Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,308)

Search Parameters:
Keywords = exponential dependence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2425 KiB  
Article
Spatial Variability in the Deposition of Herbicide Droplets Sprayed Using a Remotely Piloted Aircraft
by Edney Leandro da Vitória, Luis Felipe Oliveira Ribeiro, Ivoney Gontijo, Fábio Ribeiro Pires, Aloisio José Bueno Cotta, Francisco de Assis Ferreira, Marconi Ribeiro Furtado Júnior, Maria Eduarda da Silva Barbosa, João Victor Oliveira Ribeiro and Josué Wan Der Maas Moreira
AgriEngineering 2025, 7(8), 245; https://doi.org/10.3390/agriengineering7080245 - 1 Aug 2025
Abstract
In this study, we evaluated the spatial variability in droplet deposition in herbicide applications using a remotely piloted aircraft (RPA) in pasture areas. The investigation was conducted in a square grid (50.0 m × 50.0 m), with 121 sampling points, at two operational [...] Read more.
In this study, we evaluated the spatial variability in droplet deposition in herbicide applications using a remotely piloted aircraft (RPA) in pasture areas. The investigation was conducted in a square grid (50.0 m × 50.0 m), with 121 sampling points, at two operational flight heights (3.0 and 4.0 m). Droplet deposition was quantified using the fluorescent dye rhodamine B, and the droplet spectrum was characterised using water-sensitive paper tags. Geostatistical analysis was implemented to characterise spatial dependence, complemented by multivariate statistical analysis. Droplet deposition ranged from 1.01 to 9.02 and 1.10–6.10 μL cm−2 at 3.0 and 4.0 m flight heights, respectively, with the coefficients of variation between 19.72 and 23.06% for droplet spectrum parameters. All droplet spectrum parameters exhibited a moderate to strong spatial dependence (relative nugget effect ≤75%) and a predominance of adjustment to the exponential model, with spatial dependence indices ranging from 12.55 to 47.49% between the two flight heights. Significant positive correlations were observed between droplet deposition and droplet spectrum parameters (r = 0.60–0.79 at 3.0 m; r = 0.37–0.66 at 4.0 m), with the correlation magnitude decreasing as the operational flight height increased. Cross-validation indices demonstrated acceptable accuracy in spatial prediction, with a mean estimation error ranging from −0.030 to 0.044 and a root mean square error ranging from 0.81 to 2.25 across parameters and flight heights. Principal component analysis explained 99.14 and 85.72% of the total variation at 3.0 and 4.0 m flight heights, respectively. The methodological integration of geostatistics and multivariate statistics provides a comprehensive understanding of the spatial variability in droplet deposition, with relevant implications for the optimisation of phytosanitary applications performed using RPAs. Full article
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

20 pages, 2854 KiB  
Article
Trait-Based Modeling of Surface Cooling Dynamics in Olive Fruit Using Thermal Imaging and Mixed-Effects Analysis
by Eddy Plasquy, José M. Garcia, Maria C. Florido and Anneleen Verhasselt
Agriculture 2025, 15(15), 1647; https://doi.org/10.3390/agriculture15151647 - 30 Jul 2025
Viewed by 178
Abstract
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled [...] Read more.
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled cooling conditions. Surface temperature was recorded using infrared thermal imaging, and morphological and compositional traits were quantified. Temperature decay was modeled using Newton’s Law of Cooling, extended with a quadratic time term to capture nonlinear trajse thectories. A linear mixed-effects model was fitted to log-transformed, normalized temperature data, incorporating trait-by-time interactions and hierarchical random effects. The results confirmed that fruit weight, specific surface area (SSA), and specific heat capacity (SHC) are key drivers of cooling rate variability, consistent with theoretical expectations, but quantified here using a trait-based statistical model applied to olive fruit. The quadratic model consistently outperformed standard exponential models, revealing dynamic effects of traits on temperature decline. Residual variation at the group level pointed to additional unmeasured structural influences. This study demonstrates that olive fruit cooling behavior can be effectively predicted using interpretable, trait-dependent models. The findings offer a quantitative basis for optimizing postharvest cooling protocols and are particularly relevant for maintaining quality under high-temperature harvest conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

24 pages, 13347 KiB  
Article
Efficient Modeling of Underwater Target Radiation and Propagation Sound Field in Ocean Acoustic Environments Based on Modal Equivalent Sources
by Yan Lv, Wei Gao, Xiaolei Li, Haozhong Wang and Shoudong Wang
J. Mar. Sci. Eng. 2025, 13(8), 1456; https://doi.org/10.3390/jmse13081456 - 30 Jul 2025
Viewed by 165
Abstract
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This [...] Read more.
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This causes computational costs to scale exponentially with the number of layers, compromising efficiency and limiting applicability. To address this, this paper proposes a modal equivalent source (MES) model employing normal modes as basis functions instead of free-field Green’s functions. This model constructs a set of normal mode bases using full-depth hydroacoustic parameters, incorporating water column characteristics into the basis functions to eliminate waveguide stratification. This significantly reduces the computational matrix size of the ESM and computes acoustic fields in range-dependent waveguides using a single set of normal modes, resolving the dual limitations of inadequate precision and low efficiency in such environments. Concurrently, for the construction of basis functions, this paper also proposes a fast computation method for eigenvalues and eigenmodes in waveguide contexts based on phase functions and difference equations. Furthermore, coupling the MES method with the Finite Element Method (FEM) enables integrated computation of underwater target radiation and propagation fields. Multiple simulations demonstrate close agreement between the proposed model and reference results (errors < 4 dB). Under equivalent accuracy requirements, the proposed model reduces computation time to less than 1/25 of traditional ESM, achieving significant efficiency gains. Additionally, sea trial verification confirms model effectiveness, with mean correlation coefficients exceeding 0.9 and mean errors below 5 dB against experimental data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 3137 KiB  
Article
The Heat Transfer Coefficient During Pool Boiling of Refrigerants in a Compact Heat Exchanger
by Marcin Kruzel, Tadeusz Bohdal, Krzysztof Dutkowski, Krzysztof J. Wołosz and Grzegorz Robakowski
Energies 2025, 18(15), 4030; https://doi.org/10.3390/en18154030 - 29 Jul 2025
Viewed by 173
Abstract
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were [...] Read more.
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were heated from the inside with warm water. The flow of the refrigerant was gravity-based. The heat exchanger was practically flooded with liquid refrigerant at a saturation temperature (ts), which flowed out after evaporation in a gaseous form. The tests were conducted for four refrigerants: R1234ze, R1234yf, R134a (a high-pressure refrigerant), and HFE7100 (a low-pressure refrigerant). Thermal characteristics describing the heat transfer process throughout the entire compact heat exchanger, specifically for the boiling process itself, were developed. It was found that in the case of micro-space boiling, there is an exponential dependence of the heat transfer coefficient on the heat flux density on the heated surface. Experimental data were compared to experimental and empirical data presented in other studies. Our own empirical models were proposed to determine the heat transfer coefficient for boiling in a mini-space for individual refrigerants. The proposed calculation models were also generalized for various refrigerants by introducing the value of reduced pressure into the calculation relationship. The developed relationship enables the determination of heat transfer coefficient values during boiling in a micro-space on the surface of horizontal tubes for various refrigerants with an accuracy of ±25%. Full article
Show Figures

Figure 1

26 pages, 657 KiB  
Article
Bayesian Inference for Copula-Linked Bivariate Generalized Exponential Distributions: A Comparative Approach
by Carlos A. dos Santos, Saralees Nadarajah, Fernando A. Moala, Hassan S. Bakouch and Shuhrah Alghamdi
Axioms 2025, 14(8), 574; https://doi.org/10.3390/axioms14080574 - 25 Jul 2025
Viewed by 148
Abstract
This paper addresses the limitations of existing bivariate generalized exponential (GE) distributions for modeling lifetime data, which often exhibit rigid dependence structures or non-GE marginals. To overcome these limitations, we introduce four new bivariate GE distributions based on the Farlie–Gumbel–Morgenstern, Gumbel–Barnett, Clayton, and [...] Read more.
This paper addresses the limitations of existing bivariate generalized exponential (GE) distributions for modeling lifetime data, which often exhibit rigid dependence structures or non-GE marginals. To overcome these limitations, we introduce four new bivariate GE distributions based on the Farlie–Gumbel–Morgenstern, Gumbel–Barnett, Clayton, and Frank copulas, which allow for more flexible modeling of various dependence structures. We employ a Bayesian framework with Markov Chain Monte Carlo (MCMC) methods for parameter estimation. A simulation study is conducted to evaluate the performance of the proposed models, which are then applied to a real-world dataset of electrical treeing failures. The results from the data application demonstrate that the copula-based models, particularly the one derived from the Frank copula, provide a superior fit compared to existing bivariate GE models. This work provides a flexible and robust framework for modeling dependent lifetime data. Full article
Show Figures

Figure 1

20 pages, 11438 KiB  
Article
Investigating Chaotic Techniques and Wave Profiles with Parametric Effects in a Fourth-Order Nonlinear Fractional Dynamical Equation
by Jan Muhammad, Ali H. Tedjani, Ejaz Hussain and Usman Younas
Fractal Fract. 2025, 9(8), 487; https://doi.org/10.3390/fractalfract9080487 - 24 Jul 2025
Viewed by 257
Abstract
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the [...] Read more.
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the concepts to more intricate wave dynamics, relevant in engineering and science for understanding complex phenomena. To examine the solitary wave solutions of the proposed model, we employ sophisticated analytical techniques, including the generalized projective Riccati equation method, the new improved generalized exponential rational function method, and the modified F-expansion method, along with mathematical simulations, to obtain a deeper insight into wave propagation. To explore desirable soliton solutions, the nonlinear partial differential equation is converted into its respective ordinary differential equations by wave transforms utilizing β-fractional derivatives. Further, the solutions in the forms of bright, dark, singular, combined, and complex solitons are secured. Various physical parameter values and arrangements are employed to investigate the soliton solutions of the system. Variations in parameter values result in specific behaviors of the solutions, which we illustrate via various types of visualizations. Additionally, a key aspect of this research involves analyzing the chaotic behavior of the governing model. A perturbed version of the system is derived and then analyzed using chaos detection techniques such as power spectrum analysis, Poincaré return maps, and basin attractor visualization. The study of nonlinear dynamics reveals the system’s sensitivity to initial conditions and its dependence on time-decay effects. This indicates that the system exhibits chaotic behavior under perturbations, where even minor variations in the starting conditions can lead to drastically different outcomes as time progresses. Such behavior underscores the complexity and unpredictability inherent in the system, highlighting the importance of understanding its chaotic dynamics. This study evaluates the effectiveness of currently employed methodologies and elucidates the specific behaviors of the system’s nonlinear dynamics, thus providing new insights into the field of high-dimensional nonlinear scientific wave phenomena. The results demonstrate the effectiveness and versatility of the approach used to address complex nonlinear partial differential equations. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

18 pages, 2456 KiB  
Article
The Characterization of the Mechanical Harmonic Oscillator Extremum Envelope Shape According to Different Friction Types
by João C. Fernandes
Axioms 2025, 14(8), 554; https://doi.org/10.3390/axioms14080554 - 23 Jul 2025
Viewed by 111
Abstract
To characterize a phenomenological model of a mechanical oscillator, it is important to know the properties of the envelope of the three main physical motion variables: deviation from equilibrium, velocity, and acceleration. Experimental data show that friction forces restrict the shape of these [...] Read more.
To characterize a phenomenological model of a mechanical oscillator, it is important to know the properties of the envelope of the three main physical motion variables: deviation from equilibrium, velocity, and acceleration. Experimental data show that friction forces restrict the shape of these functions. A linear, exponential, or more abrupt decay can be observed depending on the different physical systems and conditions. This paper aimed to contribute to clarifying the role that some types of friction forces play in these shapes. Three types of friction—constant sliding friction, pressure drag proportional to the square of velocity, and friction drag proportional to velocity—were considered to characterize the line connecting the maxima and minima of displacement for a generic mechanical harmonic oscillator. The ordinary differential equation (ODE), describing the harmonic oscillator simultaneously containing the three types of dissipative forces (constant, viscous, and quadratic), was numerically solved to obtain energy dissipation, and the extrema of both displacement and velocity. The differential equation ruling the behavior of the amplitude, as a function of the friction force coefficients, was obtained from energy considerations. Solving this equation, we obtained analytical functions, parametrized by the force coefficients that describe the oscillator tail. A comparison between these functions and the predicted oscillator ODE extrema was made, and the results were in agreement for all the situations tested. Information from the velocity extrema and nulls was enough to obtain a second function that rules completely the ODE solution. The correlations obtained allow for the reverse operation: from the identified extremum data, it was possible to identify univocally the three friction coefficients fitting used in the model. Motion equations were solved, and some physical properties, namely energy conservation and work of friction forces, were revisited. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

28 pages, 4805 KiB  
Article
Mapping the Global Research on Drug–Drug Interactions: A Multidecadal Evolution Through AI-Driven Terminology Standardization
by Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit, Gabriela Bungau and Paul Andrei Negru
Bioengineering 2025, 12(7), 783; https://doi.org/10.3390/bioengineering12070783 - 19 Jul 2025
Viewed by 603
Abstract
The significant burden of polypharmacy in clinical settings contrasts sharply with the narrow research focus on drug–drug interactions (DDIs), revealing an important gap in understanding the complexity of real-world multi-drug regimens. The present study addresses this gap by conducting a high-resolution, multidimensional bibliometric [...] Read more.
The significant burden of polypharmacy in clinical settings contrasts sharply with the narrow research focus on drug–drug interactions (DDIs), revealing an important gap in understanding the complexity of real-world multi-drug regimens. The present study addresses this gap by conducting a high-resolution, multidimensional bibliometric and network analysis of 19,151 DDI publications indexed in the Web of Science Core Collection (1975–2025). Using advanced tools, including VOSviewer version 1.6.20, Bibliometrix 5.0.0, and AI-enhanced terminology normalization, global research trajectories, knowledge clusters, and collaborative dynamics were systematically mapped. The analysis revealed an exponential growth in publication volume (from 55 in 1990 to 1194 in 2024), with output led by the United States and a marked acceleration in Chinese contributions after 2015. Key pharmacological agents frequently implicated in DDI research included CYP450-dependent drugs such as statins, antiretrovirals, and central nervous system drugs. Thematic clusters evolved from mechanistic toxicity assessments to complex frameworks involving clinical risk management, oncology co-therapies, and pharmacokinetic modeling. The citation impact peaked at 3.93 per year in 2019, reflecting the increasing integration of DDI research into mainstream areas of pharmaceutical science. The findings highlight a shift toward addressing polypharmacy risks in aging populations, supported by novel computational methodologies. This comprehensive assessment offers insights for researchers and academics aiming to navigate the evolving scientific landscape of DDIs and underlines the need for more nuanced system-level approaches to interaction risk assessment. Future studies should aim to incorporate patient-level real-world data, expand bibliometric coverage to underrepresented regions and non-English literature, and integrate pharmacogenomic and time-dependent variables to enhance predictive models of interaction risk. Cross-validation of AI-based approaches against clinical outcomes and prospective cohort data are also needed to bridge the translational gap and support precision dosing in complex therapeutic regimens. Full article
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
Spatiotemporal Deformation Prediction Model for Retaining Structures Integrating ConvGRU and Cross-Attention Mechanism
by Yanyong Gao, Zhaoyun Xiao, Zhiqun Gong, Shanjing Huang and Haojie Zhu
Buildings 2025, 15(14), 2537; https://doi.org/10.3390/buildings15142537 - 18 Jul 2025
Viewed by 257
Abstract
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep [...] Read more.
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep learning framework, CGCA (Convolutional Gated Recurrent Unit with Cross-Attention), which integrates ConvGRU and cross-attention mechanisms. The model achieves spatio-temporal feature extraction and deformation prediction via an encoder–decoder architecture. Specifically, the convolutional structure captures spatial dependencies between monitoring points, while the recurrent unit extracts time-series characteristics of deformation. A cross-attention mechanism is introduced to dynamically weight the interactions between spatial and temporal data. Additionally, the model incorporates multi-dimensional inputs, including full-depth inclinometer measurements, construction parameters, and tube burial depths. The optimization strategy combines AdamW and Lookahead to enhance training stability and generalization capability in geotechnical engineering scenarios. Case studies of foundation pit engineering demonstrate that the CGCA model exhibits superior performance and robust generalization capabilities. When validated against standard section (CX1) and complex working condition (CX2) datasets involving adjacent bridge structures, the model achieves determination coefficients (R2) of 0.996 and 0.994, respectively. The root mean square error (RMSE) remains below 0.44 mm, while the mean absolute error (MAE) is less than 0.36 mm. Comparative experiments confirm the effectiveness of the proposed model architecture and the optimization strategy. This framework offers an efficient and reliable technical solution for deformation early warning and dynamic decision-making in foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

31 pages, 1161 KiB  
Article
In Pursuit of Samuelson for Commodity Futures: How to Parameterize and Calibrate the Term Structure of Volatilities
by Roza Galeeva
Commodities 2025, 4(3), 13; https://doi.org/10.3390/commodities4030013 - 18 Jul 2025
Viewed by 211
Abstract
The phenomenon of rising forward price volatility, both historical and implied, as maturity approaches is referred to as the Samuelson effect or maturity effect. Disregarding this effect leads to significant mispricing of early-exercise options, extendible options, or other path-dependent options. The primary objective [...] Read more.
The phenomenon of rising forward price volatility, both historical and implied, as maturity approaches is referred to as the Samuelson effect or maturity effect. Disregarding this effect leads to significant mispricing of early-exercise options, extendible options, or other path-dependent options. The primary objective of the research is to identify a practical way to incorporate the Samuelson effect into the evaluation of commodity derivatives. We choose to model the instantaneous variance employing the exponential decay parameterizations of the Samuelson effect. We develop efficient calibration techniques utilizing historical futures data and conduct an analysis of statistical errors to provide a benchmark for model performance. The study employs 15 years of data for WTI, Brent, and NG, producing excellent results, with the fitting error consistently inside the statistical error, except for the 2020 crisis period. We assess the stability of the fitted parameters via cross-validation techniques and examine the model’s out-of-sample efficacy. The approach is generalized to encompass seasonal commodities, such as natural gas and electricity. We illustrate the application of the calibrated model of instantaneous variance for the evaluation of commodity derivatives, including swaptions, as well as in the evaluation of power purchase agreements (PPAs). We demonstrate a compelling application of the Samuelson effect to a widely utilized auto-callable equity derivative known as the snowball. Full article
Show Figures

Figure 1

25 pages, 4626 KiB  
Article
Study on Evolution Mechanism of Agricultural Trade Network of RCEP Countries—Complex System Analysis Based on the TERGM Model
by Shasha Ding, Li Wang and Qianchen Zhou
Systems 2025, 13(7), 593; https://doi.org/10.3390/systems13070593 - 16 Jul 2025
Viewed by 303
Abstract
The agricultural products trade network is essentially a complex adaptive system formed by nonlinear interactions between countries. Based on the complex system theory, this study reveals the dynamic self-organization law of the RCEP regional agricultural products trade network by using the panel data [...] Read more.
The agricultural products trade network is essentially a complex adaptive system formed by nonlinear interactions between countries. Based on the complex system theory, this study reveals the dynamic self-organization law of the RCEP regional agricultural products trade network by using the panel data of RCEP agricultural products export trade from 2000 to 2023, combining social network analysis (SNA) and the temporal exponential random graph model (TERGM). The results show the following: (1) The RCEP agricultural products trade network presents a “core-edge” hierarchical structure, with China as the core hub to drive regional resource integration and ASEAN countries developing into secondary core nodes to deepen collaborative dependence. (2) The “China-ASEAN-Japan-Korea “riangle trade structure is formed under the RCEP framework, and the network has the characteristics of a “small world”. The leading mode of South–South trade promotes the regional economic order to shift from the traditional vertical division of labor to multiple coordination. (3) The evolution of trade network system is driven by multiple factors: endogenous reciprocity and network expansion are the core structural driving forces; synergistic optimization of supply and demand matching between economic and financial development to promote system upgrading; geographical proximity and cultural convergence effectively reduce transaction costs and enhance system connectivity, but geographical distance is still the key system constraint that restricts the integration of marginal countries. This study provides a systematic and scientific analytical framework for understanding the resilience mechanism and structural evolution of regional agricultural trade networks under global shocks. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

27 pages, 21183 KiB  
Article
Fracture Initiation in Aluminum Alloys Under Multiaxial Loading at Various Low Strain Rates
by Mehmet Haskul and Eray Arslan
Metals 2025, 15(7), 785; https://doi.org/10.3390/met15070785 - 11 Jul 2025
Viewed by 288
Abstract
The initiation of ductile fractures in medium-strength AW5754 and high-strength AW6082 aluminum alloys at different quasi-static strain rates and under multiaxial stress states was investigated through a series of tensile tests using various specimen geometries. The sensitivity of the stress triaxiality locus to [...] Read more.
The initiation of ductile fractures in medium-strength AW5754 and high-strength AW6082 aluminum alloys at different quasi-static strain rates and under multiaxial stress states was investigated through a series of tensile tests using various specimen geometries. The sensitivity of the stress triaxiality locus to variations in the loading rate was examined for these two aluminum alloy families. Fractographic and elemental analyses were also conducted via SEM and EDS. Numerical simulations based on the finite element method (FEM) were performed using ABAQUS/Standard to determine the actual stress triaxialities and the equivalent plastic strains at fracture. The numerical approach was validated by comparing the simulation results with the experimental findings. These simulations facilitated the generation of a stress triaxiality locus through a curve-fitting process. Among the considered fitting functions, an exponential function was selected as it provided the most accurate relation between the equivalent plastic strain at fracture and the corresponding stress state across different strain rates. The results reveal different strain rate dependencies for the two alloys within a very low strain rate range. The resulting stress triaxiality loci provide a valuable tool for predicting fracture strains and for more accurately evaluating stress states. Overall, the findings of this study significantly advance the understanding of the fracture initiation behavior of aluminum alloys under multiaxial loading conditions and their sensitivity to various quasi-static loading rates. Full article
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 227
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

15 pages, 632 KiB  
Article
Structured Stability of Hybrid Stochastic Differential Equations with Superlinear Coefficients and Infinite Memory
by Chunhui Mei and Mingxuan Shen
Symmetry 2025, 17(7), 1077; https://doi.org/10.3390/sym17071077 - 7 Jul 2025
Viewed by 241
Abstract
The stability of hybrid stochastic differential equations (SDEs in short) depends on multiple factors, such as the structures and parameters of subsystems, switching rules, delay, etc. Regarding stability analysis for hybrid stochastic systems incorporating subsystems with diverse structures, existing research results require the [...] Read more.
The stability of hybrid stochastic differential equations (SDEs in short) depends on multiple factors, such as the structures and parameters of subsystems, switching rules, delay, etc. Regarding stability analysis for hybrid stochastic systems incorporating subsystems with diverse structures, existing research results require the system to possess either Markovian properties or finite memory characteristics. However, the stability problem remains unresolved for hybrid stochastic differential equations with infinite memory (hybrid IMSDEs in short), as no systematic theoretical framework currently exists for such systems. To bridge this gap, this paper develops a rigorous stability analysis for a class of hybrid IMSDEs by introducing a suitably chosen phase space and leveraging the theory of fading memory spaces. We establish sufficient conditions for exponential stability, extending the existing results to systems with unbounded memory effects. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Back to TopTop