Effect of Mutations in the C-Terminal 22–24 Domains of Filamin C Associated with Cardio- and Myopathies on Its Interaction with Small Heat Shock Protein HspB7
Abstract
1. Introduction
2. Results
2.1. Location of the FLNC Mutations Analyzed in This Paper
2.2. Physicochemical Properties of FLNC Mutants
2.3. Interaction of FLNC Fragments with HspB7 and Its α-Crystallin Domains Analyzed via Size-Exclusion Chromatography
2.4. Analysis of the Interaction of Mutant Filamin Fragments with HspB7 via Native Gel Electrophoresis
2.5. Crosslinking of Mutant Filamin Fragments with HspB7
3. Discussion
4. Materials and Methods
4.1. Proteins
4.2. CD Spectroscopy
4.3. Fluorescence Spectroscopy
4.4. Size-Exclusion Chromatography
4.5. Native Gel Electrophoresis
4.6. Chemical Crosslinking with Glutaraldehyde (GA)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, A.X.; Hartwig, J.H.; Akyurek, L.M. Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 2010, 20, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Noureddine, M.; Gehmlich, K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front. Physiol. 2023, 14, 1143858. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Nakamura, F. Structure and Function of Filamin C in the Muscle Z-Disc. Int. J. Mol. Sci. 2020, 21, 2696. [Google Scholar] [CrossRef]
- Himmel, M.; Van Der Ven, P.F.; Stocklein, W.; Furst, D.O. The limits of promiscuity: Isoform-specific dimerization of filamins. Biochemistry 2003, 42, 430–439. [Google Scholar] [CrossRef]
- van der Flier, A.; Sonnenberg, A. Structural and functional aspects of filamins. Biochim. Biophys. Acta 2001, 1538, 99–117. [Google Scholar] [CrossRef]
- Nakamura, F.; Stossel, T.P.; Hartwig, J.H. The filamins: Organizers of cell structure and function. Cell Adhes. Migr. 2011, 5, 160–169. [Google Scholar] [CrossRef]
- Feng, Y.; Walsh, C.A. The many faces of filamin: A versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 2004, 6, 1034–1038. [Google Scholar] [CrossRef]
- Di Donato, M.; Moretti, A.; Sorrentino, C.; Toro, G.; Gentile, G.; Iolascon, G.; Castoria, G.; Migliaccio, A. Filamin A cooperates with the androgen receptor in preventing skeletal muscle senescence. Cell Death Discov. 2023, 9, 437. [Google Scholar] [CrossRef]
- Feng, Z.; Mao, Z.; Yang, Z.; Liu, X.; Nakamura, F. The force-dependent filamin A-G3BP1 interaction regulates phase-separated stress granule formation. J. Cell Sci. 2023, 136, jcs260684. [Google Scholar] [CrossRef]
- Fisher, L.A.B.; Carriqui-Madronal, B.; Mulder, T.; Huelsmann, S.; Schock, F.; Gonzalez-Morales, N. Filamin protects myofibrils from contractile damage through changes in its mechanosensory region. PLoS Genet. 2024, 20, e1011101. [Google Scholar] [CrossRef]
- Song, S.; Shi, A.; Lian, H.; Hu, S.; Nie, Y. Filamin C in cardiomyopathy: From physiological roles to DNA variants. Heart Fail. Rev. 2022, 27, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Dalkilic, I.; Schienda, J.; Thompson, T.G.; Kunkel, L.M. Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure. Mol. Cell. Biol. 2006, 26, 6522–6534. [Google Scholar] [CrossRef] [PubMed]
- Ader, F.; De Groote, P.; Reant, P.; Rooryck-Thambo, C.; Dupin-Deguine, D.; Rambaud, C.; Khraiche, D.; Perret, C.; Pruny, J.F.; Mathieu-Dramard, M.; et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin. Genet. 2019, 96, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Eden, M.; Frey, N. Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy. J. Clin. Med. 2021, 10, 577. [Google Scholar] [CrossRef]
- Collier, M.P.; Alderson, T.R.; de Villiers, C.P.; Nicholls, D.; Gastall, H.Y.; Allison, T.M.; Degiacomi, M.T.; Jiang, H.; Mlynek, G.; Furst, D.O.; et al. HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C. Sci. Adv. 2019, 5, eaav8421. [Google Scholar] [CrossRef]
- Collier, M.P.; Benesch, J.L.P. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020, 25, 601–613. [Google Scholar] [CrossRef]
- Ulbricht, A.; Hohfeld, J. Tension-induced autophagy: May the chaperone be with you. Autophagy 2013, 9, 920–922. [Google Scholar] [CrossRef]
- Zamotina, M.A.; Muranova, L.K.; Zabolotskii, A.I.; Tyurin-Kuzmin, P.A.; Kulebyakin, K.Y.; Gusev, N.B. Universal Adapter Protein Bag3 and Small Heat Shock Proteins. Biochemistry 2024, 89, 1535–1545. [Google Scholar] [CrossRef]
- Wojtowicz, I.; Jablonska, J.; Zmojdzian, M.; Taghli-Lamallem, O.; Renaud, Y.; Junion, G.; Daczewska, M.; Huelsmann, S.; Jagla, K.; Jagla, T. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 2015, 142, 994–1005. [Google Scholar] [CrossRef]
- Krief, S.; Faivre, J.F.; Robert, P.; Le Douarin, B.; Brument-Larignon, N.; Lefrere, I.; Bouzyk, M.M.; Anderson, K.M.; Greller, L.D.; Tobin, F.L.; et al. Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J. Biol. Chem. 1999, 274, 36592–36600. [Google Scholar] [CrossRef]
- Juo, L.Y.; Liao, W.C.; Shih, Y.L.; Yang, B.Y.; Liu, A.B.; Yan, Y.T. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles. J. Cell Sci. 2016, 129, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.C.; Juo, L.Y.; Shih, Y.L.; Chen, Y.H.; Yan, Y.T. HSPB7 prevents cardiac conduction system defect through maintaining intercalated disc integrity. PLoS Genet. 2017, 13, e1006984. [Google Scholar] [CrossRef] [PubMed]
- Muranova, L.K.; Vostrikova, V.M.; Shatov, V.M.; Sluchanko, N.N.; Gusev, N.B. Interaction of the C-terminal immunoglobulin-like domains (Ig 22–24) of filamin C with human small heat shock proteins. Biochimie 2023, 219, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cao, G.; Collier, M.P.; Qiu, X.; Broadway-Stringer, S.; Saman, D.; Ng, J.Z.Y.; Sen, N.; Azad, A.J.; Hooper, C.; et al. Filamin C dimerisation is regulated by HSPB7. Nat. Commun. 2025, 16, 4090. [Google Scholar] [CrossRef]
- Shatov, V.M.; Muranova, L.K.; Zamotina, M.A.; Sluchanko, N.N.; Gusev, N.B. alpha-Crystallin Domains of Five Human Small Heat Shock Proteins (sHsps) Differ in Dimer Stabilities and Ability to Incorporate Themselves into Oligomers of Full-Length sHsps. Int. J. Mol. Sci. 2023, 24, 1085. [Google Scholar] [CrossRef]
- Wang, B.Z.; Nash, T.R.; Zhang, X.; Rao, J.; Abriola, L.; Kim, Y.; Zakharov, S.; Kim, M.; Luo, L.J.; Morsink, M.; et al. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep. Med. 2023, 4, 100976. [Google Scholar] [CrossRef]
- Chevessier, F.; Schuld, J.; Orfanos, Z.; Plank, A.C.; Wolf, L.; Maerkens, A.; Unger, A.; Schlotzer-Schrehardt, U.; Kley, R.A.; Von Horsten, S.; et al. Myofibrillar instability exacerbated by acute exercise in filaminopathy. Hum. Mol. Genet. 2015, 24, 7207–7220. [Google Scholar] [CrossRef]
- Schuld, J.; Orfanos, Z.; Chevessier, F.; Eggers, B.; Heil, L.; Uszkoreit, J.; Unger, A.; Kirfel, G.; van der Ven, P.F.M.; Marcus, K.; et al. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol. Commun. 2020, 8, 154. [Google Scholar] [CrossRef]
- Vorgerd, M.; van der Ven, P.F.; Bruchertseifer, V.; Lowe, T.; Kley, R.A.; Schroder, R.; Lochmuller, H.; Himmel, M.; Koehler, K.; Furst, D.O.; et al. A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am. J. Hum. Genet. 2005, 77, 297–304. [Google Scholar] [CrossRef]
- Pudas, R.; Kiema, T.R.; Butler, P.J.; Stewart, M.; Ylanne, J. Structural basis for vertebrate filamin dimerization. Structure 2005, 13, 111–119. [Google Scholar] [CrossRef]
- Seo, M.D.; Seok, S.H.; Im, H.; Kwon, A.R.; Lee, S.J.; Kim, H.R.; Cho, Y.; Park, D.; Lee, B.J. Crystal structure of the dimerization domain of human filamin A. Proteins 2009, 75, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Verdonschot, J.A.J.; Vanhoutte, E.K.; Claes, G.R.F.; Helderman-van den Enden, A.; Hoeijmakers, J.G.J.; Hellebrekers, D.; de Haan, A.; Christiaans, I.; Lekanne Deprez, R.H.; Boen, H.M.; et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum. Mutat. 2020, 41, 1091–1111. [Google Scholar] [CrossRef] [PubMed]
- Kley, R.A.; Maerkens, A.; Leber, Y.; Theis, V.; Schreiner, A.; van der Ven, P.F.; Uszkoreit, J.; Stephan, C.; Eulitz, S.; Euler, N.; et al. A combined laser microdissection and mass spectrometry approach reveals new disease relevant proteins accumulating in aggregates of filaminopathy patients. Mol. Cell. Proteom. 2013, 12, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Muranova, L.K.; Shatov, V.M.; Slushchev, A.V.; Gusev, N.B. Quaternary Structure and Hetero-Oligomerization of Recombinant Human Small Heat Shock Protein HspB7 (cvHsp). Int. J. Mol. Sci. 2021, 22, 7777. [Google Scholar] [CrossRef]
- Helbing, D.L.; Bohm, L.; Oraha, N.; Stabenow, L.K.; Cui, Y. A Ponceau S Staining-Based Dot Blot Assay for Rapid Protein Quantification of Biological Samples. Gels 2022, 8, 43. [Google Scholar] [CrossRef]
- Schagger, H. Tricine-SDS-PAGE. Nat. Protoc. 2006, 1, 16–22. [Google Scholar] [CrossRef]
- Perrie, W.T.; Perry, S.V. An electrophoretic study of the low-molecular-weight components of myosin. Biochem. J. 1970, 119, 31–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muranova, L.K.; Vostrikova, V.M.; Gusev, N.B. Effect of Mutations in the C-Terminal 22–24 Domains of Filamin C Associated with Cardio- and Myopathies on Its Interaction with Small Heat Shock Protein HspB7. Int. J. Mol. Sci. 2025, 26, 5512. https://doi.org/10.3390/ijms26125512
Muranova LK, Vostrikova VM, Gusev NB. Effect of Mutations in the C-Terminal 22–24 Domains of Filamin C Associated with Cardio- and Myopathies on Its Interaction with Small Heat Shock Protein HspB7. International Journal of Molecular Sciences. 2025; 26(12):5512. https://doi.org/10.3390/ijms26125512
Chicago/Turabian StyleMuranova, Lydia K., Varvara M. Vostrikova, and Nikolai B. Gusev. 2025. "Effect of Mutations in the C-Terminal 22–24 Domains of Filamin C Associated with Cardio- and Myopathies on Its Interaction with Small Heat Shock Protein HspB7" International Journal of Molecular Sciences 26, no. 12: 5512. https://doi.org/10.3390/ijms26125512
APA StyleMuranova, L. K., Vostrikova, V. M., & Gusev, N. B. (2025). Effect of Mutations in the C-Terminal 22–24 Domains of Filamin C Associated with Cardio- and Myopathies on Its Interaction with Small Heat Shock Protein HspB7. International Journal of Molecular Sciences, 26(12), 5512. https://doi.org/10.3390/ijms26125512