, but at the same time it must be sustainable, meaning its production emits the least amount of greenhouse gases. Hence, the importance of achieving optimal proportioning methods. This paper presents and discusses the electrochemical differences in the passivity state of reinforced concrete specimens designed using two proportioning methods: M1 prioritizes the ultimate strength of the element, and M2 focuses on sustainability through optimized aggregate arrangement and reduced cement content. Small beams (150 mm × 150 mm × 300 mm) with varying cover thickness (15 mm, 20 mm, and 30 mm), with two water/cement ratios (0.45 and 0.65), all utilizing Portland composite cement (PCC 30R), were exposed in a tropical marine environment 50 m from the seashore in the north of the Yucatan Peninsula for 700 days (passive state). Corrosion rate, corrosion potential, resistivity, and internal conditions (relative humidity and temperature) were periodically measured. A key finding revealed that M2, despite its sustainable advantage, tends to depassivation before M1, at least during the two years of exposure and while in the passive state. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 33541 KiB  
Article
Alkali–Silica Reactivity Potential of Aggregates from Different Sources in Pakistan
by Muhammad Yousaf, Muhammad Shajih Zafar, Muhammad Usman, Muhammad Usama, Muhammad Usman Yousaf, Gianluca Scaccianoce, Laura Cirrincione and Marco Vocciante
Sustainability 2025, 17(7), 3203; https://doi.org/10.3390/su17073203 - 3 Apr 2025
Viewed by 1153
Abstract
This paper aims to support stakeholders in the sustainable construction sector by exploring the potential of unexamined aggregates from five distinct origins: the Jandol River, the Swat River, the Panjkorha River, the Kitkot Drain, and the Shavey Drain situated in Malakand division, North [...] Read more.
This paper aims to support stakeholders in the sustainable construction sector by exploring the potential of unexamined aggregates from five distinct origins: the Jandol River, the Swat River, the Panjkorha River, the Kitkot Drain, and the Shavey Drain situated in Malakand division, North Waziristan, Pakistan, concerning Alkali–Silica Reaction (ASR) prior to their incorporation into large-scale construction practices. Petrographic examination for the determination of the mineralogical composition of all collected aggregates revealed that aggregates stemming from the Swat River, Panjkorh River, Kitkot Drain, and Shavey Drain exhibited no reactive minerals. In contrast, those from the Jandol River showed reactive mineral content. Physical analysis of the aggregates revealed that Jandol River aggregates had superior resistance to impact, crushing, and abrasion, having values of 18.53%, 18.53%, and 20.10%, respectively. Moreover, the chemical analysis exhibited the highest silica content (SiO2) in Jandol River aggregates, i.e., 94.7%, respectively. Samples in the form of cubes, prisms, and mortar bars were prepared to study both the mechanical properties and the expansion tendencies of specimens prepared from different aggregate sources. Validation of the reactive nature of the Jandol River aggregates was corroborated by the expansion results obtained from the mortar bars and the reduction in compressive strength and flexure strength by 8.2% and 9.2%, respectively, after 90 days, higher than that of aggregates exposed to ASR sourced from the other four origins. It can be asserted that aggregates from the Jandol River source are more susceptible to ASR as compared to other aggregates. To mitigate the potential of ASR, various strategies, such as using low reactivity, natural, or processed aggregates; low alkali-containing cement; inducing pozzolanic substances in concrete; etc., are recommended. Simultaneously, an economic feasibility study and environmental assessments are recommended as future developments. Full article
Show Figures

Figure 1

13 pages, 2078 KiB  
Article
Green Concrete Production Technology with the Addition of Recycled Ceramic Aggregate
by Natalia Gasik-Kowalska and Artur Koper
Sustainability 2025, 17(7), 3028; https://doi.org/10.3390/su17073028 - 28 Mar 2025
Cited by 1 | Viewed by 515
Abstract
Rational waste management is crucial for the effective implementation of the circular economy (CE) and the achievement of Sustainable Development Goals (SDGs). Ceramic waste, which takes thousands of years to decompose in the natural environment, can be recycled into construction materials. This approach [...] Read more.
Rational waste management is crucial for the effective implementation of the circular economy (CE) and the achievement of Sustainable Development Goals (SDGs). Ceramic waste, which takes thousands of years to decompose in the natural environment, can be recycled into construction materials. This approach offers dual environmental benefits: reducing ceramic waste disposal and minimizing the exploitation of natural aggregate deposits. This study examines the recycling of sanitary ceramic waste, including items such as washbasins, toilet bowls, urinals, bidets, and bathtubs, into alternative aggregates for concrete mixtures. After grinding and separating the ceramic cullet into specific fractions, it becomes a viable substitute for natural aggregates. Concrete samples were tested with varying water-cement ratios (0.3 and 0.4) and recycled ceramic aggregate contents (15%, 30%, and 45%). These results were compared to those of samples made solely with natural aggregates. The samples underwent compressive strength tests to determine concrete class and were exposed to elevated temperatures (150 °C, 300 °C, 550 °C, and 750 °C). Additional analyses measured the secant modulus of elasticity and selected aggregate properties. The findings demonstrate that high-quality concrete can be produced while promoting circular economy principles by reducing waste and preserving natural resources. Full article
Show Figures

Figure 1

30 pages, 20462 KiB  
Article
Effects of Waste Glass Bottle Nanoparticles and High Volume of Waste Ceramic Tiles on Concrete Performance When Exposed to Elevated Temperatures: Experimental and Theoretical Evaluations
by Zahraa Hussein Joudah, Nur Hafizah A. Khalid, Hassan Amer Algaifi, Akram M. Mhaya, Teng Xiong, Riyadh Alsultani and Ghasan Fahim Huseien
Fire 2024, 7(12), 426; https://doi.org/10.3390/fire7120426 - 21 Nov 2024
Cited by 7 | Viewed by 1539
Abstract
This article reports the durability performance of modified concrete with silica nanoparticles and a high volume of waste ceramic tiles under varying elevated temperatures. Ordinary Portland cement (OPC) was replaced with 60% waste ceramic tiles powder (WTCPs) and supplemented with 2, 4, 6, [...] Read more.
This article reports the durability performance of modified concrete with silica nanoparticles and a high volume of waste ceramic tiles under varying elevated temperatures. Ordinary Portland cement (OPC) was replaced with 60% waste ceramic tiles powder (WTCPs) and supplemented with 2, 4, 6, 8, and 10% nanopowders from waste glass bottles (WGBNPs) as a rich source of silica. The natural aggregates (both coarse and fine) were fully replaced by the crushed waste ceramic tiles (WTCAs). After 28 days of curing, the modified specimens were exposed to varying elevated temperatures (200, 400, 600, and 800 °C) in a furnace followed by air cooling. Tests such as residual compressive strength, weight loss, ultrasonic plus velocity, visual appearance, and microstructural analysis were conducted. Additionally, analysis of variance (ANOVA) was used to validate the performance of the proposed predictive equations, as well as their terms, using p-values and F-values. It was discerned that OPC substitution with WTCPs and WGBNPs significantly improved the concrete’s performance under elevated temperatures. It is observed that the addition of 2, 4, 6, 8, and 10% WGBNPs lowered the concrete deterioration by increasing the residual strength and reducing both internal and external cracks. This study provides some new insights into the utilization of WTCPs and WGBNPs to produce sustainable and eco-friendly modified concrete with high spalling resistance characteristics at elevated temperatures. Full article
Show Figures

Figure 1

21 pages, 9443 KiB  
Article
Influence of Coarse Aggregate Exposure on Air Purification Efficiency in Photocatalytic Cement Composites
by Karol Chilmon, Maciej Kalinowski and Wioletta Jackiewicz-Rek
Buildings 2024, 14(11), 3639; https://doi.org/10.3390/buildings14113639 - 15 Nov 2024
Cited by 4 | Viewed by 905
Abstract
This study investigated how the surface characteristics of photocatalytic cementitious composites influenced the effectiveness of air purification from nitrogen oxides (NOx), with a particular focus on the impact of coarse aggregate exposure on the photoactive surface. Air purification efficiency tests were [...] Read more.
This study investigated how the surface characteristics of photocatalytic cementitious composites influenced the effectiveness of air purification from nitrogen oxides (NOx), with a particular focus on the impact of coarse aggregate exposure on the photoactive surface. Air purification efficiency tests were conducted using a custom-developed procedure that simulated NOx concentrations and UV irradiance typical of autumn and winter conditions in Warsaw, Poland. The findings revealed that the extent of exposed coarse aggregate on the photoactive surface significantly affected photocatalytic efficiency, reducing the overall NO removal rate by up to 50% compared to the reference value. The use of hydration retarders modified the surface characteristics of the photocatalytic cement matrix, enhancing its photoactive potential. The observed decline in photocatalytic efficiency in composites with exposed coarse aggregate was attributed to the coarse aggregate’s limited ability to retain nanometric photocatalyst particles, which reduced the overall TiO2 content in the composite’s near-surface layer. Nevertheless, cementitious composites incorporating a first-generation photocatalyst exhibited substantial photocatalytic activity, achieving NO removal rates of up to 340 µg/m2·h for non-exposed variants and up to 175 µg/m2·h for variants with exposed aggregate. These results demonstrated their functionality even under low-intensity UV-A irradiation (1 W/m2), making them suitable for environments with limited sunlight exposure. Full article
Show Figures

Figure 1

37 pages, 7663 KiB  
Review
Refractory Concrete Properties—A Review
by Lelian W. ElKhatib, Jamal Khatib, Joseph J. Assaad, Adel Elkordi and Hassan Ghanem
Infrastructures 2024, 9(8), 137; https://doi.org/10.3390/infrastructures9080137 - 19 Aug 2024
Cited by 3 | Viewed by 3360
Abstract
Due to the large increase in human population, the need for more buildings and other amenities is widening. Concrete is considered one of the most abundant and popular materials used in the structure and construction fields. It is known as a composite mix [...] Read more.
Due to the large increase in human population, the need for more buildings and other amenities is widening. Concrete is considered one of the most abundant and popular materials used in the structure and construction fields. It is known as a composite mix composed of cement and aggregates including fine and coarse and water. Despite its good properties, its capability to be formed in different shapes and its ability to resist severe conditions, concrete will struggle with the presence of extremely high temperatures. So, different types of concrete must be found to resist those challenging conditions. Refractory concrete can be considered a good choice to be used in places exposed to elevated temperatures and severe conditions. Mainly, refractory concrete is made up of ordinary Portland cement replacement well known as refractory cement, specific types of fine and coarse aggregates and are known as refractory or temperature-bearing aggregates and water. To the best authors’ knowledge, review papers about refractory concrete are rare. For this reason, more than 65 papers were consulted including many recently published. This review describes the different types of materials used in refractory concrete. Furthermore, the different fresh, hardened, structural, durability and thermal properties of refractory concrete are also included such as slump, density, compressive strength, flexural strength, tensile strength, modulus of elasticity, ultrasonic pulse velocity, shrinkage, mass loss, porosity, water absorption, damage level and thermal conductivity. Full article
Show Figures

Figure 1

20 pages, 16247 KiB  
Article
Structural Lightweight Concrete Containing Basalt Stone Powder
by Amir Mohammad Ramezani, Amin Khajehdezfuly and Davood Poorveis
Buildings 2024, 14(7), 1904; https://doi.org/10.3390/buildings14071904 - 21 Jun 2024
Cited by 3 | Viewed by 1369
Abstract
In spite of the demonstrated efficacy of basalt stone powder as a cost-effective and readily available additive in enhancing the mechanical properties and durability of ordinary-weight concrete, its application in Structural Lightweight Concrete (SLWC) remains unexplored. This study introduced a mixing design for [...] Read more.
In spite of the demonstrated efficacy of basalt stone powder as a cost-effective and readily available additive in enhancing the mechanical properties and durability of ordinary-weight concrete, its application in Structural Lightweight Concrete (SLWC) remains unexplored. This study introduced a mixing design for SLWC incorporating Light Expanded Clay Aggregates (LECAs) and basalt stone powder with a subsequent evaluation of its strength and durability characteristics. The experimental procedure involved creating various samples, considering differing proportions of cement, water, basalt stone powder, sand, LECA, superplasticizer, and aerating agent. The compressive strength and density of the 28-day-cured concrete specimens were determined. An optimal SLWC with a compressive strength of 42 MPa and a density of 1715 kg/m3 was identified. The flexural and tensile strength of the optimal SLWC exceeded those of ordinary-weight concrete by 6% and 3%, respectively. Further evaluation revealed that the optimal SLWC exhibited 1.46% water absorption and an electrical resistivity of 139.8 Ohm.m. Notably, the high porosity of LECA contributed to the low durability of SLWC. To address this, cost-effective external coatings of emulsion and fiberglass were applied to enhance the durability of the SLWC. Four coating scenarios, including one-layer bitumen, two-layer bitumen, three-layer bitumen, and three-layer bitumen with fiberglass, were investigated. The measurements of electrical resistance and compressive strength revealed that the use of three layers of emulsion bitumen and fiberglass improved the durability of the concrete by over 90% when the SLWC was exposed to severe chloride attack. Consequently, the durability of the SLWC with an external coating surpassed that of ordinary-weight concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 2613 KiB  
Article
Statistical Reliability Analysis of Ultrasonic Velocity Method for Predicting Residual Strength of High-Strength Concrete under High-Temperature Conditions
by Wonchang Kim, Keesin Jeong and Taegyu Lee
Materials 2024, 17(6), 1406; https://doi.org/10.3390/ma17061406 - 19 Mar 2024
Cited by 4 | Viewed by 1303
Abstract
Herein, we conducted a comprehensive statistical assessment of the ultrasonic pulse velocity (UPV) method’s effectiveness in predicting concrete strength under diverse conditions, specifically early age, middle age, and high-temperature exposure. The concrete mixtures, with water-to-cement (W/C) ratios of 0.33 and 0.28, were classified [...] Read more.
Herein, we conducted a comprehensive statistical assessment of the ultrasonic pulse velocity (UPV) method’s effectiveness in predicting concrete strength under diverse conditions, specifically early age, middle age, and high-temperature exposure. The concrete mixtures, with water-to-cement (W/C) ratios of 0.33 and 0.28, were classified as granite aggregate or coal-ash aggregate mixes. Compressive strength and UPV measurements were performed under these conditions, and subsequent statistical analyses treated the identified factors as distinct groups. The results revealed a substantial difference in compressive strength between specimens at early age (average of 13.01) and those at middle age (average of 41.96) and after high-temperature exposure (average of 48.08). Conversely, UPV analysis showed an insignificant difference between the early-age specimens and those after high-temperature exposure. The analysis of the W/C ratio and coarse aggregate demonstrated significant differences (p-value < 0.05) in compressive strength between specimens in middle age and those exposed to high temperatures, excluding the early-age specimens. However, UPV analysis revealed insignificant differences, with p-values of 0.67 and 0.38 between specimens at an early age and post-high-temperature exposure, respectively. Regression analysis identified suitable functions for each scenario, emphasizing the importance of a strength prediction model for concrete after high-temperature exposure, particularly considering the W/C ratio. Since concrete showed statistically different compressive strength, UPV, and strength prediction models in three conditions (early age, middle age, and high temperature), different strength prediction models must be used for the purpose of accurately predicting the strength of concrete. Full article
(This article belongs to the Special Issue Additive Manufacturing and Nondestructive Testing of Metals)
Show Figures

Figure 1

14 pages, 4461 KiB  
Article
Freeze–Thaw Damage Characteristics of Concrete Based on Compressive Mechanical Properties and Acoustic Parameters
by Dongye Lv, Hanbing Liu, Feng He, Wensheng Wang, Qiang Miao, Hanjun Li, Fuen Wang, Jing Zhao and Chengwei Shi
Materials 2024, 17(5), 1010; https://doi.org/10.3390/ma17051010 - 22 Feb 2024
Cited by 10 | Viewed by 2894
Abstract
Concrete is a versatile material widely used in modern construction. However, concrete is also subject to freeze–thaw damage, which can significantly reduce its mechanical properties and lead to premature failure. Therefore, the objective of this study was to assess the laboratory performance and [...] Read more.
Concrete is a versatile material widely used in modern construction. However, concrete is also subject to freeze–thaw damage, which can significantly reduce its mechanical properties and lead to premature failure. Therefore, the objective of this study was to assess the laboratory performance and freeze–thaw damage characteristics of a common mix proportion of concrete based on compressive mechanical tests and acoustic technologies. Freeze–thaw damage characteristics of the concrete were evaluated via compressive mechanical testing, mass loss analysis, and ultrasonic pulse velocity testing. Acoustic emission (AE) technology was utilized to assess the damage development status of the concrete. The outcomes indicated that the relationships between cumulative mass loss, compressive strength, and ultrasonic wave velocity and freeze–thaw cycles during the freezing–thawing process follow a parabola fitting pattern. As the freeze–thaw damage degree increased, the surface presented a trend of “smooth intact surface” to “surface with dense pores” to “cement mortar peeling” to “coarse aggregates exposed on a large area”. Therefore, there was a rapid decrease in the mass loss after a certain number of freeze–thaw cycles. According to the three stages divided by the stress–AE parameter curve, the linear growth stage shortens, the damage accumulation stage increases, and the failure stage appears earlier with the increase in freeze–thaw cycles. In conclusion, the application of a comprehensive understanding of freeze–thaw damage characteristics of concrete based on compressive properties and acoustic parameters would enhance the evaluation of the performance degradation and damage status for concrete structures. Full article
Show Figures

Figure 1

24 pages, 9460 KiB  
Article
Resistance of Concrete with Various Types of Coarse Aggregate to Coupled Effects of Thermal Shocks and Chemicals
by Muhammad Monowar Hossain, Safat Al-Deen, Sukanta Kumer Shill and Md Kamrul Hassan
Materials 2024, 17(4), 791; https://doi.org/10.3390/ma17040791 - 6 Feb 2024
Cited by 5 | Viewed by 1652
Abstract
Rigid pavements at military airfields experience surface deterioration within 6–18 months of construction. The cause of this degradation is mainly due to combined exposure to repeated heat shocks from jet engine exhaust and spilled aviation oils (hydrocarbons). Surface degradation occurs in the form [...] Read more.
Rigid pavements at military airfields experience surface deterioration within 6–18 months of construction. The cause of this degradation is mainly due to combined exposure to repeated heat shocks from jet engine exhaust and spilled aviation oils (hydrocarbons). Surface degradation occurs in the form of disintegration of aggregates and cement paste into small pieces that pose severe risks of physical injury to maintenance crews or damage to an aircraft engine. Since coarse aggregates typically occupy 60–80% of the concrete volume, aggregates’ thermal properties and microstructure should play a crucial role in the degrading mechanism. At high temperatures, concrete with lightweight aggregates is reported to have better performance compared to concrete with normal-weight aggregate. Thus, the present study carried out a detailed investigation of the mechanical and thermal performance of lightweight aggregate concrete exposed to the combined effects of high temperatures and hydrocarbon oils simultaneously. To replicate harsh airfield operating conditions, standard-sized concrete cylinders were exposed to elevated temperatures using an electric oven. Additionally, a mixture of equal parts of aircraft engine oil, hydraulic oil, and kerosene was applied before each exposure to high temperatures. To identify the resistance of different concrete with various lightweight coarse aggregates, pumice, perlite, lytag (sintered fly ash), and crushed brick were used as lightweight coarse aggregates in concrete. Also, basalt aggregate concrete was used as a reference. After curing, cylinders were tested for the ultimate strength. Later, after every 20 cyclic exposures, three cylinders from each aggregate type were tested for residual comprehensive strength, thermal, chemical, and microstructural (SEM) properties. Overall, concrete with crushed brick aggregate and lytag used in this study showed superior resistance to the simulated airfield conditions. The findings of this study will provide valuable insights to select an appropriate coarse aggregate type for military airfield pavement construction, aiming to effectively minimize surface spalling. Full article
(This article belongs to the Special Issue Durability and Time-Dependent Properties of Sustainable Concrete)
Show Figures

Figure 1

Back to TopTop