Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,050)

Search Parameters:
Keywords = exclusion chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3565 KiB  
Article
Controlled PolyDMAEMA Functionalization of Titanium Surfaces via Graft-To and Graft-From Strategies
by Chiara Frezza, Susanna Romano, Daniele Rocco, Giancarlo Masci, Giovanni Sotgiu, Monica Orsini and Serena De Santis
Micromachines 2025, 16(8), 899; https://doi.org/10.3390/mi16080899 (registering DOI) - 31 Jul 2025
Abstract
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the [...] Read more.
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the integration of smart polymers, such as poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)—noted for its dual pH- and thermo-responsive behavior—has emerged as a promising approach to tailor surface properties for next-generation devices. This work compares two covalent immobilization strategies for PDMAEMA on titanium: the “graft-to” method, involving the attachment of pre-synthesized polymer chains, and the “graft-from” method, based on surface-initiated polymerization. The resulting materials were characterized with size exclusion chromatography (SEC) for molecular weight, Fourier-transform infrared spectroscopy (FTIR) for chemical structure, scanning electron microscopy (SEM) for surface morphology, and contact angle measurements for wettability. Electrochemical impedance spectroscopy and polarization studies were used to assess electrochemical performance. Both strategies yielded uniform and stable coatings, with the mode of grafting influencing both surface morphology and functional stability. These findings provide valuable insights into the development of adaptive, stimuli-responsive titanium-based interfaces in advanced electrochemical systems. Full article
Show Figures

Figure 1

11 pages, 2590 KiB  
Article
Identification and Quantification of Pteridines in the Wild Type and the ambar Mutant of Orius laevigatus (Hemiptera: Anthocoridae)
by Yolanda Bel, Amador Rodríguez-Gómez, Pablo Bielza and Juan Ferré
Insects 2025, 16(8), 756; https://doi.org/10.3390/insects16080756 - 23 Jul 2025
Viewed by 420
Abstract
Nymphs of the ambar mutant of Orius laevigatus (Fieber) are orange-colored instead of the yellowish color of the wild-type individuals. Since there were no previous studies of the pigments of this species, we searched for differences in pigments of the pteridine family between [...] Read more.
Nymphs of the ambar mutant of Orius laevigatus (Fieber) are orange-colored instead of the yellowish color of the wild-type individuals. Since there were no previous studies of the pigments of this species, we searched for differences in pigments of the pteridine family between both strains. Fluorescent compounds from nymph extracts were separated by cellulose thin-layer chromatography (TLC) and by size exclusion chromatography, followed by LC/MS/MS. The present study has allowed the identification for the first time in O. laevigatus of erythropterin, leucopterin, 7-methylxanthopterin, xanthopterin, isoxanthopterin, pterin, and biopterin. The quantification was performed by fluorometry after elution of the pteridines previously separated by TLC. The results showed that the orange color in the ambar nymphs was due to the accumulation of the orange pigment erythropterin. Additionally, mutant nymphs exhibited significantly elevated levels of pterin and reduced levels of leucopterin. The possibility that these differences were due to differences in xanthine dehydrogenase (XDH) activity was tested; the results indicated that XDH deficiency is unlikely to be responsible for the mutant phenotype. Considering that the ambar mutation is recessive, the mutant phenotype should, most likely, be due to a disruption in downstream metabolic steps involved in erythropterin processing. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

9 pages, 2281 KiB  
Communication
Characterization of Small Extracellular Vesicles Isolated from Aurelia aurita
by Aldona Dobrzycka-Krahel, Aleksandra Steć, Grzegorz S. Czyrski, Andrea Heinz and Szymon Dziomba
Biology 2025, 14(8), 922; https://doi.org/10.3390/biology14080922 - 23 Jul 2025
Viewed by 242
Abstract
A moon jellyfish (Aurelia aurita) is a representative of the phylum Cnidaria, commonly found in the northern seas of the globe. The regenerative abilities of cnidarians have recently been associated with extracellular vesicles (EVs) secreted by these organisms. In this study, [...] Read more.
A moon jellyfish (Aurelia aurita) is a representative of the phylum Cnidaria, commonly found in the northern seas of the globe. The regenerative abilities of cnidarians have recently been associated with extracellular vesicles (EVs) secreted by these organisms. In this study, a method for the isolation of EVs from the oral arms of A. aurita is presented. The methodology includes differential centrifugation, size-exclusion chromatography, and ultrafiltration. The isolates were characterized with tunable resistive pulse sensing, cryogenic transmission electron microscopy, capillary electrophoresis (CE), and electrophoretic light scattering (ELS). Small (<150 nm in diameter) EVs were abundant in the isolates. The EVs were found to carry nucleic acids, indicating their role in signaling. Additionally, the difference in zeta potential values measured with ELS and CE indicates high glycation in the vesicles analyzed. Although the method developed was effective in isolating EVs from small sample volumes (0.5 mL), the EV yield was insufficient for omics analysis. Thus, the scaling up of the isolation process is required for comprehensive biochemical analysis and biological activity assessment in A. aurita-derived EVs. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

21 pages, 4829 KiB  
Article
Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury
by Jamie Cooper, Scott Tait Airey, Eric Patino, Theo Andriot, Mousumi Ghosh and Damien D. Pearse
Cells 2025, 14(14), 1065; https://doi.org/10.3390/cells14141065 - 11 Jul 2025
Viewed by 437
Abstract
Spinal cord injury (SCI) triggers both local and systemic pathological responses that evolve over time and differ with injury severity. Small extracellular vesicles (sEVs), known mediators of intercellular communication, may serve as biomarkers reflecting these complex dynamics. In this study, we investigated whether [...] Read more.
Spinal cord injury (SCI) triggers both local and systemic pathological responses that evolve over time and differ with injury severity. Small extracellular vesicles (sEVs), known mediators of intercellular communication, may serve as biomarkers reflecting these complex dynamics. In this study, we investigated whether SCI severity modulates the composition and abundance of circulating plasma-derived sEVs across subacute and chronic phases. Using a graded thoracic contusion model in mice, plasma was collected at defined timepoints post-injury. sEVs were isolated via size-exclusion chromatography and characterized using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and MACSPlex surface marker profiling. We observed an SCI-dependent increase in sEVs during the subacute (7 days) phase, most notably in moderate injuries (50 kdyne), with overall vesicle counts lower chronically (3 months). CD9 emerged as the predominant tetraspanin sEV marker, while CD63 and CD81 were generally present at low levels across all injury severities and timepoints. Surface sEV analysis revealed dynamic regulation of CD41+, CD44+, and CD61+ in the CD9+ sEV subset, suggesting persistent systemic signaling activity. These markers, traditionally associated with platelet function, may also reflect immune or reparative responses following SCI. Our findings highlight the evolving nature of sEV profiles after SCI and support their potential as non-invasive biomarkers for monitoring injury progression. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

11 pages, 1969 KiB  
Article
Two New Strains of Microcystis Cyanobacteria from Lake Baikal, Russia: Ecology and Toxigenic Potential
by Ekaterina Sorokovikova, Irina Tikhonova, Galina Fedorova, Nadezhda Chebunina, Anton Kuzmin, Maria Suslova, Yanzhima Naidanova, Sergey Potapov, Andrey Krasnopeev, Anna Gladkikh and Olga Belykh
Limnol. Rev. 2025, 25(3), 31; https://doi.org/10.3390/limnolrev25030031 - 10 Jul 2025
Viewed by 243
Abstract
Microcystis, a potentially toxigenic cyanobacterium known to form extensive blooms in eutrophic lakes globally, was investigated in the cold oligotrophic Lake Baikal. We report the isolation of two Microcystis strains, Microcystis aeruginosa and M. novacekii, and document the presence of the [...] Read more.
Microcystis, a potentially toxigenic cyanobacterium known to form extensive blooms in eutrophic lakes globally, was investigated in the cold oligotrophic Lake Baikal. We report the isolation of two Microcystis strains, Microcystis aeruginosa and M. novacekii, and document the presence of the latter species in Lake Baikal for the first time. In M. aeruginosa strain BN23, we detected the microcystin synthetase gene mcyE. Liquid chromatography-mass spectrometry revealed the presence of two microcystin variants in BN23, with microcystin-LR, a highly potent toxin, being the dominant form. The concentration of MC-LR reached 540 µg/g dry weight. In contrast, M. novacekii strain BT23 lacked both microcystin synthesis genes and detectable toxins. The habitat waters were characterized as oligotrophic with minor elements of mesotrophy, exhibiting low phytoplankton biomass dominated by the chrysophyte Dinobryon cylindricum (76–77% of biomass), with cyanobacteria contributing 8–10%. The contribution of Microcystis spp. to the total phytoplankton biomass could not be quantified as they were exclusively found in net samples. The water temperature at both sampling stations was ~19 °C, which is considerably lower than optimal for Microcystis spp. and potentially conducive to enhanced microcystin production in toxigenic genotypes. Full article
(This article belongs to the Special Issue Trends in the Trophic State of Freshwater Ecosystems)
Show Figures

Figure 1

18 pages, 3303 KiB  
Article
Crucian Carp-Derived ACE-Inhibitory Peptides with In Vivo Antihypertensive Activity: Insights into Bioactivity, Mechanism, and Safety
by Runxi Han, Jingshan Tian, Yingge Han, Guoxiang Wang, Guanghong Zhou, Chen Dai and Chong Wang
Molecules 2025, 30(13), 2812; https://doi.org/10.3390/molecules30132812 - 30 Jun 2025
Viewed by 375
Abstract
This study explores the identification, characterization, and biological evaluation of angiotensin I-converting enzyme (ACE)-inhibitory peptides derived from enzymatic hydrolysates of crucian carp swim bladders. Following sequential purification by size-exclusion and reversed-phase chromatography, two bioactive peptides—Hyp-Gly-Ala-Arg (Hyp-GAR) and Gly-Ala-Hyp-Gly-Ala-Arg (GA-Hyp-GAR)—were identified using ultra-high-performance liquid [...] Read more.
This study explores the identification, characterization, and biological evaluation of angiotensin I-converting enzyme (ACE)-inhibitory peptides derived from enzymatic hydrolysates of crucian carp swim bladders. Following sequential purification by size-exclusion and reversed-phase chromatography, two bioactive peptides—Hyp-Gly-Ala-Arg (Hyp-GAR) and Gly-Ala-Hyp-Gly-Ala-Arg (GA-Hyp-GAR)—were identified using ultra-high-performance liquid chromatography coupled with linear ion trap–Orbitrap tandem mass spectrometry. The synthetic peptides demonstrated potent ACE-inhibitory activity in vitro, with IC₅₀ values of 12.2 μM (Hyp-GAR) and 4.00 μM (GA-Hyp-GAR). Molecular docking and enzyme kinetics confirmed competitive inhibition through key interactions with ACE active site residues and zinc coordination. In vivo antihypertensive activity was evaluated in spontaneously hypertensive rats, revealing that GA-Hyp-GAR significantly reduced systolic blood pressure in a dose-dependent manner. At a dose of 36 mg/kg, GA-Hyp-GAR reduced systolic blood pressure by 60 mmHg—an effect comparable in magnitude and timing to that of captopril. Mechanistically, GA-Hyp-GAR modulated levels of angiotensin II, bradykinin, endothelial nitric oxide synthase, and nitric oxide. A 90-day subchronic oral toxicity study in mice indicated no significant hematological, biochemical, or histopathological alterations, supporting the peptide’s safety profile. These findings suggest that GA-Hyp-GAR is a promising natural ACE inhibitor with potential application in functional foods or as a nutraceutical for hypertension management. Full article
Show Figures

Graphical abstract

13 pages, 3506 KiB  
Article
Development of an HPTLC-MS Method for the Differentiation of Celosiae Semen: Celosia argentea Versus C. cristata
by Kyu Won Kim, Geonha Park, Sejin Ku and Young Pyo Jang
Molecules 2025, 30(13), 2786; https://doi.org/10.3390/molecules30132786 - 28 Jun 2025
Viewed by 282
Abstract
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, [...] Read more.
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, is not officially listed. The morphological and chemical similarities between the two pose challenges for accurate identification. This study presents an integrative method combining digital image analysis and high-performance thin-layer chromatography coupled with mass spectrometry (HPTLC-MS) to differentiate CAS from CCS. Digital microscopy and ImageJ analysis showed that CCS has a projection area over twice that of CAS. Chemically, an optimized HPTLC method using ethyl acetate, methanol, water, and formic acid revealed distinct fingerprint patterns under UV 366 nm and white light. Notably, celosin F was exclusively detected in CAS, while celosin H, J, and K were characteristic of CCS. ESI-TOF-MS analysis confirmed these markers, resolving an overlap in RF values. Repeatability tests showed total SDs of sucrose for intra-day, inter-day, and inter-analysis precision were 0.006, 0.004, and 0.005, respectively, confirming method reliability. This combined approach offers a rapid, reliable, and practical tool for distinguishing these two medicinal seeds, supporting enhanced quality control and regulatory standardization in pharmaceutical applications. Full article
Show Figures

Figure 1

13 pages, 2049 KiB  
Article
Virus-like Particle Vaccine for Feline Panleukopenia: Immunogenicity and Protective Efficacy in Cats
by Tongyan Wang, Hongchao Wu, Yanwei Wang, Yang Guan, Yujiao Cao, Lulu Wang, Mengyue Wang, Feifei Tan, Wenqiang Pang and Kegong Tian
Vaccines 2025, 13(7), 684; https://doi.org/10.3390/vaccines13070684 - 25 Jun 2025
Viewed by 766
Abstract
Background/Objectives: Feline panleukopenia, caused by FPV, is a highly contagious disease in cats. Current vaccines face challenges including complex production, high cost, and safety risks. Developing safer, more efficient alternatives is crucial. This study aimed to produce FPV virus-like particles (VLPs) using a [...] Read more.
Background/Objectives: Feline panleukopenia, caused by FPV, is a highly contagious disease in cats. Current vaccines face challenges including complex production, high cost, and safety risks. Developing safer, more efficient alternatives is crucial. This study aimed to produce FPV virus-like particles (VLPs) using a recombinant baculovirus system expressing the VP2 gene and evaluate their immunogenicity and protective efficacy in cats. Methods: Sf9 insect cells were infected with recombinant baculovirus to express VP2 protein. The VP2 protein was purified using ultrafiltration and size-exclusion chromatography (SEC). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the assembly of VLPs. Twenty healthy cats were randomly divided into four groups; three groups received different doses (5 μg, 15 μg, and 45 μg) of FPV VLP vaccine, while the fourth group served as the control group immunized with PBS. Blood samples were collected on day 21 to measure hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody responses. Cats in the 15 μg dose group were challenged with virulent FPV strain 708 on day 21, and clinical signs and white blood cell counts were monitored for 10 days. Results: Immunized cats exhibited significantly higher HI and VN antibody titers compared to controls. After challenge, vaccinated cats showed no clinical signs of disease, and their white blood cell counts remained stable. In contrast, control cats developed severe symptoms and experienced significant leukopenia. Conclusions: The FPV VLP vaccine generated in this study are highly immunogenic and provide effective protection against virulent FPV challenge, demonstrating their potential as a safer vaccine candidate for feline panleukopenia. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

19 pages, 3764 KiB  
Article
Isolation and Characterization of Tissue-Derived Extracellular Vesicles from Mouse Lymph Nodes
by Bernadett R. Bodnár, Sayam Ghosal, Brachyahu M. Kestecher, Panna Királyhidi, András Försönits, Nóra Fekete, Edina Bugyik, Zsolt I. Komlósi, Éva Pállinger, György Nagy, Edit I. Buzás and Xabier Osteikoetxea
Int. J. Mol. Sci. 2025, 26(13), 6092; https://doi.org/10.3390/ijms26136092 - 25 Jun 2025
Viewed by 1634
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed particles released by all cells and can be isolated from various sources, even from solid tissues. This study focuses on isolating and characterizing EVs from mouse lymph nodes (LNs). Male C57BL/6 mice were injected with complete Freund’s [...] Read more.
Extracellular vesicles (EVs) are lipid membrane-enclosed particles released by all cells and can be isolated from various sources, even from solid tissues. This study focuses on isolating and characterizing EVs from mouse lymph nodes (LNs). Male C57BL/6 mice were injected with complete Freund’s adjuvant, with or without ovalbumin. Inguinal and popliteal LNs were incised 9 days after immunization, and EV isolation was carried out using a combination of differential centrifugation and size-exclusion chromatography. The characteristic morphology of small and large EVs was confirmed by transmission electron microscopy. Particle size distribution and concentration were determined by nanoparticle tracking analysis, while protein and lipid contents were measured by bicinchoninic acid assay, and sulfo-phospho-vanillin assays, respectively, to calculate the protein-to-lipid ratio. Immune and EV markers were analyzed by using flow cytometry and Western blot assay, revealing significant changes between immunized mice compared to controls. This study establishes a novel protocol for isolating and characterizing EVs from LNs and highlights the impact of immunization on EV properties, offering insights into their roles in immune processes. Full article
(This article belongs to the Special Issue Molecular Mechanism of Extracellular Vesicles in Human Diseases)
Show Figures

Graphical abstract

16 pages, 3738 KiB  
Article
Effect of Mutations in the C-Terminal 22–24 Domains of Filamin C Associated with Cardio- and Myopathies on Its Interaction with Small Heat Shock Protein HspB7
by Lydia K. Muranova, Varvara M. Vostrikova and Nikolai B. Gusev
Int. J. Mol. Sci. 2025, 26(12), 5512; https://doi.org/10.3390/ijms26125512 - 9 Jun 2025
Viewed by 370
Abstract
We investigated the interaction of HspB7 and its α-crystallin domain with the wild-type (WT) C-terminal fragment of human filamin C (FLNC), containing immunoglobulin-like domains 22–24 and its three mutants associated with cardio- and myopathies. The physicochemical properties of the WT FLNC fragment and [...] Read more.
We investigated the interaction of HspB7 and its α-crystallin domain with the wild-type (WT) C-terminal fragment of human filamin C (FLNC), containing immunoglobulin-like domains 22–24 and its three mutants associated with cardio- and myopathies. The physicochemical properties of the WT FLNC fragment and its three mutants, p.Glu2472_Asn2473delinsAsp (EN/D) located in the 22nd domain, p.P2643_L2645del (ΔPGL), and p.W2710X (Wmut) both located in the 24th immunoglobulin-like domain were analyzed. Although all FLNC fragments had similar secondary structures, WT FLNC and its EN/D and ΔPGL mutants formed dimers, whereas Wmut formed either monomers or aggregates. The surface hydrophobicity of EN/D, ΔPGL, and especially Wmut mutants was larger than that of the WT fragment. Size exclusion chromatography, native gel electrophoresis, and chemical crosslinking indicated that the efficiency of interaction with HspB7 or its α-crystallin domain decreased in the order WT~EN/D > ΔPGL. Wmut was unable to interact with either HspB7 or its α-crystallin domain. Modeling via Alphafold 3 indicated that EN/D mutation affected the orientation of two loops connecting β-strands in the 22nd domain, while the ΔPGL and Wmut mutations exposed a hydrophobic groove in the 24th domain thereby reducing their interaction with HspB7. These findings reveal the molecular mechanisms underlying filaminopathies associated with three mutations in the C-terminal region of filamin C. Full article
Show Figures

Graphical abstract

24 pages, 1219 KiB  
Article
Antibacterial and Synergistic Effects of Terminalia citrina Leaf Extracts Against Gastrointestinal Pathogens: Insights from Metabolomic Analysis
by Sze-Tieng Ang, Tak Hyun Kim, Matthew James Cheesman and Ian Edwin Cock
Antibiotics 2025, 14(6), 593; https://doi.org/10.3390/antibiotics14060593 - 8 Jun 2025
Viewed by 1780
Abstract
Background/Objectives: Bacterial contamination leads to foodborne illnesses, and new antibiotics are required to combat these pathogens. Interest has increased in medicinal plants as targets for new antibiotics. Methods: This study evaluated the antibacterial activity of leaf extracts from Terminalia citrina (Gaertn.) [...] Read more.
Background/Objectives: Bacterial contamination leads to foodborne illnesses, and new antibiotics are required to combat these pathogens. Interest has increased in medicinal plants as targets for new antibiotics. Methods: This study evaluated the antibacterial activity of leaf extracts from Terminalia citrina (Gaertn.) Roxb. ex Fleming against four bacterial pathogens (including a methicillin-resistant Staphylococcus aureus (MRSA) strain) using disc diffusion and liquid microdilution assays. The phytochemical composition of the extracts were determined using ultra-high-performance liquid chromatography–mass spectrometry (UPLC-MS). Results: Both the aqueous and methanol extracts demonstrated noteworthy antibacterial activity against Bacillus cereus (MICs of 468.8 µg/mL and 562.5 µg/mL, respectively). Additionally, the extracts were effective against MRSA (MICs = 625 µg/mL). Strong antibacterial effects were also observed against S. aureus, with MICs of 625 µg/mL (aqueous extract) and 833.3 µg/mL (methanol extract). Twelve combinations of extracts and conventional antibiotics were synergistic against B. cereus and S. flexneri. UPLC-MS analysis revealed two flavonoids, orientin 2″-O-gallate and astragalin, exclusive to the aqueous extract, whilst pinocembrin and gallic acid were only detected in the methanol extract. Both extracts contained vitexin 2″-O-p-coumarate, ellagic acid, orientin, rutin, chebulic acid, terminalin, and quercetin-3β-D-glucoside. Both extracts were determined to be nontoxic. Conclusions: The abundance and diversity of polyphenols in the extracts may contribute to their strong antibacterial properties. Further research is required to investigate the antibacterial effects of the individual extract compounds, including their effects when combined with conventional antibiotics, and the potential mechanisms of action against foodborne pathogens. Full article
Show Figures

Graphical abstract

11 pages, 241 KiB  
Article
Mycotoxin Residues in Chicken Breast Muscle and Liver
by Tina Lešić, Jelka Pleadin, Nina Kudumija, Dora Tomašković and Ana Vulić
Foods 2025, 14(12), 2017; https://doi.org/10.3390/foods14122017 - 7 Jun 2025
Viewed by 595
Abstract
The global increase in chicken meat production and consumption has heightened concerns regarding the safety of chicken meat and its derived products. This study aimed to investigate the presence of Penicillium and Aspergillus mycotoxins in 50 samples of chicken breast muscle and liver [...] Read more.
The global increase in chicken meat production and consumption has heightened concerns regarding the safety of chicken meat and its derived products. This study aimed to investigate the presence of Penicillium and Aspergillus mycotoxins in 50 samples of chicken breast muscle and liver collected from the Croatian market. Eight mycotoxins commonly produced by Aspergillus and Penicillium species were analyzed: aflatoxins B1 (AFB1), G1 (AFG1), B2 (AFB2), and G2 (AFG2); sterigmatocystin (STC); ochratoxin A (OTA); cyclopiazonic acid (CPA); and citrinin (CIT). Mycotoxin concentrations were determined using liquid chromatography–tandem mass spectrometry (LC-MS/MS) following sample cleanup with immunoaffinity columns while a QuEChERS-based method was applied for CPA. Mycotoxin occurrence was higher in liver samples, indicating the liver as primary site of mycotoxin accumulation compared to muscle tissue, where only CPA was detected. CPA was present in 20% of all samples, with the highest concentration (6.50 µg/kg) found in breast muscle, detected for the first time in fresh meat. AFB1 and OTA were each detected in 10% of samples, and CIT was found in 4%—all exclusively in liver tissue. Notably, 4 out of the 17 contaminated samples contained more than one mycotoxin. Although the detected concentrations can be considered too low to pose an immediate health risk, the contamination rate suggests further research into these mycotoxins in chicken and other poultry species is needed. Full article
12 pages, 1401 KiB  
Article
Isolation and Preliminary X-Ray Crystallographic Characterisation of the Periplasmic Ligand-Binding Domain of the Chemoreceptor Tlp3 from Campylobacter hepaticus
by Diana Kovaleva, Yue Xin, Mohammad F. Khan, Yu H. Chin and Anna Roujeinikova
Crystals 2025, 15(6), 542; https://doi.org/10.3390/cryst15060542 - 6 Jun 2025
Viewed by 610
Abstract
The Campylobacter genus includes many pathogenic species, with Campylobacter hepaticus primarily implicated in spotty liver disease in poultry. Chemotaxis is one of the well-established mechanisms of pathogenesis of Campylobacter. The chemoreceptor Tlp3, previously studied in C. jejuni, mediates responses to diverse [...] Read more.
The Campylobacter genus includes many pathogenic species, with Campylobacter hepaticus primarily implicated in spotty liver disease in poultry. Chemotaxis is one of the well-established mechanisms of pathogenesis of Campylobacter. The chemoreceptor Tlp3, previously studied in C. jejuni, mediates responses to diverse ligands. Differences between the ligand-binding pockets of Tlp3s in C. hepaticus and C. jejuni may influence ligand specificity and niche adaptation. Here, we report a method for production of the ligand-binding domain of C. hepaticus Tlp3 (Ch Tlp3-LBD) in Escherichia coli inclusion bodies that yields crystallisable protein. Size-exclusion chromatography analysis showed Ch Tlp3-LBD is a monomer in solution. Ch Tlp3-LBD was crystallised using PEG 6000 and LiCl as the precipitants. The crystal lattice symmetry was P2221, with unit cell geometry of a = 82.0, b = 137.7, c = 56.1 Å, and α = β = γ = 90°. X-ray diffraction data have been acquired to 1.6 Å resolution using synchrotron radiation. Estimation of the Matthews coefficient (VM = 2.8 Å3 Da−1) and the outcome of molecular replacement suggested the asymmetric unit is composed of two protein molecules. This work lays the foundation for studies towards understanding the structural basis of ligand recognition by C. hepaticus Tlp3 and its role in pathogenesis. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

18 pages, 2973 KiB  
Article
A TAT Peptide-Functionalized Liposome Delivery Phage System (TAT-Lip@PHM) for an Enhanced Eradication of Intracellular MRSA
by Kaixin Liu, Xin Lu, Xudong Guo, Yi Yang, Wanying Liu, Hongbin Song and Rongtao Zhao
Pharmaceutics 2025, 17(6), 743; https://doi.org/10.3390/pharmaceutics17060743 - 5 Jun 2025
Viewed by 541
Abstract
Background: Intracellular bacteria frequently result in chronic and recurrent infections. MRSA is one of the most prevalent facultative intracellular bacteria in clinical infections. The drug resistance of MRSA and the difficulty of most antibiotics in entering cells result in a suboptimal clinical efficacy [...] Read more.
Background: Intracellular bacteria frequently result in chronic and recurrent infections. MRSA is one of the most prevalent facultative intracellular bacteria in clinical infections. The drug resistance of MRSA and the difficulty of most antibiotics in entering cells result in a suboptimal clinical efficacy of antibiotics in the treatment of intracellular MRSA. Bacteriophages represent a promising alternative therapy in the context of the current antimicrobial resistance crisis. Nevertheless, the low efficiency of phage entry into cells and their rapid inactivation remain challenges in the treatment of intracellular MRSA using phages. The utilization of functionalized carriers for the delivery of phages into cells and their protection represents a feasible strategy. Methods: In this study, a new MRSA bacteriophage (vB_SauS_PHM) was isolated from hospital sewage, exhibiting the characteristics of short incubation period, large lytic amount, and good environmental tolerance. Subsequently, vB_SauS_PHM was encapsulated by TAT peptide-functionalized liposomes through microfluidic technology and size-exclusion chromatography (SEC), forming a phage delivery system, designated TAT-Lip@PHM. Results: The encapsulation rate of the phage by TAT-Lip@PHM was 20.3%, and the cell entry efficiency was ≥90% after 8 h. The 24 h eradication rate of 300 μg/mL TAT-Lip@PHM against intracellular MRSA was 94.05% (superior to the 21.24% and 44.90% of vB_SauS_PHM and Lip@PHM, respectively), while the mammalian cell activity was >85% after 24 h incubation. Conclusions: The TAT-Lip@PHM effectively delivered the phage into the cell and showed an excellent killing effect on intracellular MRSA with low cytotoxicity. This work provides a technical reference for the application of phages in the treatment of intracellular bacterial infection. Full article
Show Figures

Figure 1

15 pages, 1770 KiB  
Article
The Impact of a Manufacturing Process on the Stability of Microcrystalline Long-Acting Injections: A Case Study on Aripiprazole Monohydrate
by Tomasz Pietrzak, Ziemowit Szendzielorz, Joanna Borychowska, Tomasz Ratajczak and Marcin Kubisiak
Pharmaceutics 2025, 17(6), 735; https://doi.org/10.3390/pharmaceutics17060735 - 3 Jun 2025
Viewed by 545
Abstract
Background/Objectives: Long-acting injections (LAIs) are innovative drug delivery systems that improve patient compliance by maintaining therapeutic drug levels over extended periods. Micro- and nanosuspensions are commonly used in LAIs to enhance bioavailability, but their thermodynamic instability poses challenges, including particle aggregation and growth. [...] Read more.
Background/Objectives: Long-acting injections (LAIs) are innovative drug delivery systems that improve patient compliance by maintaining therapeutic drug levels over extended periods. Micro- and nanosuspensions are commonly used in LAIs to enhance bioavailability, but their thermodynamic instability poses challenges, including particle aggregation and growth. This study aimed to evaluate the impact of two helping processes—vehicle thermal treatment and high-shear homogenization—on the stability and manufacturing efficiency of aripiprazole monohydrate (AM) suspensions. Methods: AM suspensions containing sodium carboxymethyl cellulose (CMCNa), mannitol and disodium phosphate in water for injections (WFIs) were prepared using a combination of thermal treatment of the vehicle solution, high-shear homogenization and bead milling. Four manufacturing variants were tested to assess the influence of these processes on particle size distribution (PSD), viscosity and stability during a 3-month accelerated stability study. Molecular weight changes in CMCNa from thermal treatment were analyzed using size exclusion chromatography with multiangle scattering (SEC-MALS), and PSD was measured using laser diffraction. Results: Thermal treatment of the vehicle solution had minimal impact on CMCNa molecular weight, preserving its functionality. High-shear homogenization during bead milling significantly reduced particle aggregation, resulting in improved PSD and reduced viscosity. Synergistic effects of the two helping processes used in one manufacturing process were observed, which led to superior stability and minimal changes in PSD and viscosity during storage. Batches without the helping processes exhibited increased particle size and viscosity over time, indicating reduced suspension stability. Conclusions: Incorporating vehicle thermal treatment and high-shear homogenization during bead milling enhances the stability and manufacturing efficiency of AM suspensions. These findings underscore the importance of optimizing laboratory-scale processes to ensure the quality and safety of pharmaceutical suspensions. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Back to TopTop